
7. The Dual and Adjoint of a Linear Map

7.1 Definition: For two vector spaces U and V over a field F, we write Hom(U, V ) for
the vector space of linear maps L : U → V . For a vector space U over a field F, the dual
of U is the vector space

U∗ = Hom(U,F).

7.2 Theorem: (Dual Basis) Let U be an n-dimensional vector space over a field F. Let
A = {u1, · · · , un} be a basis for U . For each index k, let fk ∈ U∗ be the linear map
fk : U → F such that fk(ui) = δk,i. Then the set F = {f1, · · · , fn} is a basis for U∗. Also,
for x ∈ U and g ∈ U∗ we have

[x]A =

 f1(x)
...

fn(x)

 and [g]F =

 g(u1)
...

g(un)

 .

Proof: For x =
n∑

i=1

tiui ∈ U we have

fk(x) = fk
( n∑
i=1

tiui
)

=
n∑

i=1

ti fk(ui) =
n∑

i=1

tiδk,i = tk

and so [x]A =
(
f1(x), · · · , fn(x)

)T
. For g =

n∑
i=1

tifi ∈ SpanF , we have

g(uk) =
( n∑

i=1

tifi

)
(uk) =

n∑
i=1

tifi(uk) =
n∑

i=1

fiδi,k = tk.

It follows that F is linearly independent because if
n∑

i=1

tifi = 0 then tk =
( n∑

i=1

tifi

)
(uk) = 0

for all k, and it follows that F spans U∗ because given any g ∈ U∗ we can let tk = g(uk)

and then we have g(uk) =
( n∑

i=1

g(ui)fi

)
(uk) for all k, and this implies that g =

n∑
i=1

g(ui)fi

so that g ∈ Span F . It also follows that [g]F =
(
g(u1), · · · , g(un)

)T
.

7.3 Definition: The basis F in the above theorem is called the dual basis of A for U∗.

7.4 Remark: If U is a countable dimensional vector space over F and A = {u1, u2, · · ·} is
a basis for U , then for each index k we can still let fk ∈ U∗ be the linear map fk : U → F
given by fk(ui) = δk,i. Then the set F = {f1, f2, · · ·} is still linearly independent, but it
no longer spans U∗. In this case we have

SpanF ∼= F∞ and U∗ ∼= Fω.

Indeed every g ∈ U∗ is uniquely determined by the values g(ui), and we can define a vector
space isomorphism φA : U∗ → Fω by φA(g) =

(
g(u1), g(u2), · · ·

)
.

More generally, if U is any vector space over F and A is a basis, then for each u ∈ A
we can let fu ∈ U∗ be the unique linear map fu : U → F such that fu(u) = 1 and fu(v) = 0
for v ∈ A with v 6= u. Then the set F =

{
fu
∣∣u ∈ A} is linearly independent, but when U

is infinite dimensional we have SpanF ⊂6=U∗.
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7.5 Theorem: (Double Dual) Let U be a vector space over a field F. Define φ : U → (U∗)∗

by φ(u)(g) = g(u) for u ∈ U and g ∈ U∗. Then

(1) φ is an injective linear map, and
(2) if U is finite dimensional then φ is bijective.

Proof: The map φ is linear because for all u, v ∈ U we have

φ(u+ v)(g) = g(u+ v) = g(u) + g(v) = φ(u)(g) + φ(v)(g) =
(
φ(u) + φ(v)

)
(g)

for all g ∈ U∗ so that φ(u+ v) = φ(u) + φ(v), and because for all u ∈ U and all t ∈ F we
have

φ(tu)(g) = g(tu) = tg(u) = t
(
φ(u)(g)

)
=
(
tφ(u)

)
(g)

for all g ∈ U∗ so that φ(tu) = tφ(u). The map φ is injective because, for u ∈ U , if φ(u) = 0
then φ(u)(g) = 0 for all g ∈ U∗, and hence g(u) = 0 for all g ∈ U∗, and this implies that
u = 0 (since if u 6= 0 we can construct g ∈ U∗ such that g(u) 6= 0 as follows: extend {u}
to a basis A for U , then define g ∈ U∗ to be the linear map g : U → F given by g(u) = 1
and g(v) = 0 for v ∈ A with v 6= u). This proves Part (1).

Suppose that U is finite dimensional. By the Dual Basis Theorem, we know that
dimU = dimU∗ and dimU∗ = dim(U∗)∗. Since φ : U → (U∗)∗ is injective and dimU =
dim(U∗)∗, it follows that φ is bijective. This proves Part (2).

7.6 Definition: The map φ : U → (U∗)∗ of the above theorem, given by φ(u)(g) is called
the evaluation map.

7.7 Definition: Let U and V be vector spaces over a field F. Let L : U → V be a linear
map. The dual of the map L is the linear map LT : V ∗ → U∗ given by LT (g) = g ◦ L so
that LT (g)(u) = g

(
L(u)

)
for all g ∈ V ∗ and u ∈ U .

7.8 Theorem: Let U and V be finite dimensional vector spaces over a filed F. Let A
and B be ordered bases for U and V . Let F and G be the dual bases for U∗ and V ∗. Let
L : U → V be a linear map. Then [

LT
]G
F =

(
[L]AB

)T
.

Proof: Let A = {u1, · · · , uk}, B = {v1, · · · , vl}, F = {f1, · · · , fk} and G = {g1, · · · , gl}.
Then using the formulas for coefficient vectors from the Dual Basis Theorem, we have

[L]AB =
([
L(u1)

]
B, · · · ,

[
L(ul)

]
B

)
=


g1(Lu1) g1(Lu2) · · · g1(Luk)
g2(Lu1) g2(Lu2) · · · g2(Luk)

...
...

...
gl(Lu1) gl(Lu2) · · · gl(Luk)


and

[
LT
]G
F =

([
LT (g1)

]
F , · · · ,

[
LT (gl)

]
F

)
=


g1(Lu1) g2(Lu1) · · · gl(Lu1)
g1(Lu2) g2(Lu2) · · · gl(Lu2)

...
...

...
g1(Luk) g2(Luk) · · · gl(Luk)

 .
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7.9 Definition: Let W be a vector space over a field F. For a subspace U ⊆ W , the
annihilator of U in W ∗ is the space

U◦ =
{
g ∈W ∗

∣∣∣ g(x) = 0 for all x ∈ U
}
.

7.10 Theorem: Let W be a finite dimensional vector space over a field F. Let U ⊆ W
be a subspace. Then

dimU + dimU◦ = dimW.

Proof: Let {u1, u2 · · · , uk} be an ordered basis for U . Extend this to an ordered basis
{u1, · · · , uk, v1, · · · , vl} for W . Let {f1, · · · , fk, g1, · · · , gl} be the dual basis for W ∗. We
claim that {g1, · · · , gl} is a basis for U◦. Since gj(ui) = 0 for all 1 ≤ i ≤ k, we see that

each gj ∈ U◦ so we have Span {g1, · · · , gl} ⊆ U◦. For h ∈ U◦, say h =
k∑

i=1

sifi +
l∑

i=1

tigi,

we have sj = h(uj) = 0 for all indices j so that h =
l∑

i=1

tigi ∈ Span {g1, · · · , gl}. Thus

Span {g1, · · · , gl} = U◦, and so {g1, · · · , gl} is a basis for U◦, as claimed.

7.11 Theorem: Let U be a finite dimensional inner product space over F = R or C.
Define φU : U → U∗ by φ(u)(x) = 〈x, u〉 for u, x ∈ U . Then

(1) if F = R then φU is a vector space isomorphism, and
(2) if F = C then φU is conjugate-linear and bijective.

Proof: Let φ = φU . The map φ is well-defined because for u ∈ U , the map φ(u) : U → F
given by φ(u)(x) is linear in x so that φ(u) ∈ U∗. The map φ is linear when F = R and
conjugate-linear when F = C because for u, v ∈ U and t ∈ F we have

φ(u+ v)(x) = 〈x, u+ v〉 = 〈x, u〉+ 〈x, v〉 = φ(u)(x) + φ(v)(x) , and

φ(tu)(x) = 〈x, tu〉 = t〈x, u〉 = t φ(u)(x)

for all x ∈ U . The map φ is injective because if φ(u1) = φ(u2) then 〈x − u1〉 = 〈x, u2〉
for all x ∈ U , so u1 = u2 by Theorem 5.8. To show that φ is surjective, let g ∈ U∗. We
must find u ∈ U so that φ(u) = g, that is so that 〈x, u〉 = g(x) for all x ∈ U . Choose an
orthonormal basis A = {u1, · · · , un} for U . In order to obtain g(x) = 〈x, u〉 for all x ∈ U ,

it suffices to have g(uk) = 〈uk, u〉 for all indices k. We choose u =
n∑

i=1

g(ui)ui so that

〈u, uk〉 = g(uk) and then we have g(uk) = 〈u, uk〉 = 〈uk, u〉, as required.

7.12 Note: Let W be an inner product space over F = R or C, and let U ⊆ W be a
subspace. Then the above map φW : W → W ∗ given by φW (w)(x) = 〈x,w〉 sends U⊥ to
U◦. Indeed for x ∈W we have

u ∈ U⊥ ⇐⇒ 〈u, x〉 = 0 for all x ∈ U ⇐⇒ 〈x, u〉 = 0 for all x ∈ U
⇐⇒ φW (u)(x) = 0 for all x ∈ U ⇐⇒ φW (u) ∈ U◦.
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7.13 Definition: Let U and V be finite dimensional inner product spaces over F = R or
C. Let L : U → V be a linear map. The adjoint of L is the map L∗ : V → U given by

L∗ = φU
−1 ◦ LT ◦ φV .

7.14 Note: For a map M : V → U , where U and V are finite dimensional inner product
spaces over F = R or C, we have

M = L∗ ⇐⇒ M = φU
−1 ◦ LT ◦ φV ⇐⇒ φU ◦M = LT ◦ φV

⇐⇒ φU
(
M(y)

)
= LT

(
φV (y)

)
for all y ∈ V

⇐⇒ φU
(
M(y)

)
= φV (y) ◦ L for all y ∈ V

⇐⇒ φU
(
M(y)

)
(x) = φV (y)

(
L(x)

)
for all x ∈ U, y ∈ V

⇐⇒
〈
x,M(y)

〉
=
〈
L(x), y

〉
for all x ∈ U, y ∈ V.

Thus the adjoint of L is the unique map L∗ : V → U with the property that〈
L(x), y

〉
=
〈
x, L∗(y)

〉
for all x ∈ U, y ∈ V.

When F = R, the adjoint L∗ is clearly a linear map because it is the composite of linear
maps. When F = C, the adjoint L∗ is again linear since the map LT is linear and the maps
φU
−1 and φV are conjugate-linear. Indeed for y ∈ V and t ∈ C we have

φU
−1
(
LT
(
φV (ty)

))
= φU

−1
(
LT
(
t φV (y)

))
= φU

−1
(
t LT

(
φV (y)

))
= t φU

−1
(
LT
(
φV (y)

))
.

7.15 Theorem: Let U and V be finite dimensional inner product spaces over F = R or C
and let L : U → V be a linear map. Let A and B be orthonormal bases for U and V . Then[

L∗
]B
A =

(
[L]AB

)∗
.

Proof: Let A = {u1, · · · , uk} and B = {v1, · · · , vl}. Then

[L]AB =
([
L(u1)

]
B, · · · ,

[
L(uk)

]
B

)
=


〈
L(u1), v1

〉 〈
L(u2), v1

〉
· · ·

〈
L(uk), v1

〉〈
L(u1), v2

〉 〈
L(u2), v2

〉
· · ·

〈
L(uk), v2

〉
...

...
...〈

L(u1), vl
〉 〈

L(u2), vl
〉
· · ·

〈
L(uk), vl

〉


and

[
L∗
]B
A =

([
L∗(v1)

]
A, · · · ,

[
L∗(vl)

]
A =


〈
L∗(v1), u1

〉 〈
L∗(v2), u1

〉
· · ·

〈
L∗(vl), u1

〉〈
L∗(v1), u2

〉 〈
L∗(v2), u2

〉
· · ·

〈
L∗(vl), u2

〉
...

...
...〈

L∗(v1), uk
〉 〈

L∗(v2), uk
〉
· · ·

〈
L∗(vl), uk

〉


so the (i, j) entry of the matrix
[
L∗
]B
A is([

L∗
]B
A

)
i,j

=
〈
L∗(vj), ui

〉
=
〈
vj , L(ui)

〉
=
〈
L(ui), vj

〉
=
(

[L]AB

)
j,i
.
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7.16 Remark: We now wish to extend our definition of the adjoint of a linear map
L : U → V to include the case in which U and V are infinite dimensional.

7.17 Theorem: Let U and V be inner product spaces over F = R or C and let L : U → V
be a linear map. Suppose that there exists a map M : V → U with the property that〈

L(x), y
〉

=
〈
x,M(y)

〉
for all x ∈ U, y ∈ V.

Then M is unique and linear.

Proof: To prove that M is unique, suppose that another map N : V → U has the property
that

〈
L(x), y

〉
=
〈
x,N(y)

〉
for all x ∈ U and y ∈ V . Then for all y ∈ V we have

〈x,M(y)〉 = 〈L(x), y〉 = 〈x,N(y)〉 for all x ∈ U , and so M(y) = N(y) by Theorem 5.8.
Since M(y) = N(y) for all y ∈ V , we have M = N . To see that M is linear, let y, y1, y2 ∈ V
and let t ∈ F. Since〈

x,M(y1 + y2)
〉

= 〈L(x), y1 + y2〉 = 〈L(x), y1〉+ 〈L(x), y2〉
= 〈x,M(y1)〉+ 〈x,M(y2)〉 =

〈
x,M(y1) +M(y2)

〉
for all x ∈ U , we have M(y1 + y2) = M(y1) +M(y2) by Theorem 5.8. Since

〈x,M(ty)〉 = 〈L(x), ty〉 = t 〈L(x), y〉 = t 〈x,M(y)〉 = 〈x, tM(y)〉

for all x ∈ U , we have M(ty) = tM(y) by Theorem 5.8. Thus M is linear.

7.18 Definition: Let U and V be inner product spaces over F = R or C and let L : U → V
be a linear map. If there exists a map L∗ : V → U with the property that〈

L(x), y
〉

=
〈
x, L∗(y)

〉
for all x ∈ U, y ∈ V.

then, by the above theorem, L∗ is unique and linear, and we call it the adjoint of L.
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