7. The Dual and Adjoint of a Linear Map

7.1 Definition: For two vector spaces U and V over a field F, we write Hom(U, V') for
the vector space of linear maps L : U — V. For a vector space U over a field F, the dual
of U is the vector space

U* = Hom(U, F).

7.2 Theorem: (Dual Basis) Let U be an n-dimensional vector space over a field F. Let
A = {uy,---,u,} be a basis for U. For each index k, let f € U* be the linear map
fr : U — F such that fi(u;) = 0g;. Then the set F ={f1,---, fn} is a basis for U*. Also,
for x € U and g € U* we have
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and so [z]a = (fi(z), -, fu(2))

It follows that F is linearly independent because if > ¢; f; = 0 then ¢}, = ( Sty fi> (ug) =0
i=1 i=1
for all k, and it follows that F spans U* because given any g € U* we can let ¢, = g(ug)
and then we have g(ug) = < > g(ui)fi> (ug) for all k, and this implies that g = > g(u;) f;
i=1 =1
so that g € Span F. It also follows that [g]r = (g(u1), - ,g(un))T.

7.3 Definition: The basis F in the above theorem is called the dual basis of A for U*.

7.4 Remark: If U is a countable dimensional vector space over F and A = {uy,ug, -} is
a basis for U, then for each index k we can still let fr € U* be the linear map fr : U — F
given by fi(u;) = 0k ;. Then the set F = {f1, f2,---} is still linearly independent, but it
no longer spans U*. In this case we have

Span F = F>* and U™ = F“.

Indeed every g € U* is uniquely determined by the values g(u;), and we can define a vector
space isomorphism ¢ 4 : U* — F¥ by ¢.4(g) = (g(ul),g(ug), e )

More generally, if U is any vector space over F and A is a basis, then for each u € A
we can let f, € U* be the unique linear map f,, : U — F such that f,(u) =1 and f,(v) =0
for v € A with v # u. Then the set F = { fu‘u € A} is linearly independent, but when U
is infinite dimensional we have Span F % U*.



7.5 Theorem: (Double Dual) Let U be a vector space over a field F. Define ¢ : U — (U*)*
by ¢(u)(g) = g(u) for w € U and g € U*. Then

(1) ¢ is an injective linear map, and
(2) if U is finite dimensional then ¢ is bijective.

Proof: The map ¢ is linear because for all u,v € U we have

Pu+v)(g) = g(u+v) = g(u) + g(v) = d(u)(g) + ¢(v)(g) = (¢p(u) + ¢(v))(9)

for all g € U* so that ¢(u + v) = ¢(u) + ¢(v), and because for all w € U and all t € F we
have

o(tu)(g) = g(tu) = tg(u) = t(o(u)(9)) = (to(u))(9)

for all g € U* so that ¢(tu) = t¢(u). The map ¢ is injective because, for u € U, if ¢(u) =0
then ¢(u)(g) = 0 for all g € U*, and hence g(u) = 0 for all g € U*, and this implies that
u = 0 (since if u # 0 we can construct g € U* such that g(u) # 0 as follows: extend {u}
to a basis A for U, then define g € U* to be the linear map g : U — F given by g(u) = 1
and g(v) = 0 for v € A with v # u). This proves Part (1).

Suppose that U is finite dimensional. By the Dual Basis Theorem, we know that
dimU = dimU* and dim U* = dim(U*)*. Since ¢ : U — (U*)* is injective and dimU =
dim(U™*)*, it follows that ¢ is bijective. This proves Part (2).

7.6 Definition: The map ¢ : U — (U*)* of the above theorem, given by ¢(u)(g) is called
the evaluation map.

7.7 Definition: Let U and V be vector spaces over a field F. Let L : U — V be a linear
map. The dual of the map L is the linear map LT : V* — U* given by LT (g) = go L so
that L (g)(u) = g(L(u)) for all g € V* and u € U.

7.8 Theorem: Let U and V be finite dimensional vector spaces over a filed F. Let A
and B be ordered bases for U and V. Let F and G be the dual bases for U* and V*. Let
L:U — V be a linear map. Then
G T
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Proof: Let A = {uy,---,ux}, B = {v1,---,u}, F=A{f1,--, fe} and G = {91, -, 91}
Then using the formulas for coefficient vectors from the Dual Basis Theorem, we have

glgﬁmg glgéwg e glgjuk;
L5 = ([L(ul)}B,..., [L(Ul)}lg> - * :u1 ” :U2 " :Uk
g(Lu1)  qi(Luz) - gi(Lug)
and
91%“1; 92%%3 glgémg
[LT}i_: ([LT(91)]P"', [LT(QZ)]]_—> _ g1 :Uz g2 ‘ug g1 :u2
g1(Lug)  g2(Lug) -+ gi(Lug)



7.9 Definition: Let W be a vector space over a field F. For a subspace U C W, the
annihilator of U in W* is the space

Uoz{gEW”
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7.10 Theorem: Let W be a finite dimensional vector space over a field F. Let U C W
be a subspace. Then
dimU + dim U° = dim W.

Proof: Let {uj,us---,ur} be an ordered basis for U. Extend this to an ordered basis
{ug, -, ug,v1, -, v} for W. Let {f1, -+, f,91, -+, 9} be the dual basis for W*. We

claim that {gi,---,¢;} is a basis for U°. Since g;(u;) = 0 for all 1 < i < k, we see that
k !
each g; € U° so we have Span{gi,---, g} C U°. For h € U°, say h = ) sifi + > tig:,
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we have s; = h(u;) = 0 for all indices j so that h = > t;¢; € Span{g1,---,q;}. Thus
i=1
Span{gi,--+,¢} =U®°, and so {¢1, -+, g} is a basis for U°, as claimed.

7.11 Theorem: Let U be a finite dimensional inner product space over F = R or C.
Define ¢y : U — U* by ¢(u)(x) = (x,u) for u,x € U. Then

(1) if F =R then ¢y is a vector space isomorphism, and

(2) if F = C then ¢y is conjugate-linear and bijective.

Proof: Let ¢ = ¢y. The map ¢ is well-defined because for u € U, the map ¢(u) : U — F
given by ¢(u)(zx) is linear in = so that ¢(u) € U*. The map ¢ is linear when F = R and
conjugate-linear when [F = C because for u,v € U and t € F we have

P(u+v)(x) = (z,u+0v) = (z,u) + (z,0) = ¢(u)(z) + ¢(v)(x) , and
o(tu)(x) = (z,tu) = t(z,u) = Td(u)(x)
for all x € U. The map ¢ is injective because if ¢(uy1) = ¢(ug) then (x —uy) = (x,us)
for all x € U, so u; = uy by Theorem 5.8. To show that ¢ is surjective, let g € U*. We

must find u € U so that ¢(u) = g, that is so that (x,u) = g(z) for all z € U. Choose an
orthonormal basis A = {uy,---,u,} for U. In order to obtain g(z) = (z,u) for all z € U,

it suffices to have g(ur) = (uk,w) for all indices k. We choose u = > g(u;)u; so that
i=1

(u,u) = g(ug) and then we have g(ur) = (u, ug) = (ug, u), as required.

7.12 Note: Let W be an inner product space over F = R or C, and let U C W be a
subspace. Then the above map ¢y : W — W* given by ¢ (w)(z) = (x,w) sends UL to
U°. Indeed for x € W we have

uelUt < (u,z)=0forallz e U < (z,u)=0forallz €U
— ow(u)(z)=0forall x e U < ow(u) € U°.



7.13 Definition: Let U and V be finite dimensional inner product spaces over F = R or
C. Let L : U — V be a linear map. The adjoint of L is the map L* : V — U given by

L* = (bUil @) LT O Qﬁv.

7.14 Note: For a map M : V — U, where U and V are finite dimensional inner product
spaces over F = R or C, we have

M=1L" — M:¢ v oLl ogy <= ¢ypoM =L" ooy
= ou(M(y)) = LT(¢V (y)) forallyeV
<:>¢U( y) ¢y(y)oL forallyeV

— du(M(y))(x )—¢V( )(L(x)) forallzcUyeV
— <x,M(y)> = <L(a:),y> forall z €e U,y € V.

Thus the adjoint of L is the unique map L* : V — U with the property that
(L(z),y) = (z,L*(y)) forallz e UyeV.

When F = R, the adjoint L* is clearly a linear map because it is the composite of linear
maps. When F = C, the adjoint L* is again linear since the map L” is linear and the maps
oy " and ¢y are conjugate-linear. Indeed for y € V and t € C we have

o0 (LM ev () = o0 (LT(Tav (1)) = o™ (TL (ov ) ) = tov™ (L (ov ) ).

7.15 Theorem: Let U and V' be finite dimensional inner product spaces over F = R or C
and let L : U — V be a linear map. Let A and B be orthonormal bases for U and V. Then

Proof: Let A= {uy, --,ux} and B ={vy,---,v;}. Then
(L(u1),v1) (L(uz),v1) --- {(L(ug),v1)
<L(U1),Ug> <L(U2),Ug> <L(uk),v2>

<L(ui),vl> <L(ué),vl> <L(u;;),vl>

)5 = ([ @] B = | . .
(L*(v1),ug)  (L*(v2),up) --- (L*(v),ur)

so the (7, ) entry of the matrix [L*}i

([£13),, = (B (3),us) = (g, L(w)) = {Lws),v5) = ([LIg)
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7.16 Remark: We now wish to extend our definition of the adjoint of a linear map
L : U — V to include the case in which U and V are infinite dimensional.

7.17 Theorem: Let U and V' be inner product spaces over F =R or C and let L : U — V
be a linear map. Suppose that there exists a map M : V — U with the property that

(L(z),y) = {(z,M(y)) forallzecUyeV.
Then M is unique and linear.

Proof: To prove that M is unique, suppose that another map N : V' — U has the property
that (L(z),y) = (2, N(y)) for all z € U and y € V. Then for all y € V we have
(x, M(y)) = (L(x),y) = (x,N(y)) for all z € U, and so M(y) = N(y) by Theorem 5.8.
Since M (y) = N(y) for ally € V, we have M = N. To see that M is linear, let y,y1,y2 € V
and let t € F. Since

(2, M(y1 +y2)) = (L(x),y1 + y2) = (L(2), 1) + (L(z), y2)
= (, M(y1)) + (2, M(y2)) = (z, M(y1) + M(y2))
for all x € U, we have M (y1 + y2) = M (y1) + M(y2) by Theorem 5.8. Since
(z, M(ty)) = (L(z), ty) = t(L(x),y) = T (z,M(y)) = (x,tM(y))
for all x € U, we have M (ty) = tM (y) by Theorem 5.8. Thus M is linear.

7.18 Definition: Let U and V' be inner product spacesover F = Ror Candlet L : U — V
be a linear map. If there exists a map L* : V — U with the property that

(L(z),y) = (z,L*(y)) forallz e UyeV.

then, by the above theorem, L* is unique and linear, and we call it the adjoint of L.



