

7. The Dual and Adjoint of a Linear Map

7.1 Definition: For two vector spaces U and V over a field \mathbb{F} , we write $\text{Hom}(U, V)$ for the vector space of linear maps $L : U \rightarrow V$. For a vector space U over a field \mathbb{F} , the **dual** of U is the vector space

$$U^* = \text{Hom}(U, \mathbb{F}).$$

7.2 Theorem: (Dual Basis) Let U be an n -dimensional vector space over a field \mathbb{F} . Let $\mathcal{A} = \{u_1, \dots, u_n\}$ be a basis for U . For each index k , let $f_k \in U^*$ be the linear map $f_k : U \rightarrow \mathbb{F}$ such that $f_k(u_i) = \delta_{k,i}$. Then the set $\mathcal{F} = \{f_1, \dots, f_n\}$ is a basis for U^* . Also, for $x \in U$ and $g \in U^*$ we have

$$[x]_{\mathcal{A}} = \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix} \quad \text{and} \quad [g]_{\mathcal{F}} = \begin{pmatrix} g(u_1) \\ \vdots \\ g(u_n) \end{pmatrix}.$$

Proof: For $x = \sum_{i=1}^n t_i u_i \in U$ we have

$$f_k(x) = f_k\left(\sum_{i=1}^n t_i u_i\right) = \sum_{i=1}^n t_i f_k(u_i) = \sum_{i=1}^n t_i \delta_{k,i} = t_k$$

and so $[x]_{\mathcal{A}} = (f_1(x), \dots, f_n(x))^T$. For $g = \sum_{i=1}^n t_i f_i \in \text{Span } \mathcal{F}$, we have

$$g(u_k) = \left(\sum_{i=1}^n t_i f_i\right)(u_k) = \sum_{i=1}^n t_i f_i(u_k) = \sum_{i=1}^n t_i \delta_{i,k} = t_k.$$

It follows that \mathcal{F} is linearly independent because if $\sum_{i=1}^n t_i f_i = 0$ then $t_k = \left(\sum_{i=1}^n t_i f_i\right)(u_k) = 0$ for all k , and it follows that \mathcal{F} spans U^* because given any $g \in U^*$ we can let $t_k = g(u_k)$ and then we have $g(u_k) = \left(\sum_{i=1}^n g(u_i) f_i\right)(u_k)$ for all k , and this implies that $g = \sum_{i=1}^n g(u_i) f_i$ so that $g \in \text{Span } \mathcal{F}$. It also follows that $[g]_{\mathcal{F}} = (g(u_1), \dots, g(u_n))^T$.

7.3 Definition: The basis \mathcal{F} in the above theorem is called the **dual basis** of \mathcal{A} for U^* .

7.4 Remark: If U is a countable dimensional vector space over \mathbb{F} and $\mathcal{A} = \{u_1, u_2, \dots\}$ is a basis for U , then for each index k we can still let $f_k \in U^*$ be the linear map $f_k : U \rightarrow \mathbb{F}$ given by $f_k(u_i) = \delta_{k,i}$. Then the set $\mathcal{F} = \{f_1, f_2, \dots\}$ is still linearly independent, but it no longer spans U^* . In this case we have

$$\text{Span } \mathcal{F} \cong \mathbb{F}^\infty \quad \text{and} \quad U^* \cong \mathbb{F}^\omega.$$

Indeed every $g \in U^*$ is uniquely determined by the values $g(u_i)$, and we can define a vector space isomorphism $\phi_{\mathcal{A}} : U^* \rightarrow \mathbb{F}^\omega$ by $\phi_{\mathcal{A}}(g) = (g(u_1), g(u_2), \dots)$.

More generally, if U is any vector space over \mathbb{F} and \mathcal{A} is a basis, then for each $u \in \mathcal{A}$ we can let $f_u \in U^*$ be the unique linear map $f_u : U \rightarrow \mathbb{F}$ such that $f_u(u) = 1$ and $f_u(v) = 0$ for $v \in \mathcal{A}$ with $v \neq u$. Then the set $\mathcal{F} = \{f_u \mid u \in \mathcal{A}\}$ is linearly independent, but when U is infinite dimensional we have $\text{Span } \mathcal{F} \not\subseteq U^*$.

7.5 Theorem: (Double Dual) Let U be a vector space over a field \mathbb{F} . Define $\phi : U \rightarrow (U^*)^*$ by $\phi(u)(g) = g(u)$ for $u \in U$ and $g \in U^*$. Then

- (1) ϕ is an injective linear map, and
- (2) if U is finite dimensional then ϕ is bijective.

Proof: The map ϕ is linear because for all $u, v \in U$ we have

$$\phi(u+v)(g) = g(u+v) = g(u) + g(v) = \phi(u)(g) + \phi(v)(g) = (\phi(u) + \phi(v))(g)$$

for all $g \in U^*$ so that $\phi(u+v) = \phi(u) + \phi(v)$, and because for all $u \in U$ and all $t \in \mathbb{F}$ we have

$$\phi(tu)(g) = g(tu) = tg(u) = t(\phi(u)(g)) = (t\phi(u))(g)$$

for all $g \in U^*$ so that $\phi(tu) = t\phi(u)$. The map ϕ is injective because, for $u \in U$, if $\phi(u) = 0$ then $\phi(u)(g) = 0$ for all $g \in U^*$, and hence $g(u) = 0$ for all $g \in U^*$, and this implies that $u = 0$ (since if $u \neq 0$ we can construct $g \in U^*$ such that $g(u) \neq 0$ as follows: extend $\{u\}$ to a basis \mathcal{A} for U , then define $g \in U^*$ to be the linear map $g : U \rightarrow \mathbb{F}$ given by $g(u) = 1$ and $g(v) = 0$ for $v \in \mathcal{A}$ with $v \neq u$). This proves Part (1).

Suppose that U is finite dimensional. By the Dual Basis Theorem, we know that $\dim U = \dim U^*$ and $\dim U^* = \dim(U^*)^*$. Since $\phi : U \rightarrow (U^*)^*$ is injective and $\dim U = \dim(U^*)^*$, it follows that ϕ is bijective. This proves Part (2).

7.6 Definition: The map $\phi : U \rightarrow (U^*)^*$ of the above theorem, given by $\phi(u)(g)$ is called the **evaluation map**.

7.7 Definition: Let U and V be vector spaces over a field \mathbb{F} . Let $L : U \rightarrow V$ be a linear map. The **dual** of the map L is the linear map $L^T : V^* \rightarrow U^*$ given by $L^T(g) = g \circ L$ so that $L^T(g)(u) = g(L(u))$ for all $g \in V^*$ and $u \in U$.

7.8 Theorem: Let U and V be finite dimensional vector spaces over a field \mathbb{F} . Let \mathcal{A} and \mathcal{B} be ordered bases for U and V . Let \mathcal{F} and \mathcal{G} be the dual bases for U^* and V^* . Let $L : U \rightarrow V$ be a linear map. Then

$$[L^T]_{\mathcal{F}}^{\mathcal{G}} = ([L]_{\mathcal{B}}^{\mathcal{A}})^T.$$

Proof: Let $\mathcal{A} = \{u_1, \dots, u_k\}$, $\mathcal{B} = \{v_1, \dots, v_l\}$, $\mathcal{F} = \{f_1, \dots, f_k\}$ and $\mathcal{G} = \{g_1, \dots, g_l\}$. Then using the formulas for coefficient vectors from the Dual Basis Theorem, we have

$$[L]_{\mathcal{B}}^{\mathcal{A}} = \left([L(u_1)]_{\mathcal{B}}, \dots, [L(u_l)]_{\mathcal{B}} \right) = \begin{pmatrix} g_1(Lu_1) & g_1(Lu_2) & \cdots & g_1(Lu_k) \\ g_2(Lu_1) & g_2(Lu_2) & \cdots & g_2(Lu_k) \\ \vdots & \vdots & & \vdots \\ g_l(Lu_1) & g_l(Lu_2) & \cdots & g_l(Lu_k) \end{pmatrix}$$

and

$$[L^T]_{\mathcal{F}}^{\mathcal{G}} = \left([L^T(g_1)]_{\mathcal{F}}, \dots, [L^T(g_l)]_{\mathcal{F}} \right) = \begin{pmatrix} g_1(Lu_1) & g_2(Lu_1) & \cdots & g_l(Lu_1) \\ g_1(Lu_2) & g_2(Lu_2) & \cdots & g_l(Lu_2) \\ \vdots & \vdots & & \vdots \\ g_1(Lu_k) & g_2(Lu_k) & \cdots & g_l(Lu_k) \end{pmatrix}.$$

7.9 Definition: Let W be a vector space over a field \mathbb{F} . For a subspace $U \subseteq W$, the **annihilator** of U in W^* is the space

$$U^\circ = \left\{ g \in W^* \mid g(x) = 0 \text{ for all } x \in U \right\}.$$

7.10 Theorem: Let W be a finite dimensional vector space over a field \mathbb{F} . Let $U \subseteq W$ be a subspace. Then

$$\dim U + \dim U^\circ = \dim W.$$

Proof: Let $\{u_1, u_2, \dots, u_k\}$ be an ordered basis for U . Extend this to an ordered basis $\{u_1, \dots, u_k, v_1, \dots, v_l\}$ for W . Let $\{f_1, \dots, f_k, g_1, \dots, g_l\}$ be the dual basis for W^* . We claim that $\{g_1, \dots, g_l\}$ is a basis for U° . Since $g_j(u_i) = 0$ for all $1 \leq i \leq k$, we see that each $g_j \in U^\circ$ so we have $\text{Span}\{g_1, \dots, g_l\} \subseteq U^\circ$. For $h \in U^\circ$, say $h = \sum_{i=1}^k s_i f_i + \sum_{i=1}^l t_i g_i$,

we have $s_j = h(u_j) = 0$ for all indices j so that $h = \sum_{i=1}^l t_i g_i \in \text{Span}\{g_1, \dots, g_l\}$. Thus $\text{Span}\{g_1, \dots, g_l\} = U^\circ$, and so $\{g_1, \dots, g_l\}$ is a basis for U° , as claimed.

7.11 Theorem: Let U be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Define $\phi_U : U \rightarrow U^*$ by $\phi(u)(x) = \langle x, u \rangle$ for $u, x \in U$. Then

- (1) if $\mathbb{F} = \mathbb{R}$ then ϕ_U is a vector space isomorphism, and
- (2) if $\mathbb{F} = \mathbb{C}$ then ϕ_U is conjugate-linear and bijective.

Proof: Let $\phi = \phi_U$. The map ϕ is well-defined because for $u \in U$, the map $\phi(u) : U \rightarrow F$ given by $\phi(u)(x)$ is linear in x so that $\phi(u) \in U^*$. The map ϕ is linear when $\mathbb{F} = \mathbb{R}$ and conjugate-linear when $\mathbb{F} = \mathbb{C}$ because for $u, v \in U$ and $t \in \mathbb{F}$ we have

$$\begin{aligned} \phi(u+v)(x) &= \langle x, u+v \rangle = \langle x, u \rangle + \langle x, v \rangle = \phi(u)(x) + \phi(v)(x), \text{ and} \\ \phi(tu)(x) &= \langle x, tu \rangle = t\langle x, u \rangle = \overline{t}\phi(u)(x) \end{aligned}$$

for all $x \in U$. The map ϕ is injective because if $\phi(u_1) = \phi(u_2)$ then $\langle x - u_1 \rangle = \langle x, u_2 \rangle$ for all $x \in U$, so $u_1 = u_2$ by Theorem 5.8. To show that ϕ is surjective, let $g \in U^*$. We must find $u \in U$ so that $\phi(u) = g$, that is so that $\langle x, u \rangle = g(x)$ for all $x \in U$. Choose an orthonormal basis $\mathcal{A} = \{u_1, \dots, u_n\}$ for U . In order to obtain $g(x) = \langle x, u \rangle$ for all $x \in U$, it suffices to have $g(u_k) = \langle u_k, u \rangle$ for all indices k . We choose $u = \sum_{i=1}^n \overline{g(u_i)} u_i$ so that $\langle u, u_k \rangle = \overline{g(u_k)}$ and then we have $g(u_k) = \overline{\langle u, u_k \rangle} = \langle u_k, u \rangle$, as required.

7.12 Note: Let W be an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and let $U \subseteq W$ be a subspace. Then the above map $\phi_W : W \rightarrow W^*$ given by $\phi_W(w)(x) = \langle x, w \rangle$ sends U^\perp to U° . Indeed for $x \in W$ we have

$$\begin{aligned} u \in U^\perp &\iff \langle u, x \rangle = 0 \text{ for all } x \in U \iff \langle x, u \rangle = 0 \text{ for all } x \in U \\ &\iff \phi_W(u)(x) = 0 \text{ for all } x \in U \iff \phi_W(u) \in U^\circ. \end{aligned}$$

7.13 Definition: Let U and V be finite dimensional inner product spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $L : U \rightarrow V$ be a linear map. The **adjoint** of L is the map $L^* : V \rightarrow U$ given by

$$L^* = \phi_U^{-1} \circ L^T \circ \phi_V.$$

7.14 Note: For a map $M : V \rightarrow U$, where U and V are finite dimensional inner product spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , we have

$$\begin{aligned} M = L^* &\iff M = \phi_U^{-1} \circ L^T \circ \phi_V \iff \phi_U \circ M = L^T \circ \phi_V \\ &\iff \phi_U(M(y)) = L^T(\phi_V(y)) \text{ for all } y \in V \\ &\iff \phi_U(M(y)) = \phi_V(y) \circ L \text{ for all } y \in V \\ &\iff \phi_U(M(y))(x) = \phi_V(y)(L(x)) \text{ for all } x \in U, y \in V \\ &\iff \langle x, M(y) \rangle = \langle L(x), y \rangle \text{ for all } x \in U, y \in V. \end{aligned}$$

Thus the adjoint of L is the unique map $L^* : V \rightarrow U$ with the property that

$$\langle L(x), y \rangle = \langle x, L^*(y) \rangle \text{ for all } x \in U, y \in V.$$

When $\mathbb{F} = \mathbb{R}$, the adjoint L^* is clearly a linear map because it is the composite of linear maps. When $\mathbb{F} = \mathbb{C}$, the adjoint L^* is again linear since the map L^T is linear and the maps ϕ_U^{-1} and ϕ_V are conjugate-linear. Indeed for $y \in V$ and $t \in \mathbb{C}$ we have

$$\phi_U^{-1}(L^T(\phi_V(ty))) = \phi_U^{-1}(L^T(\bar{t}\phi_V(y))) = \phi_U^{-1}(\bar{t}L^T(\phi_V(y))) = t\phi_U^{-1}(L^T(\phi_V(y))).$$

7.15 Theorem: Let U and V be finite dimensional inner product spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let $L : U \rightarrow V$ be a linear map. Let \mathcal{A} and \mathcal{B} be orthonormal bases for U and V . Then

$$[L^*]_{\mathcal{A}}^{\mathcal{B}} = ([L]_{\mathcal{B}}^{\mathcal{A}})^*.$$

Proof: Let $\mathcal{A} = \{u_1, \dots, u_k\}$ and $\mathcal{B} = \{v_1, \dots, v_l\}$. Then

$$[L]_{\mathcal{B}}^{\mathcal{A}} = ([L(u_1)]_{\mathcal{B}}, \dots, [L(u_k)]_{\mathcal{B}}) = \begin{pmatrix} \langle L(u_1), v_1 \rangle & \langle L(u_2), v_1 \rangle & \cdots & \langle L(u_k), v_1 \rangle \\ \langle L(u_1), v_2 \rangle & \langle L(u_2), v_2 \rangle & \cdots & \langle L(u_k), v_2 \rangle \\ \vdots & \vdots & & \vdots \\ \langle L(u_1), v_l \rangle & \langle L(u_2), v_l \rangle & \cdots & \langle L(u_k), v_l \rangle \end{pmatrix}$$

and

$$[L^*]_{\mathcal{A}}^{\mathcal{B}} = ([L^*(v_1)]_{\mathcal{A}}, \dots, [L^*(v_l)]_{\mathcal{A}}) = \begin{pmatrix} \langle L^*(v_1), u_1 \rangle & \langle L^*(v_2), u_1 \rangle & \cdots & \langle L^*(v_l), u_1 \rangle \\ \langle L^*(v_1), u_2 \rangle & \langle L^*(v_2), u_2 \rangle & \cdots & \langle L^*(v_l), u_2 \rangle \\ \vdots & \vdots & & \vdots \\ \langle L^*(v_1), u_k \rangle & \langle L^*(v_2), u_k \rangle & \cdots & \langle L^*(v_l), u_k \rangle \end{pmatrix}$$

so the (i, j) entry of the matrix $[L^*]_{\mathcal{A}}^{\mathcal{B}}$ is

$$([L^*]_{\mathcal{A}}^{\mathcal{B}})_{i,j} = \langle L^*(v_j), u_i \rangle = \langle v_j, L(u_i) \rangle = \overline{\langle L(u_i), v_j \rangle} = \overline{([L]_{\mathcal{B}}^{\mathcal{A}})_{j,i}}.$$

7.16 Remark: We now wish to extend our definition of the adjoint of a linear map $L : U \rightarrow V$ to include the case in which U and V are infinite dimensional.

7.17 Theorem: Let U and V be inner product spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let $L : U \rightarrow V$ be a linear map. Suppose that there exists a map $M : V \rightarrow U$ with the property that

$$\langle L(x), y \rangle = \langle x, M(y) \rangle \text{ for all } x \in U, y \in V.$$

Then M is unique and linear.

Proof: To prove that M is unique, suppose that another map $N : V \rightarrow U$ has the property that $\langle L(x), y \rangle = \langle x, N(y) \rangle$ for all $x \in U$ and $y \in V$. Then for all $y \in V$ we have $\langle x, M(y) \rangle = \langle L(x), y \rangle = \langle x, N(y) \rangle$ for all $x \in U$, and so $M(y) = N(y)$ by Theorem 5.8. Since $M(y) = N(y)$ for all $y \in V$, we have $M = N$. To see that M is linear, let $y, y_1, y_2 \in V$ and let $t \in \mathbb{F}$. Since

$$\begin{aligned} \langle x, M(y_1 + y_2) \rangle &= \langle L(x), y_1 + y_2 \rangle = \langle L(x), y_1 \rangle + \langle L(x), y_2 \rangle \\ &= \langle x, M(y_1) \rangle + \langle x, M(y_2) \rangle = \langle x, M(y_1 + y_2) \rangle \end{aligned}$$

for all $x \in U$, we have $M(y_1 + y_2) = M(y_1) + M(y_2)$ by Theorem 5.8. Since

$$\langle x, M(ty) \rangle = \langle L(x), ty \rangle = \overline{t} \langle L(x), y \rangle = \overline{t} \langle x, M(y) \rangle = \langle x, tM(y) \rangle$$

for all $x \in U$, we have $M(ty) = tM(y)$ by Theorem 5.8. Thus M is linear.

7.18 Definition: Let U and V be inner product spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let $L : U \rightarrow V$ be a linear map. If there exists a map $L^* : V \rightarrow U$ with the property that

$$\langle L(x), y \rangle = \langle x, L^*(y) \rangle \text{ for all } x \in U, y \in V.$$

then, by the above theorem, L^* is unique and linear, and we call it the **adjoint** of L .