

6. Orthogonal Bases, Orthogonal Complement and Orthogonal Projection

6.1 Definition: Let W be an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For a subset $\mathcal{A} \subseteq W$, we say that \mathcal{A} is **orthogonal** when $\langle u, v \rangle = 0$ for all $u, v \in \mathcal{A}$ with $u \neq v$, and we say that \mathcal{A} is **orthonormal** when \mathcal{A} is orthogonal with $\|u\| = 1$ for every $u \in \mathcal{A}$.

6.2 Example: Let $u_1, u_2, \dots, u_l \in \mathbb{C}^n$ and let $A = (u_1, \dots, u_l) \in M_{n \times l}(\mathbb{C})$. Since

$$A^*A = \begin{pmatrix} u_1^* \\ \vdots \\ u_l^* \end{pmatrix} (u_1 \ \dots \ u_l) = \begin{pmatrix} \langle u_1, u_1 \rangle & \langle u_2, u_1 \rangle & \dots & \langle u_l, u_1 \rangle \\ \vdots & \vdots & & \vdots \\ \langle u_1, u_l \rangle & \langle u_2, u_l \rangle & \dots & \langle u_l, u_l \rangle \end{pmatrix}$$

it follows that $\{u_1, \dots, u_l\}$ is orthogonal if and only if A^*A is diagonal, and $\{u_1, \dots, u_l\}$ is orthonormal if and only if $A^*A = I$.

6.3 Example: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let a_0, a_1, \dots, a_n be distinct points in \mathbb{F} . Consider the vector space $P_n = P_n(\mathbb{F})$ with the inner product $\langle f, g \rangle = \sum_{i=0}^n f(a_i)\overline{g(a_i)}$. For each index k , let $g_k \in P_n$ be given by

$$g_k(x) = \frac{\prod_{i \neq k} (x - a_i)}{\prod_{i \neq k} (a_k - a_i)}$$

so that $g_k(a_i) = \delta_{k,i}$. For $f \in P_n$ we have $\langle f, g_k \rangle = \sum_{i=0}^n f(a_i)\overline{g(a_i)} = \sum_{i=0}^n f(a_i)\delta_{k,i} = f(a_k)$. In particular, we have $\langle g_j, g_k \rangle = g_j(a_k) = \delta_{j,k}$ and so the set $\{g_0, g_1, \dots, g_n\}$ is an orthonormal basis for $P_n(\mathbb{F})$.

6.4 Theorem: Let W be an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $\mathcal{A} \subseteq W$.

(1) If \mathcal{A} is an orthogonal set of nonzero vectors then for $x \in \text{Span } \mathcal{A}$ with say $x = \sum_{i=1}^n t_i u_i$ where $t_i \in \mathbb{F}$ and $u_i \in \mathcal{A}$, we have

$$t_k = \frac{\langle x, u_k \rangle}{\|u_k\|^2}$$

for all indices k , and in particular, \mathcal{A} is linearly independent.

(2) If \mathcal{A} is orthonormal then for $x \in \text{Span } \mathcal{A}$ with say $x = \sum_{i=1}^n t_i u_i$ where $t_i \in \mathbb{F}$ and $u_i \in \mathcal{A}$, we have $t_k = \langle x, u_k \rangle$ for all k , and in particular, \mathcal{A} is linearly independent.

Proof: To prove Part (1), suppose that \mathcal{A} is an orthogonal set of nonzero vectors and let $x = \sum_{i=1}^n t_i u_i$ with each $t_i \in \mathbb{F}$ and each $u_i \in \mathcal{A}$. Then for all indices k , since $\langle u_i, u_k \rangle = 0$

whenever $i \neq k$ we have $\langle x, u_k \rangle = \left\langle \sum_{i=1}^n t_i u_i, u_k \right\rangle = \sum_{i=1}^n t_i \langle u_i, u_k \rangle = t_k \langle u_k, u_k \rangle = t_k \|u_k\|^2$

and so $t_k = \frac{\langle x, u_k \rangle}{\|u_k\|^2}$, as required. In particular, when $x = 0$ we find that $t_k = 0$ for all k , and this shows that \mathcal{A} is linearly independent. This proves Part (1), and Part (2) follows immediately from Part (1).

6.5 Theorem: (The Gram-Schmidt Procedure) Let W be a finite or countable dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $\mathcal{A} = \{u_1, u_2, \dots\}$ be an ordered basis for W . Let $v_1 = u_1$ and for $k \geq 2$ let

$$v_k = u_k - \sum_{i=1}^{k-1} \frac{\langle u_k, v_i \rangle}{\|v_i\|^2} v_i.$$

Then the set $\mathcal{B} = \{v_1, v_2, \dots\}$ is an orthogonal basis for W with the property that for every index $k \geq 1$ we have $\text{Span}\{v_1, \dots, v_k\} = \text{Span}\{u_1, \dots, u_k\}$.

Proof: We prove, by induction on k , that $\{v_1, v_2, \dots, v_k\}$ is an orthogonal basis for $\text{Span}\{u_1, u_2, \dots, u_k\}$. When $k = 1$ this is clear since $v_1 = u_1$. Let $k \geq 2$ and suppose, inductively, that $\{v_1, \dots, v_{k-1}\}$ is an orthogonal basis for $\text{Span}\{u_1, \dots, u_{k-1}\}$. Since $v_k = u_k - \sum_{i=1}^{k-1} \frac{\langle u_k, v_i \rangle}{\|v_i\|^2} v_i$, we see that u_k is equal to v_k plus a linear combination of the vectors v_1, \dots, v_{k-1} , and so we have $\text{Span}\{v_1, \dots, v_{k-1}, v_k\} = \text{Span}\{v_1, \dots, v_{k-1}, u_k\}$. By the induction hypothesis, we have $\text{Span}\{v_1, \dots, v_{k-1}\} = \text{Span}\{u_1, \dots, u_{k-1}\}$ so we have

$$\text{Span}\{v_1, \dots, v_{k-1}, v_k\} = \text{Span}\{v_1, \dots, v_{k-1}, u_k\} = \text{Span}\{u_1, \dots, u_{k-1}, u_k\}.$$

It remains to show that the set $\{v_1, v_2, \dots, v_k\}$ is an orthogonal set. By the induction hypothesis, we have $\langle v_j, v_i \rangle = 0$ for all $1 \leq i < j < k$, so it suffices to show that $\langle v_k, v_j \rangle = 0$ for all indices $1 \leq j < k$ and indeed, for $1 \leq j < k$ we have

$$\begin{aligned} \langle v_k, v_j \rangle &= \left\langle u_k - \sum_{i=1}^{k-1} \frac{\langle u_k, v_i \rangle}{\|v_i\|^2} v_i, v_j \right\rangle = \langle u_k, v_j \rangle - \sum_{i=1}^{k-1} \frac{\langle u_k, v_i \rangle}{\|v_i\|^2} \langle v_i, v_j \rangle \\ &= \langle u_k, v_j \rangle - \frac{\langle u_k, v_j \rangle}{\|v_j\|^2} \langle v_j, v_j \rangle = 0. \end{aligned}$$

6.6 Corollary: Every finite or countable dimensional inner product space W over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} has an orthonormal basis.

Proof: Let W be a finite or countable dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Choose an ordered basis $\mathcal{A} = \{u_1, u_2, \dots\}$ for W . Apply the Gram-Schmidt Procedure to the basis \mathcal{A} to obtain an orthogonal basis $\mathcal{B} = \{v_1, v_2, \dots\}$ for W . For each index $k \geq 1$, let $w_k = \frac{v_k}{\|v_k\|}$. Then $\mathcal{C} = \{w_1, w_2, \dots\}$ is an orthonormal basis for W .

6.7 Remark: It is not the case that every uncountable dimensional inner product space has an orthonormal basis.

6.8 Corollary: Let W be a finite or countable dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $U \subseteq W$ be a finite dimensional subspace. Then every orthogonal (or orthonormal) basis for U extends to an orthogonal (or orthonormal) basis for W .

Proof: Let $\mathcal{A} = \{u_1, u_2, \dots, u_l\}$ be an ordered orthogonal (or orthonormal) basis for U . Extend \mathcal{A} to an ordered basis $\{u_1, \dots, u_l, v_1, v_2, \dots\}$ for W . Apply the Gram-Schmidt Procedure to this basis to obtain an orthogonal basis $\mathcal{C} = \{u_1', \dots, u_l', w_1, w_2\}$ for W . Verify that since $\{u_1, \dots, u_l\}$ is already orthogonal, it follows that the vectors u_i are left unchanged in the Gram Schmidt Procedure so that in fact $u_i' = u_i$ for all indices i , and so the new orthogonal basis \mathcal{C} extends the original orthogonal basis \mathcal{A} .

6.9 Remark: The above corollary does not hold in general in the case that the subspace U is countable dimensional, as we shall soon see in Example 6.16.

6.10 Corollary: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let U and V be finite or countable dimensional inner product spaces over \mathbb{F} . Then U and V are isomorphic (as inner product spaces) if and only if $\dim(U) = \dim(V)$. In particular, if $\dim(U) = n$ then U is isomorphic to \mathbb{F}^n and if $\dim(U) = \aleph_0$ then U is isomorphic to \mathbb{F}^∞ .

Proof: Suppose that U and V are isomorphic. Let $L : U \rightarrow V$ be an isomorphism. Let $\mathcal{A} = \{u_1, u_2, \dots\}$ be any basis for U . Since L is a bijective linear map, it follows that $\mathcal{B} = \{L(u_1), L(u_2), \dots\}$ is a basis for V , and that \mathcal{A} and \mathcal{B} have the same cardinality. Thus $\dim(U) = \dim(V)$.

Conversely, suppose $\dim(U) = \dim(V)$. Let $\mathcal{A} = \{u_1, u_2, \dots\}$ and $\mathcal{B} = \{v_1, v_2, \dots\}$ be orthonormal bases for U and V . Let $L : U \rightarrow V$ be the (unique) bijective linear map with $L(u_i) = v_i$ for all i . Then L preserves inner product because for $x, y \in U$ with say $x = \sum_{i \geq 1} t_i u_i$ and $y = \sum_{j \geq 1} t_j u_j$ we have

$$\langle x, y \rangle = \left\langle \sum_{i \geq 1} s_i u_i, \sum_{j \geq 1} t_j u_j \right\rangle = \sum_{i \geq 1, j \geq 1} s_i \overline{t_j} \langle u_i, u_j \rangle = \sum_{i \geq 1, j \geq 1} s_i \overline{t_j} \delta_{i,j} = \sum_{i \geq 1} s_i \overline{t_i}$$

and

$$\begin{aligned} \langle L(x), L(y) \rangle &= \left\langle L\left(\sum_{i \geq 1} s_i u_i\right), L\left(\sum_{j \geq 1} t_j u_j\right) \right\rangle = \left\langle \sum_{i \geq 1} s_i L(u_i), \sum_{j \geq 1} t_j L(u_j) \right\rangle \\ &= \left\langle \sum_{i \geq 1} s_i v_i, \sum_{j \geq 1} t_j v_j \right\rangle = \sum_{i \geq 1, j \geq 1} s_i \overline{t_j} \langle v_i, v_j \rangle = \sum_{i \geq 1, j \geq 1} s_i \overline{t_j} \delta_{i,j} = \sum_{i \geq 1} s_i \overline{t_i}. \end{aligned}$$

6.11 Corollary: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , let U be an n -dimensional inner product space over \mathbb{F} , and let $\mathcal{A} = \{u_1, \dots, u_n\}$ be an orthonormal basis for U . Then the map $\phi_{\mathcal{A}} : U \rightarrow \mathbb{F}^n$ given by $\phi_{\mathcal{A}}(x) = [x]_{\mathcal{A}}$ is an isomorphism. In particular, when $x = \sum_{i=1}^n s_i u_i$ and $y = \sum_{i=1}^n t_i u_i$ so that $s = [x]_{\mathcal{A}}$ and $t = [y]_{\mathcal{A}}$, we have $\langle x, y \rangle = \langle s, t \rangle = t^* s$.

Proof: Taking $V = \mathbb{F}^n$ with its standard orthonormal basis $\mathcal{B} = \{e_1, \dots, e_n\}$, the map $L : U \rightarrow V$ with $L(u_i) = e_i$, used in the above proof, is precisely the map $\phi_{\mathcal{A}}$.

6.12 Definition: Let W be an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For a subspace $U \subseteq W$, we define the **orthogonal complement** of U in W to be the set

$$U^\perp = \{x \in W \mid \langle x, u \rangle = 0 \text{ for all } u \in U\}.$$

6.13 Theorem: Let W be an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $U \subseteq W$ be a subspace. Then

- (1) U^\perp is a subspace of W ,
- (2) if \mathcal{A} is a basis for U then $U^\perp = \{x \in W \mid \langle x, u \rangle = 0 \text{ for all } u \in \mathcal{A}\}$,
- (3) $U \cap U^\perp = \{0\}$, and
- (4) $U \subseteq (U^\perp)^\perp$.
- (5) If U is finite dimensional then $U \oplus U^\perp = W$, and
- (6) If $U \oplus U^\perp = W$ then $U = (U^\perp)^\perp$.

Proof: We leave the proofs of Parts (1) to (4) as an exercise (they are identical to the proofs of analogous parts of Theorem 2.11). To prove Parts (5), suppose that U is finite dimensional. Let $\mathcal{A} = \{u_1, u_2, \dots, u_l\}$ be an orthonormal basis for U . To prove Part (5), we need to show that for every $x \in W$ there exist unique vectors $u, v \in W$ with $u \in U$, $v \in U^\perp$ and $u + v = x$. First we prove uniqueness. Let $x \in W$, and suppose that $u \in U$, $v \in U^\perp$ and $u + v = x$. Note that for all indices i we have

$$\langle x, u_i \rangle = \langle u + v, u_i \rangle = \langle u, u_i \rangle + \langle v, u_i \rangle = \langle u, u_i \rangle.$$

and so, by Theorem 6.4, we have

$$u = \sum_{i=1}^l \langle u, u_i \rangle u_i = \sum_{i=1}^l \langle x, u_i \rangle u_i.$$

This proves uniqueness, since given $x \in W$, the vector u must be given by $u = \sum_{i=1}^l \langle x, u_i \rangle u_i$ and then the vector v must be given by $v = x - u$.

To prove existence, let $x \in W$ and choose u and v to be the vectors $u = \sum_{i=1}^l \langle x, u_i \rangle u_i$ and $v = x - u$. Then we have $u \in U$ and $u + v = x$, so it suffices to show that $v \in U^\perp$. For all indices k we have

$$\begin{aligned} \langle v, u_k \rangle &= \langle x - u, u_k \rangle = \langle x, u_k \rangle - \langle u, u_k \rangle = \langle x, u_k \rangle - \left\langle \sum_{i=1}^l \langle x, u_i \rangle u_i, u_k \right\rangle \\ &= \langle x, u_k \rangle - \sum_{i=1}^l \langle x, u_i \rangle \langle u_i, u_k \rangle = \langle x, u_k \rangle - \sum_{i=1}^l \langle x, u_i \rangle \delta_{i,k} = \langle x, u_k \rangle - \langle x, u_k \rangle = 0. \end{aligned}$$

Since $\langle v, u_k \rangle = 0$ for all $1 \leq k \leq l$, from Part (2) we have $v \in U^\perp$. This proves Part (5).

To prove Part (6), suppose that $U \oplus U^\perp = W$. From Part (4), we have $U \subseteq (U^\perp)^\perp$. Conversely, let $x \in (U^\perp)^\perp$. Since $U \oplus U^\perp = W$ we can choose $u, v \in W$ with $u \in U$, $v \in U^\perp$ and $u + v = x$. Since $x \in (U^\perp)^\perp$ and $u \in U \subseteq (U^\perp)^\perp$, we have $v = x - u \in (U^\perp)^\perp$. Thus $v \in U^\perp \cap (U^\perp)^\perp$. By Part 3, $U^\perp \cap (U^\perp)^\perp = \{0\}$ and so $v = 0$. Thus $x = u + v = u \in U$.

6.14 Example: As an exercise, show that for $A \in M_{n \times l}(\mathbb{C})$, using the standard inner product in \mathbb{C}^n we have $(\text{Null}A)^\perp = \text{Col}A^*$ and $(\text{Col}A)^\perp = \text{Null}A^*$.

6.15 Remark: When U is an infinite dimensional subspace of W , we do not always have $U \oplus U^\perp = W$ and we do not always have $(U^\perp)^\perp = U$, as the following example shows.

6.16 Example: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $W = \mathbb{F}^\infty$. Let $U = \{a = (a_0, a_1, \dots) \mid \sum_{i=0}^{\infty} a_i = 0\}$.

Note that U is a proper subspace of W and it is countable dimensional with countable basis $\mathcal{A} = \{u_1, u_2, \dots\}$ where $u_k = e_k - e_0 = (-1, 0, \dots, 0, 1, 0, 0, \dots)$. Although $U \not\subseteq W$ we have

$$\begin{aligned} U^\perp &= \{x \in W \mid \langle x, u_k \rangle = 0 \text{ for all } k\} = \{x \in W \mid \langle x, e_k - e_0 \rangle = 0 \text{ for all } k\} \\ &= \{x \in W \mid x_k = x_0 \text{ for all } k\} = \{(x_0, x_1, \dots) \in W \mid x_0 = x_1 = x_2 = \dots\} = \{0\} \end{aligned}$$

because for $(x_0, x_1, \dots) \in W$ we have $x_0 = 0$ for all but finitely many indices i . Notice that in this example we do not have $U \oplus U^\perp = W$. Also notice that, although we could apply the Gram-Schmidt Procedure to the basis \mathcal{A} to obtain an orthogonal basis $\mathcal{B} = \{v_0, v_1, \dots\}$ for U , the basis \mathcal{B} cannot be extended to an orthogonal basis for W because there is no nonzero vector $0 \neq x \in W$ with $\langle x, v_i \rangle = 0$ for all i .

6.17 Definition: Let W be an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $U \subseteq W$ be a finite dimensional subspace (or, more generally, let $U \subseteq W$ be any subspace such that $U \oplus U^\perp = W$). For $x \in W$, we define the **orthogonal projection** of x onto U , denoted by $\text{Proj}_U(x)$, as follows. Since $W = U \oplus U^\perp$, we can choose unique vectors $u, v \in W$ with $u \in U$, $v \in U^\perp$ and $u + v = x$. We then define

$$\text{Proj}_U(x) = u.$$

Since $U = (U^\perp)^\perp$, for u and v as above we have $\text{Proj}_{U^\perp}(x) = v$. When $y \in W$ and $U = \text{Span}\{y\}$, we also write $\text{Proj}_y(x) = \text{Proj}_U(x)$.

6.18 Note: Let W be an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let U be a finite dimensional subspace of W . Let $\mathcal{A} = \{u_1, u_2, \dots, u_l\}$ be an orthogonal basis for U . Then for $x \in W$, as in the proof of Part (5) of Theorem 6.13, we see that

$$\text{Proj}_U(x) = \sum_{i=1}^l \frac{\langle x, u_i \rangle}{\|u_i\|^2} u_i.$$

6.19 Example: As an exercise, show that for $A \in M_{n \times l}(\mathbb{C})$ and $U = \text{Col}A$, given $x \in \mathbb{C}^n$ there exists $t \in \mathbb{C}^l$ such that $A^*At = A^*x$ and that for any such t we have $\text{Proj}_U(x) = At$. In particular, when $\text{rank}(A) = l$ show that A^*A is invertible so that $\text{Proj}_U(x) = A(A^*A)^{-1}A^*x$.

6.20 Theorem: Let W be an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let $U \subseteq W$ be a finite dimensional subspace (or, more generally, a subspace such that $U \oplus U^\perp = W$). Let $x \in W$. Then $\text{Proj}_U(x)$ is the unique point in U which is nearest to x .

Proof: Let $u, v \in W$ be the vectors with $u \in U$, $v \in U^\perp$ and $u + v = x$, so that we have $\text{Proj}_U(x) = u$. Let $w \in U$ with $w \neq u$. Since $\langle w - u, x - u \rangle = \langle w - u, v \rangle = \langle w, v \rangle - \langle u, v \rangle = 0$, Pythagoras' Theorem gives

$$\|x - w\|^2 = \|(x - u) - (w - u)\|^2 = \|x - u\|^2 + \|w - u\|^2 > \|x - u\|^2$$

and so $\|x - w\| > \|x - u\|$.

6.21 Example: Find the quadratic polynomial $f \in P_2 = P_2(\mathbb{R})$ which minimizes

$$\int_{-1}^1 (f(x) - \|x\|)^2 dx.$$

Solution: Let $W = \mathcal{C}^0([-1, 1], \mathbb{R})$ with inner product given by $\langle f, g \rangle = \int_{-1}^1 f(x)g(x) dx$. Then we need to find the polynomial $f \in P_2$ which minimizes $\text{dist}(f, g)$ where $g(t) = |t|$, so we must take

$$f = \text{Proj}_{P_2}(g).$$

Let $p_0 = 1$, $p_1 = x$ and $p_2 = x^2$ so that $\{p_0, p_1, p_2\}$ is the standard basis for P_2 . Apply the Gram-Schmidt Procedure to get

$$q_0 = p_0 = 1,$$

$$\begin{aligned} q_1 &= p_1 - \frac{\langle p_1, q_0 \rangle}{\|q_0\|^2} q_0 = x - \frac{\langle x, 1 \rangle}{\|1\|^2} \cdot 1 = x - \frac{\int_{-1}^1 x dx}{\int_{-1}^1 1 dx} \cdot 1 = x - \frac{0}{2} \cdot 1 = x, \\ q_2 &= p_2 - \frac{\langle p_2, q_0 \rangle}{\|q_0\|^2} q_0 - \frac{\langle p_2, q_1 \rangle}{\|q_1\|^2} q_1 = x^2 - \frac{\langle x^2, 1 \rangle}{\|1\|^2} \cdot 1 - \frac{\langle x^2, x \rangle}{\|x\|^2} \cdot x \\ &= x^2 - \frac{\int_{-1}^1 x^2 dx}{\int_{-1}^1 1 dx} \cdot 1 - \frac{\int_{-1}^1 x^3 dx}{\int_{-1}^1 x^2 dx} \cdot x = x^2 - \frac{2/3}{2} \cdot 1 - \frac{0}{2/3} \cdot x = x^2 - \frac{1}{3}. \end{aligned}$$

Using the orthogonal basis $\{q_0, q_1, q_2\} = \{1, x, x - \frac{1}{3}\}$ for P_2 , we calculate

$$\begin{aligned} f &= \text{Proj}_{P_2}(g) = \frac{\langle g, q_0 \rangle}{\|q_0\|} q_0 + \frac{\langle g, q_1 \rangle}{\|q_1\|^2} q_1 + \frac{\langle g, q_2 \rangle}{\|q_2\|^2} q_2 \\ &= \frac{\langle \|x\|, 1 \rangle}{\|1\|^2} \cdot 1 + \frac{\langle \|x\|, x \rangle}{\|x\|^2} \cdot x + \frac{\langle \|x\|, x^2 - \frac{1}{3} \rangle}{\|x^2 - \frac{1}{3}\|^2} \cdot (x - \frac{1}{3}) \\ &= \frac{\int_{-1}^1 \|x\| dx}{\int_{-1}^1 1 dx} \cdot 1 + \frac{\int_{-1}^1 x \|x\| dx}{\int_{-1}^1 x^2 dx} \cdot x + \frac{\int_{-1}^1 \|x\| (x^2 - \frac{1}{3}) dx}{\int_{-1}^1 (x^2 - \frac{1}{3})^2 dx} \cdot (x - \frac{1}{3}) \\ &= \frac{1}{2} \cdot 1 + \frac{0}{2/3} \cdot x + \frac{\frac{1}{2} - \frac{1}{3}}{\frac{2}{5} - \frac{4}{9} + \frac{2}{9}} \cdot (x^2 - \frac{1}{3}) = \frac{1}{2} + \frac{1/6}{8/45} (x^2 - \frac{1}{3}) \\ &= \frac{1}{2} + \frac{15}{16} (x^2 - \frac{1}{3}) = \frac{3}{16} + \frac{15}{16} x^2. \end{aligned}$$