
6. Orthogonal Bases, Orthogonal Complement and Orthogonal Projection

6.1 Definition: Let W be an inner product space over F = R or C. For a subset A ⊆W ,
we say that A is orthogonal when 〈u, v〉 = 0 for all u, v ∈ A with u 6= v, and we say that
A is orthonormal when A is orthogonal with ‖u‖ = 1 for every u ∈ A.

6.2 Example: Let u1, u2, · · · , ul ∈ Cn and let A =
(
u1, · · · , ul

)
∈Mn×l(C). Since

A∗A =

u1
∗

...
ul
∗

 (u1 · · · ul ) =

 〈u1, u1〉 〈u2, u1〉 · · · 〈ul, ul〉...
...

...
〈u1, ul〉 〈u2, ul〉 · · · 〈ul, ul〉


it follows that {u1, · · · , ul} is orthogonal if and only if A∗A is diagonal, and {u1, · · · , ul} is
orthonormal if and only if A∗A = I.

6.3 Example: Let F = R or C and let a0, a1, · · · , an be distinct points in F. Consider the

vector space Pn = Pn(F) with the inner product 〈f, g〉 =
n∑

i=0

f(ai)g(ai). For each index k,

let gk ∈ Pn be given by

gk(x) =

∏
i6=k(x− ai)∏
i 6=k(ak − ai)

so that gk(ai) = δk,i. For f ∈Pn we have 〈f, gk〉 =
n∑

i=0

f(ai)g(ai) =
n∑

i=0

f(ai)δk,i = f(ak). In

particular, we have 〈gj , gk〉 = gj(ak) = δj,k and so the set {g0, g1, · · · , gn} is an orthonormal
basis for Pn(F).

6.4 Theorem: Let W be an inner product space over F = R or C. Let A ⊆W .

(1) If A is an orthogonal set of nonzero vectors then for x ∈ SpanA with say x =
n∑

i=1

tiui

where ti ∈ F and ui ∈ A, we have

tk =
〈x, uk〉
‖uk‖2

for all indices k, and in particular, A is linearly independent.

(2) If A is orthonormal then for x ∈ SpanA with say x =
n∑

i=1

tiui where ti ∈ F and ui ∈ A,

we have tk = 〈x, uk〉 for all k, and in particular, A is linearly independent.

Proof: To prove Part (1), suppose that A is an orthogonal set of nonzero vectors and let

x =
n∑

i=1

tiui with each ti ∈ F and each ui ∈ A. Then for all indices k, since 〈ui, uk〉 = 0

whenever i 6= k we have 〈x, uk〉 =
〈 n∑

i=1

tiu1 , uk

〉
=

n∑
i=1

ti〈ui, uk〉 = tk〈uk, uk〉 = tk‖uk‖2

and so tk = 〈x,uk〉
‖uk‖2 , as required. In particular, when x = 0 we find that tk = 0 for all k,

and this shows that A is linearly independent. This proves Part (1), and Part (2) follows
immediately from Part (1).
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6.5 Theorem: (The Gram-Schmidt Procedure) LetW be a finite or countable dimensional
inner product space over F = R or C. Let A = {u1, u2, · · ·} be an ordered basis for W .
Let v1 = u1 and for k ≥ 2 let

vk = uk −
k−1∑
i=1

〈uk, vi〉
‖vi‖2

vi.

Then the set B = {v1, v2, · · ·} is an orthogonal basis for W with the property that for every
index k ≥ 1 we have Span {v1, · · · , vk} = Span {u1, · · · , uk}.

Proof: We prove, by induction on k, that {v1, v2, · · · , vk} is an orthogonal basis for
Span {u1, u2, · · · , uk}. When k = 1 this is clear since v1 = u1. Let k ≥ 2 and sup-
pose, inductively, that {v1, · · · , vk−1} is an orthogonal basis for Span {u1, · · · , uk−1}. Since

vk = uk −
∑k−1

i=1
〈uk,vi〉
‖vi‖2 vi, we see that uk is equal to vk plus a linear combination of the

vectors v1, · · · , vi−1, and so we have Span {v1, · · · , vk−1, vk} = Span {v1, · · · , vk−1, uk}. By
the induction hypothesis, we have Span {v1, · · · , vk−1} = Span {u1, · · · , uk−1} so we have

Span {v1, · · · , vk−1, vk} = Span {v1, · · · , vk−1, uk} = Span {u1, · · · , uk−1, uk}.

It remains to show that the set {v1, v2, · · · , vk} is an orthogonal set. By the induction
hypothesis, we have 〈vj , vi〉 = 0 for all 1 ≤ i < j < k, so it suffices to show that 〈vk, vj〉 = 0
for all indices 1 ≤ j < k and indeed, for 1 ≤ j < k we have

〈vk, vj〉 =
〈
uk −

k−1∑
i=1

〈uk,vi〉
‖vi‖2 vi , vj

〉
= 〈uk, vj〉 −

k−1∑
i=1

〈uk,vi〉
‖vi‖2 〈vi, vj〉

= 〈uk, vj〉 −
〈uk, vj〉
‖vj‖2

〈vj , vj〉 = 0.

6.6 Corollary: Every finite or countable dimensional inner product space W over F = R
or C has an orthonormal basis.

Proof: Let W be a finite or countable dimensional inner product space over f = R or C.
Choose an ordered basis A = {u1, u2, · · ·} for W . Apply the Gram-Schmidt Procedure to
the basis A to obtain an orthogonal basis B = {v1, v2, · · ·} for W . For each index k ≥ 1,
let wk = vk

‖vk‖ . Then C = {w1, w2, · · ·} is an orthonormal basis for W .

6.7 Remark: It is not the case that every uncountable dimensional inner product space
has an orthonormal basis.

6.8 Corollary: Let W be a finite or countable dimensional inner product space over
F = R or C. Let U ⊆ W be a finite dimensional subspace. Then every orthogonal (or
orthonormal) basis for U extends to an orthogonal (or orthonormal) basis for W .

Proof: Let A = {u1, u2, · · · , ul} be an ordered orthogonal (or orthonormal) basis for U .
Extend A to an ordered basis {u1, · · · , ul, v1, v2, · · ·} for W . Apply the Gram-Schmidt
Procedure to this basis to obtain an orthogonal basis C = {u1′, · · · , ul′, w1, w2} for W .
Verify that since {u1, · · · , ul} is already orthogonal, it follows that the vectors ui are left
unchanged in the Gram Schmidt Procedure so that in fact ui

′ = ui for all indices i, and
so the new orthogonal basis C extends the original orthogonal basis A.
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6.9 Remark: The above corollary does not hold in general in the case that the subspace
U is countable dimensional, as we shall soon see in Example 6.16.

6.10 Corollary: Let F = R or C and let U and V be finite or countable dimensional
inner product spaces over F. Then U and V are isomorphic (as inner product spaces) if
and only if dim(U) = dim(V ). In particular, if dim(U) = n then U is isomorphic to Fn

and if dim(U) = ℵ0 then U is isomorphic to F∞.

Proof: Suppose that U and V are isomorphic. Let L : U → V be an isomorphism. Let
A = {u1, u2, · · ·} be any basis for U . Since L is a bijective linear map, it follows that
B = {L(u1), L(u2), · · ·} is a basis for V , and that A and B have the same cardinality. Thus
dim(U) = dim(V ).

Conversely, suppose dim(U) = dim(V ). Let A = {u1, u2, · · ·} and B = {v1, v2, · · ·}
be orthonormal bases for U and V . Let L : U → V be the (unique) bijective linear map
with L(ui) = vi for all i. Then L preserves inner product because for x, y ∈ U with say
x =

∑
i≥1

tiui and y =
∑
j≥1

tjuj we have

〈x, y〉 =
〈 ∑

i≥1
siui ,

∑
j≥1

tjuj

〉
=

∑
i≥1,j≥1

sitj〈ui, uj〉 =
∑

i≥1,j≥1
sitj δi,j =

∑
i≥1

siti

and〈
L(x), L(y)

〉
=
〈
L
( ∑
i≥1

siui
)
, L
( ∑
j≥1

tjuj
)〉

=
〈 ∑

i≥1
siL(ui) ,

∑
j≥1

tjL(uj)
〉

=
〈 ∑

i≥1
sivi ,

∑
j≥1

tjvj

〉
=

∑
i≥1,j≥1

sitj〈vi, vj〉 =
∑

i≥1,j≥1
sitj δi,j =

∑
i≥1

sitj .

6.11 Corollary: Let F=R or C, let U be an n-dimensional inner product space over F,
and let A = {u1, · · · , un} be an orthonormal basis for U . Then the map φA : U → Fn

given by φA(x) = [x]A is an isomorphism. In particular, when x =
n∑

i=1

siui and y =
n∑

i=1

tiui

so that s = [x]A and t = [y]A, we have 〈x, y〉 = 〈s, t〉 = t∗s.

Proof: Taking V = Fn with its standard orthonormal basis B = {e1, · · · , en}, the map
L : U → V with L(ui) = ei, used in the above proof, is precisely the map φA.

3



6.12 Definition: Let W be an inner product space over F = R or C. For a subspace
U ⊆W , we define the orthogonal complement of U in W to be the set

U⊥ =
{
x ∈W

∣∣〈x, u〉 = 0 for all u ∈ U
}
.

6.13 Theorem: Let W be an inner product space over F = R or C. Let U ⊆ W be a
subspace. Then

(1) U⊥ is a subspace of W ,
(2) if A is a basis for U then U⊥ =

{
x ∈W

∣∣〈x, u〉 = 0 for all u ∈ A
}

,
(3) U ∩ U⊥ = {0}, and
(4) U ⊆ (U⊥)⊥.
(5) If U is finite dimensional then U ⊕ U⊥ = W , and
(6) If U ⊕ U⊥ = W then U = (U⊥)⊥.

Proof: We leave the proofs of Parts (1) to (4) as an exercise (they are identical to the
proofs of analogous parts of Theorem 2.11). To prove Parts (5), suppose that U is finite
dimensional. Let A = {u1, u2, · · · , ul} be an orthonormal basis for A. To prove Part (5),
we need to show that for every x ∈ W there exist unique vectors u, v ∈ W with u ∈ U ,
v ∈ V and u + v = x. First we prove uniqueness. Let x ∈ W , and suppose that u ∈ U ,
v ∈ U⊥ and u+ v = x. Note that for all indices i we have

〈x, ui〉 = 〈u+ v, ui〉 = 〈u, ui〉+ 〈v, ui〉 = 〈u, ui〉.

and so, by Theorem 6.4, we have

u =
l∑

i=1

〈u, ui〉ui =
l∑

i=1

〈x, ui〉ui.

This proves uniqueness, since given x ∈W , the vector u must be given by u =
l∑

i=1

〈x, ui〉ui
and then the vector v must be given by v = x− u.

To prove existence, let x ∈ W and choose u and v to be the vectors u =
l∑

i=1

〈x, ui〉ui

and v = x − u. Then we have u ∈ U and u + v = x, so it suffices to show that v ∈ U⊥.
For all indices k we have

〈v, uk〉 = 〈x− u, uk〉 = 〈x, uk〉 − 〈u, uk〉 = 〈x, uk〉 −
〈 l∑

i=1

〈x, ui〉ui , uk
〉

= 〈x, uk〉 −
l∑

i=1

〈x, ui〉〈ui, uk〉 = 〈x, uk〉 −
l∑

i=1

〈x, ui〉δi,k = 〈x, uk〉 − 〈x, uk〉 = 0.

Since 〈v, uk〉 = 0 for all 1 ≤ k ≤ l, from Part (2) we have v ∈ U⊥. This proves Part (5).
To prove Part (6), suppose that U ⊕ U⊥ = W . From Part (4), we have U ⊆ (U⊥)⊥.

Conversely, let x ∈ (U⊥)⊥. Since U⊕U⊥ = W we can choose u, v ∈W with u ∈ U , v ∈ U⊥
and u+ v = x. Since x ∈ (U⊥)⊥ and u ∈ U ⊆ (U⊥)⊥, we have v = x− u ∈ (U⊥)⊥. Thus
v ∈ U⊥ ∩ (U⊥)⊥. By Part 3, U⊥ ∩ (U⊥)⊥ = {0} and so v = 0. Thus x = u+ v = u ∈ U .

4



6.14 Example: As an exercise, show that for A ∈ Mn×l(C), using the standard inner
product in Cn we have (NullA)⊥ = ColA∗ and (ColA)⊥ = NullA∗.

6.15 Remark: When U is an infinite dimensional subspace of W , we do not always have
U ⊕ U⊥ = W and we do not always have (U⊥)⊥ = U , as the following example shows.

6.16 Example: Let F = R or C. Let W = F∞. Let U =
{
a = (a0, a1, · · ·)

∣∣ ∞∑
i=0

ai = 0
}

.

Note that U is a proper subspace of W and it is countable dimensional with countable
basis A = {u1, u2, · · ·} where uk = ek− e0 = (−1, 0, · · · , 0, 1, 0, 0, · · ·). Although U ⊂6=W we

have

U⊥ =
{
x ∈W

∣∣〈x, uk〉 = 0 for all k
}

=
{
x ∈W

∣∣〈x, ek − e0〉 = 0 for all k
}

=
{
x ∈W

∣∣xk = x0 for all k
}

=
{

(x0, x1, · · ·) ∈W
∣∣x0 = x1 = x2 = · · ·

}
= {0}

because for (x0, x1, · · ·) ∈W we have x0 = 0 for all but finitely many indices i. Notice that
in this example we do not have U ⊕ U⊥ = W . Also notice that, although we could apply
the Gram-Schmidt Procedure to the basis A to obtain an orthogonal basis B = {v0, v1, · · ·}
for U , the basis B cannot be extended to an orthogonal basis for W because there is no
nonzero vector 0 6= x ∈W with 〈x, vi〉 = 0 for all i.

6.17 Definition: Let W be an inner product space over F = R or C. Let U ⊆ W be
a finite dimensional subspace (or, more generally, let U ⊆ W be any subspace such that
U ⊕ U⊥ = W ). For x ∈ W , we define the orthogonal projection of x onto U , denoted
by ProjU (x), as follows. Since W = U ⊕ U⊥, we can choose unique vectors u, v ∈W with
u ∈ U , v ∈ U⊥ and u+ v = x. We then define

ProjU (x) = u.

Since U = (U⊥)⊥, for u and v as above we have ProjU⊥(x) = v. When y ∈ W and
U = Span {y}, we also write Projy(x) = ProjU (x).

6.18 Note: Let W be an inner product space over F = R or C. Let U be a finite
dimensional subspace of W . Let A = {u1, u2, · · · , ul} be an orthogonal basis for U . Then
for x ∈W , as in the proof of Part (5) of Theorem 6.13, we see that

ProjU (x) =
l∑

i=1

〈x, ui〉
‖ui‖2

ui.

6.19 Example: As an exercise, show that for A ∈ Mn×l(C) and U = ColA, given
x ∈ Cn there exists t ∈ Cl such that A∗At = A∗x and that for any such t we have
ProjU (x) = At. In particular, when rank(A) = l show that A∗A is invertible so that
ProjU (x) = A(A∗A)−1A∗x.
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6.20 Theorem: Let W be an inner product space over F = R or C. Let U ⊆ W be a
finite dimensional subspace (or, more generally, a subspace such that U ⊕ U⊥ = W ). Let
x ∈W . Then ProjU (x) is the unique point in U which is nearest to x.

Proof: Let u, v ∈ W be the vectors with u ∈ U , v ∈ U⊥ and u + v = x, so that we have
ProjU (x) = u. Let w ∈ U with w 6= u. Since 〈w−u, x−u〉 = 〈w−u, v〉 = 〈w, v〉−〈u, v〉 = 0,
Pythagoras’ Theorem gives

‖x− w‖2 = ‖(x− u)− (w − u)‖2 = ‖x− u‖2 + ‖w − u‖2 > ‖x− u‖2

and so ‖x− w‖ > ‖x− u‖.

6.21 Example: Find the quadratic polynomial f ∈ P2 = P2(R) which minimizes∫ 1

−1

(
f(x)− ‖x‖

)2
dx.

Solution: Let W = C0
(
[−1, 1],R

)
with inner product given by 〈f, g〉 =

∫ 1

−1 f(x)g(x) dx.
Then we need to find the polynomial f ∈ P2 which minimizes dist(f, g) where g(t) = |t|,
so we must take

f = ProjP2
(g).

Let p0 = 1, p1 = x and p2 = x2 so that {p0, p1, p2} is the standard basis for P2. Apply the
Gram-Schmidt Procedure to get

q0 = p0 = 1,

q1 = p1 −
〈p1, q0〉
‖q0‖2

q0 = x− 〈x, 1〉
‖1‖2

· 1 = x−
∫ 1

−1 x dx∫ 1

−1 1 dx
· 1 = x− 0

2 · 1 = x,

q2 = p2 −
〈p2, q0〉
‖q0‖2

q0 −
〈p2, q1〉
‖q1‖2

q1 = x2 − 〈x
2, 1〉
‖1‖2

· 1− 〈x
2, x〉
‖x‖2

· x

= x2 −
∫ 1

−1 x
2 dx∫ 1

−1 1 dx
· 1−

∫ 1

−1 x
3 dx∫ 1

−1 x
2 dx

· x = x2 − 2/3
2 · 1−

0
2/3 · x = x2 − 1

3 .

Using the orthogonal basis {q0, q1, q2} =
{

1, x, x− 1
3

}
for P2, we calculate

f = ProjP2
(g) =

〈g, q0〉
‖q0‖

q0 +
〈g, q1〉
‖q1‖2

q1 +
〈g, q2〉
‖q2‖2

q2

=
〈‖x‖, 1〉
‖1‖2

· 1 +
〈‖x‖, x〉
‖x‖2

· x+
〈‖x‖, x2 − 1

3 〉
‖x2 − 1

3‖2
· (x− 1

3 )

=

∫ 1

−1 ‖x‖ dx∫ 1

−1 1 dx
· 1 +

∫ 1

−1 x‖x‖ dx∫ 1

−1 x
2 dx

· x+

∫ 1

−1 ‖x‖(x
2 − 1

3 ) dx∫ 1

−1(x2 − 1
3 )2 dx

· (x− 1
3 )

= 1
2 · 1 + 0

2/3 · x+
1
2−

1
3

2
5−

4
9+

2
9

· (x2 − 1
3 ) = 1

2 + 1/6
8/45 (x2 − 1

3 )

= 1
2 + 15

16 (x2 − 1
3 ) = 3

16 + 15
16x

2.

6


