6. Orthogonal Bases, Orthogonal Complement and Orthogonal Projection

6.1 Definition: Let W be an inner product space over F = R or C. For a subset A C W,
we say that A is orthogonal when (u,v) = 0 for all u,v € A with u # v, and we say that
A is orthonormal when A is orthogonal with ||u|| = 1 for every u € A.

6.2 Example: Let uq,uo,---,u; € C" and let A = (ul, . -,ul) € M, «;(C). Since

U (ur,ur)  (ug,ur) -+ (ug,u)

A*A = : (up -+ w)= : : :

u” (up,ug)  (ug,ug) - (ug,up)

it follows that {uy,---,u;} is orthogonal if and only if A*A is diagonal, and {uq,---,w} is
orthonormal if and only if A*A = I.

6.3 Example: Let F =R or C and let ag, aq, - -, a, be distinct points in F. Consider the
vector space P, = P, (F) with the inner product (f,g) = >_ f(a;)g(a;). For each index k,
i=0

let g € P, be given by
Hi;ﬁk(z - a;)
Hi;ﬁk(ak - a;)

s0 that g (a)) = 5. For f € Py we have (f.gu) = 3° f(aq)g(@) = X (@) = flaw). In

particular, we have (g;, gx) = g;(ax) = 0; and so the set {go, g1, -, gn} is an orthonormal
basis for P, (F).

gk(x) =

6.4 Theorem: Let W be an inner product space over F =R or C. Let A C W.

n
(1) If A is an orthogonal set of nonzero vectors then for x € Span A with say x = > t;u;
i=1
where t; € F and u; € A, we have
_ <.T, uk>
t, = 5
[

for all indices k, and in particular, A is linearly independent.
n
(2) If A is orthonormal then for x € Span A with say x = Y t;u; where t; € F and u; € A,
i=1
we have t, = (x,uy) for all k, and in particular, A is linearly independent.

Proof: To prove Part (1), suppose that A is an orthogonal set of nonzero vectors and let
n

x = Y tyu; with each t; € F and each u; € A. Then for all indices k, since (u;, ug) =0
i=1

n n
whenever i # k we have (x,ux) = < > tiug, uk> = 5" tilug, up) = te{ug, ug) = tgllug|?
i=1 i=1

and so tp = %, as required. In particular, when x = 0 we find that ¢, = 0 for all k,

and this shows that A is linearly independent. This proves Part (1), and Part (2) follows
immediately from Part (1).



6.5 Theorem: (The Gram-Schmidt Procedure) Let W be a finite or countable dimensional
inner product space over F = R or C. Let A = {uy,us, -} be an ordered basis for W.
Let v1 = uy and for k > 2 let

k—1
Ve = U — Z <uk7vz> V;.

2o

Then the set B = {v1, v, -} is an orthogonal basis for W with the property that for every
index k > 1 we have Span{vy,---,v;} = Span{uy,---,ug}.

Proof: We prove, by induction on k, that {vi,vs,---,vx} is an orthogonal basis for

Span {ui,us, - -,ur}. When k = 1 this is clear since v; = w;. Let &k > 2 and sup-

pose, inductively, that {vq,- -, vg_1} is an orthogonal basis for Span {uy, - -+, ug_1}. Since
i=1

vectors vy, - -+, v;—1, and so we have Span{vy, -, vk_1,vx} = Span{vy,- -, vk_1,ux}. By

the induction hypothesis, we have Span {vq,---,vg—1} = Span{uy,---,ux_1} so we have

k_l 7/ . . . .
Vg = U — Y % v;, we see that uy is equal to vg plus a linear combination of the

Span{vlu e 7kalvvk} = Span{vlu T 7’Uk’717uk} = Span{uh e 7uk717uk}'

It remains to show that the set {vy,vs, -, v} is an orthogonal set. By the induction
hypothesis, we have (v;,v;) =0 for all 1 <1i < j <k, so it suffices to show that (vi,v;) =0
for all indices 1 < j < k and indeed, for 1 < j < k we have

k—1 k—1
(vg 05} = (ur - ) Gstid v, 03 = (g, v3) ) e (v;, 05)
1= 1=
(uk, vj)
= <U,k,’Uj> — H’U,H; <'Uj,1}j> =0.
J

6.6 Corollary: Every finite or countable dimensional inner product space W over F = R
or C has an orthonormal basis.

Proof: Let W be a finite or countable dimensional inner product space over f = R or C.

Choose an ordered basis A = {uy,uq,---} for W. Apply the Gram-Schmidt Procedure to

the basis A to obtain an orthogonal basis B = {vy,vs,---} for W. For each index k > 1,
Vg

let wy, = TooT- Then C = {w;,ws, - -} is an orthonormal basis for W.

6.7 Remark: It is not the case that every uncountable dimensional inner product space
has an orthonormal basis.

6.8 Corollary: Let W be a finite or countable dimensional inner product space over
F=RorC. Let U C W be a finite dimensional subspace. Then every orthogonal (or
orthonormal) basis for U extends to an orthogonal (or orthonormal) basis for W.

Proof: Let A = {uq,ua,---,u;} be an ordered orthogonal (or orthonormal) basis for U.
Extend A to an ordered basis {uqy,---,u;,v1,v9,--} for W. Apply the Gram-Schmidt
Procedure to this basis to obtain an orthogonal basis C = {uy’, -, w/, wy,wy} for W.
Verify that since {uy,---,u;} is already orthogonal, it follows that the vectors u; are left
unchanged in the Gram Schmidt Procedure so that in fact u;" = w; for all indices i, and
so the new orthogonal basis C extends the original orthogonal basis A.



6.9 Remark: The above corollary does not hold in general in the case that the subspace
U is countable dimensional, as we shall soon see in Example 6.16.

6.10 Corollary: Let F = R or C and let U and V be finite or countable dimensional
inner product spaces over F. Then U and V are isomorphic (as inner product spaces) if
and only if dim(U) = dim(V'). In particular, if dim(U) = n then U is isomorphic to F"
and if dim(U) = Xy then U is isomorphic to F>°.

Proof: Suppose that U and V are isomorphic. Let L : U — V be an isomorphism. Let
A = {uq,ug, -} be any basis for U. Since L is a bijective linear map, it follows that
B ={L(u1), L(uz),---} is a basis for V, and that A and B have the same cardinality. Thus
dim(U) = dim(V).

Conversely, suppose dim(U) = dim(V'). Let A = {uj,uq,---} and B = {vy,va,-+}
be orthonormal bases for U and V. Let L : U — V be the (unique) bijective linear map
with L(u;) = v; for all i. Then L preserves inner product because for x,y € U with say
x =) tu; and y = ) tju; we have

i>1 i>1
(z,y) = < > Silli, Y tjuj> = > Sit_j<uiauj> = > Sit_j5i,j = > sit;

i1 =1 21721 i>1521 i1

and

(L), L)) = (L siws) » LS ;) ) = (X sil(w), ¥ tL(u;))
i>1 j>1 i>1 ji>1
= < > SiVis 3 tj’Uj> = 2 sitj{viv;) = sitj 0ij = Y silj -
i>1 j>1 i>1,7>1 i>1,j>1 i>1

6.11 Corollary: Let F=RorC, let U be an n-dimensional inner product space over F,

and let A = {uy,---,u,} be an orthonormal basis for U. Then the map ¢4 : U — F"
n n

given by ¢ 4(x) = [z] 4 is an isomorphism. In particular, when x = Y s;u; andy = > t;u;

=1 =1
so that s = [x] 4 and t = [y] 4, we have (x,y) = (s,t) = t*s.

Proof: Taking V = F" with its standard orthonormal basis B = {ej,---,e,}, the map
L:U — V with L(u;) = e;, used in the above proof, is precisely the map ¢ 4.



6.12 Definition: Let W be an inner product space over FF = R or C. For a subspace
U C W, we define the orthogonal complement of U in W to be the set

— {x c W|<sz:,u> =0 for all u € U}.

6.13 Theorem: Let W be an inner product space over F = R or C. Let U C W be a
subspace. Then

(1) U+ is a subspace of W,

(2) if A is a basis for U then U+ = {x € W‘ z,u) =0 for all u € A},
(3) UNU+ = {0}, and

(4) U C (UH)*.

(5) If U is finite dimensional then U & U+ = W, and

(6) IfU® ULt =W then U = (U+)*,.

Proof: We leave the proofs of Parts (1) to (4) as an exercise (they are identical to the
proofs of analogous parts of Theorem 2.11). To prove Parts (5), suppose that U is finite
dimensional. Let A = {uj,us,---,u;} be an orthonormal basis for A. To prove Part (5),
we need to show that for every x € W there exist unique vectors u,v € W with v € U,
v € V and u 4+ v = x. First we prove uniqueness. Let x € W, and suppose that u € U,
v € Ut and u + v = x. Note that for all indices i we have

(x,u;) = (u+v,u;) = (u,u;) + (v, u;) = (u, uy).

and so, by Theorem 6.4, we have

i<u u2> U; é<$,uz>ul

=1

!
This proves uniqueness, since given = € W, the vector u must be given by u = > (x, u;)u;
i=1
and then the vector v must be given by v = x — u.
!

To prove existence, let € W and choose u and v to be the vectors u = > (z, u;)u;
i=1
and v =  — u. Then we have u € U and u + v = z, so it suffices to show that v € U™L.
For all indices k£ we have

(vyup) = (x —u,uk) = (r,up) — (u,ug) = (T, ug) — < Zl: (@, u;)u;, uk>

=1

l l
= (z,ug) — Zl(a:,uz><uz,uk> = (z,ug) — Zl<ac L Wi)0i ) = (T, ug) — (x,ug) = 0.
Since (v, u) = 0 for all 1 < k <[, from Part (2) we have v € U+. This proves Part (5).
To prove Part (6), suppose that U @ U+ = W. From Part (4), we have U C (U+)*.
Conversely, let z € (U+)*. Since UsUL = W we can choose u,v € W withu € U, v € UL
and u+v =x. Since x € (UX)t andu € U C (UL)!, we have v =2 —u € (UL) . Thus
veU+tNUH)L By Part 3, Ut N (UH)L ={0} andsov =0. Thuszx =u+v=u€ U.



6.14 Example: As an exercise, show that for A € M, ;(C), using the standard inner
product in C" we have (NullA)+ = ColA* and (ColA)+ = NullA*.

6.15 Remark: When U is an infinite dimensional subspace of W, we do not always have
U@ UL =W and we do not always have (U+)+ = U, as the following example shows.

6.16 Example: Let F =R or C. Let W = F*. Let U = {a = (ag, a1, )| i a; = 0}.
Note that U is a proper subspace of W and it is countable dimensional Witilz(():ountable
basis A = {uy,us, -} where up, = ey, —eg = (—1,0,---,0,1,0,0,---). Although U%W we
have
Ut = {z e W[(z,ux) =0 for all k} = {x € W|[(z,er — eg) =0 for all k}
={z € Wlay =a for all k} = {(zo,21,--") e W|zg =21 =25 =---} = {0}

because for (zg,x1,--+) € W we have zy = 0 for all but finitely many indices i. Notice that
in this example we do not have U @ U+ = W. Also notice that, although we could apply
the Gram-Schmidt Procedure to the basis A to obtain an orthogonal basis B = {vg, vy, -}
for U, the basis B cannot be extended to an orthogonal basis for W because there is no
nonzero vector 0 # x € W with (z,v;) = 0 for all 1.

6.17 Definition: Let W be an inner product space over F = R or C. Let U C W be
a finite dimensional subspace (or, more generally, let U C W be any subspace such that
Ua UL =W). For x € W, we define the orthogonal projection of z onto U, denoted
by Proj; (z), as follows. Since W = U @ U=, we can choose unique vectors u,v € W with
weU,ve Ut and u+ v =x. We then define

Projy (z) = u.

Since U = (U+)*, for v and v as above we have Proj;.(z) = v. When y € W and
U = Span {y}, we also write Proj, () = Proj; ().

6.18 Note: Let W be an inner product space over F = R or C. Let U be a finite
dimensional subspace of W. Let A = {uy,usz,- -, u;} be an orthogonal basis for U. Then
for z € W, as in the proof of Part (5) of Theorem 6.13, we see that

Projy (z)

7.

zi: (x,u;) "

1 uil?

6.19 Example: As an exercise, show that for A € M, ;(C) and U = ColA, given
x € C" there exists t € C! such that A*At = A*z and that for any such ¢ we have
Proj;(z) = At. In particular, when rank(A) = [ show that A*A is invertible so that
Projy (z) = A(A*A) "t A*z.



6.20 Theorem: Let W be an inner product space over F = R or C. Let U C W be a
finite dimensional subspace (or, more generally, a subspace such that U ® U+ = W). Let
x € W. Then Proj;(x) is the unique point in U which is nearest to x.

Proof: Let u,v € W be the vectors with u € U, v € U+ and u 4 v = z, so that we have
Projy;(z) = u. Let w € U with w # w. Since (w—u,x—u) = (w—u,v) = (w,v)—(u,v) =0,
Pythagoras’ Theorem gives

lo = wl* = (@ —w) = (w = w)|* = |z — ul]* + w —ul|* > [lz — ul

and so ||z —wl|| > ||z — ull.
6.21 Example: Find the quadratic polynomial f € P, = P5(R) which minimizes
1
2
[ (@)= el .

Solution: Let W = C%([—1,1],R) with inner product given by (f,g) = f_11 f(x)g(x) dx.
Then we need to find the polynomial f € P, which minimizes dist(f, g) where g(t) = ¢,
so we must take

f= PI"OJP2 (9)-

Let pg = 1, p1 = x and p = 22 so that {pg,p1, p2} is the standard basis for P,. Apply the
Gram-Schmidt Procedure to get

qo = Po = 17
1
{p1, q0) (2,1) Joywda 0
q=p - g = - l=r— =g 5=,
llqol[? 11]]2 [t lda ?
2 2
P2, q P2, q x”, 1 o,
gy ) ) )t
o]l gl 1] ]
1 1
_ 2 Jo tdw Jo 20 da _ 2 2/3 0 2 1
o, ldz [ 22 da
Using the orthogonal basis {qo, ¢1,¢2} = {1, T, r — %} for Py, we calculate
. <guq0> <97Q1> <g7q2>
f="Projp,(9) = qo + q1 + g2
: o]l ]l lgz2|?
1 x|, x? — %
T PO B el VY
11]] | 2% — 3
1 1 1
S ]l dz J_y @llz|| dz Jo1 llzll(a? - 3) d )
S e 2 T o)
f_11dx f_1 r? dzx f_1($2— 3)%dx
3—3 1/6
=3 1+2(/)3 x+§ﬁ2_§i_§ (? é)_%JFS%(xz_%)
1, 15 1 3 . 15
— 3+ B - D= f+ B



