3. Applications of Orthogonal Complements and Orthogonal Projection

3.1 Definition: For two affine spaces P and @ in R™, we define the distance between P
and () to be
dist(P, Q) = min {dist(a,b)|a € P,b € Q} .

3.2 Theorem: Let p and q be points in R™, let U and V' be subspaces of R", and let
P=p+Uand Q =q+ V. Then

dist(P,Q) = ‘

PI"OJ(U+V)l(P - Q)H .
Proof: We have
dist(P, ) = min {dist(a:,y)‘x € PyeQ}

= min {dist(p + u,qg+v)|u € U,v € V'}
=min{|(g+v)— (p+u)||ueUwveV}
=min{|(g—p) — (u—)|[uc UveV}
=min {[(¢—p) —w||[weU+V}
= ||(¢ — p) = Projy,v (g —p)||
= ||P1"0j(U+V)J-(q —p)H

where, on the second last line, we used the fact that Proj;; (¢ — p) is the (unique) point
on U + V which is nearest to ¢ — p.

3.3 Definition: For two subspaces U,V C R™, we define the angle between U and V,
which we write as (U, V), as follows.

(1) If U CV or V CU then we define §(U, V) = 0.
(2) Otherwise, if UNV = {0} then we define

0(U, V) :min{ﬁ(u,v)‘O#ue U,0#wve V},

(3) and if UNV =W # {0} then we define (U, V) = 0(U N W,V N W), noting that
UnNnwHnWvVnwH) =Unv)nwWt=wnw+ = {0}.

We define the angle between two affine spaces in R™ to be the angle between their asso-
ciated vector spaces.



3.4 Theorem: Let {0} # U,V C R" be non-trivial subspaces with U NV = {0}. Then
(1) In the case that dim(U) = 1 with U = Span {u} where u € R"™ with ||u|| = 1, we have

cos (U, V) = ||Projy (u)||-
(2) In general, we have

cos (U,V) = max ||Proj,(u)|.

W)= [[Projy )]

Proof: To prove part (1), suppose that U = Span {u} where u € R"™ with ||u|| = 1. Since
every nonzero vector in U is of the form tu for some 0 # t € R, by the definition of 8(U, V')
we have

0(U,V) = min {f(tu,w)|0 #t € R,0 £ w € V}.

Since 0(tu, w) = 6(u, tw) (indeed when ¢ > 0 we have 6(tu,w) = 6(u, w) and when ¢ < 0
we have 0(tu, w) = (u, —w) ) it follows that

0(U,V) = min {f(u, w)|0 # w € V}.

If u € V+ then Projy (u) = 0 and for all 0 # w € V we have u « w = 0 so that 0(u,w) = Z
and so (U, V) = min {f(u,w)|0 # w € V} = %, and hence cos §(U,V) =0 = HProjV(u)T’.
Suppose that u ¢ V+ and let

v = Projy (u).
Note that v # 0 since u ¢ V. By Trigonometric Ratios, we have
llv]l

flwll”

cosf(u,v) = = ||v]|-

Since cos 0(u,v) > 0 we have 6(u,v) € [0,5]. Let 0 #w € V and let

y = Proj,(U) = |w|\2 w.
If y =0 then w+w = 0 and so f(u,w) = § > O(u,v). Suppose that y # 0. By Trigono-
metric Ratios, we have cos(u,y) = % = |ly||. Since 6(u,y) > 0 we have §(u,y) € [0, Z].

If uew < 0 so that (u,w) = 7 — O(u,y) € [%,ﬂ'], then we have 0(u,w) > 0(u,v).
If uew > 0 so that O(u,w) = 6(u,y), then by Trigonometric Ratios, and since v is the
point in V nearest to u, we have

lu—yl
HUH

llu—vl|

= [lu—y|| > [Ju—v|| = Tl = sin 0(u, v)

sin @(u, w) = sinf(u,y) =
and hence 0(u,w) > O(u,v). Thus for all 0 # w € V we have 0(u,w) > 6(u,v), where
v = Projy (u). It follows that (U, V) = min {#(u,w)|0 # w € V} = 6(u,v) and hence
that cos (U, V') = cosO(u,v) = ||v|| = HProjV(u)H. This completes the proof of Part (1).

To prove Part (2), we no longer assume that U is 1-dimensional. Note that

O(U, V)= min min 0(u,v)
0#uclU 0#veV

= min min min  (w,v)
welU,||ul|=1 0#weSpan {u} 0F£veV

= min Span {u}, V),
wel,||ul|=1 ( P { } )

and so, by Part (1) we have
cos (U, V)= max cosf(Span{u},V) = max |Proj,(u)].

wel,|lull=1 uwel,|lull=1



3.5 Definition: Let a,b € R™ with a # b. The perpendicular bisector of [a,b] is the
hyperplane in R™ through the midpoint aTer which is perpendicular to the vector b — a, in
other words it is the hyperplane in R™ given by the equation (ac — GTH’) «(b—a)=0.

3.6 Theorem: a point x € R™ lies on the perpendicular bisector of [a,b] if and only if
is equidistant from a and b.

Proof: Let P be the perpendicular bisector of [a,b]. Then
1e€P < (z— ) -(b-a)=0 < (22— (a+b)) - (b—a) =0

< 2z+(b—a)=(a+b)+(b—a)

> 2x+b—22+a=a+b—a-a+bsb—>bea=|b*—|al?

— 2z-+a+|all*=—2x b+ |b|?

= |z)* =2z - a+ [lal® = [l«]|* — 22 - b+ []b]*

= |z —all’ =z -0* = [z —a| =z -0
3.7 Theorem: Let [ag, a1, -, a;] be an l-simplex in R". For 0 < j < k < n, let Bj; be
the perpendicular bisector of [a;,ar|. Then there is a unique point o in the affine span

(ap,an,---,a;) which lies in the intersection of all of the perpendicular bisectors Bjj. This
point o is called the circumcentre of the simplex.

Proof: For1 <i <lletu; = a;—ap. Forx € {(ap,as,---,a;) = ap+Span {uy, ua,---,u }, we
!
can write x uniquely as = ag + Y t;u; = ag + At where A = (uy,ua,---,u;) € My« (R).

i=1
For = € (ag,a,---,a;) with x = ag + At we have
! ap + ag
xGﬂBOk@(m— 5 )o(ak—ao):()foralllgkgl
k=1
= ((ao + At) — (ao + “’“5“°> e (ap —ag)=0forall 1 <k <
— (At—%uk) cup, =0forall 1 <k <l
> (At) »up = 3|lug|?* forall 1 <k <1
At) «u
(A= g2
I P R
(At) . Up I
T
«— ATAt = %u , where u = (||u1||2, ua|?, - -+, ||ul||2) )
Since {ag, a1, -, a;} is affinely independent, the set {uy, usa, - -, wu;} is linearly independent
so we have rank(ATA) = rank(A) = [, and hence ATA is invertible. Thus there is a unique
point o € (ag,a1,---,a;) which lies in each bisector By for 1 < k <[, namely the point

0=ag+ At = ag + 3A(ATA)lu.

Finally, note that for 1 < j < k <[, by the previous theorem, since o € By; and o € By,

we have [lo — ao|| = ||a — a,|| and |0 — ag|| = ||o — ax|| so that ||o — a;|| = |lo — ax||, then
by another application of the previous theorem, since ||o — a;|| = ||o — ax|| it follows that
o0 c Bjk.



1 al a1 s a1”
3.8 Theorem: Let F be a field. Let A = ) with each a; € F.
1 a, a,? an”
Then det A = H (a; —a;).
0<i<j<n
1 ao CL02 s aon
1 a a12 cee aln 1 ao
Proof: Let A,, = . . Note that det A; = det (1 a > = a1 —ag.
: 1
1 a, ap®> - ap"™
Suppose, inductively, that det A,, 1 = H (aj—a;). Note that if a; = a; for some i # j,
0<i<yi<n
then A, has two equal rows, and so in this case we have det A,, = 0 = H (a; — aj).
0<i<j<n
Suppose that ag, a1, -, a, are all distinct. Replace a,, by  and let
1 ago a02 cee aon
1 a1 a12 tee a1"
F() = det .
1 Gp—1 an—12 U an—ln
1 T x? e x"

By expanding along the last row we see that f(z) is a polynomial of degree n with leading

coefficient equal to C = det A,,_1 = H (a; — a;). On the other hand, for each value
0<i<j<n

of i with 0 < i < n, by subtracting the i*" row from the last row we see that

1 ao CL02 s aon
1 a (I12 cee CLln
f(x) = det
2
1 Gn—1 Gn—1 e an—ln
0 z—a; 22—a;>2 - 2™ —a;"
1 ap CL02 tee aon
1 aj CL12 ce a1”
= (x — a;) det
2
1 Gp—-1 Gp-1 e an—ln
0 1 r+a; - 2"l dxa" 24t

and so (x — a;) divides f(x). Thus we must have

f@y=Clx—a)(w—a) - (x—an1)= [] (aj-a) J] (@—ai).

0<i<j<n 0<i<n

Replacing z by a,, gives det A,, = f(a,) = H (a; — a;), as required.
0<i<j<n



3.9 Definition: The matrix A in the above theorem is called the Vandermonde matrix
on ap, @i, -+ -,0n.

3.10 Corollary: Let F' be any field. Let (ag,bo), (a1,b1),- -+, (an,by,) be ordered pairs of
elements in F' with the a; all distinct. Then there exists a unique polynomial f € P, (F)
with f(a;) = b; for all i.

Proof: Suppose that ag,aq,---,a, are all distinct, and let by, by, -- -, b, be arbitrary. Let
f € P.(F),say f(x) =co+c1x+ - cpz™. Then we have

f(a;) = b; for all i <= ¢+ cra; + ca;> + - + cpa;" = b; for all i

< Ac=b
where b = (bg,b1,--+,bn)T, ¢ = (co,c1,--,¢,)T, and A is the Vandermonde matrix on
ag, - -, an. By the above theorem, we have det A = [[(a; — a;). Since ag, a1, -, ay are all

distinct, det A # 0, so A is invertible and the equation Ac = b has a unique solution c.

3.11 Theorem: Let n,l € Z*. Given n ordered pairs (ay,b1), (az,b2), -+, (an,by) € R?

such that at least [ + 1 of the a; are distinct, there exists a unique polynomial f € P;(R)

which minimizes the sum ) ( fla;) — bi)z. This polynomial f is called the least-squares
i=1

best fit polynomial for the data points (a;, b;).

Proof: For f(x) =co+ c1z + -+ + ¢!, we have

f(al) Co+01a1—|—02a12+"'+61 all
: = = Ac
flay) co+cran +caan? + -+ cra,
where
1 ay a12 cee all Co
1 a9 a22 cee CLQZ C1
A=1. € Myx+1)(R) and ¢ =
1 a, a2 - ap c

Note that the sum ) (f(ai)—bi)Q is the square of the distance between b = (by,ba, - -+, b,)T
i=1

and f(a) = (f(a1), f(a2),- -, f(an))T = Ac, so to minimize the sum we need to choose ¢

to minimize the diastance ||b — Ac||. To do this Ac must be the (unique) point in ColA

which is nearest to b, that is

n

Ac = Projgea(b).

Since [ + 1 of the a; are distinct, it follows that the corresponding rows of A form a
Vandermonde matrix on [ + 1 distinct points. This (I 4+ 1) x (I + 1) Vandermonde matrix
is invertible by Theorem 3.8, so these [ + 1 rows are linearly independent. It follows that
rankA = [+1 and that the [+ 1 columns of A are linearly independent. Thus A is injective,
and so there is a unique vector ¢ with Ac = Projc.4(b). Indeed from our formula for the
orthogonal projection given in Theorem 2.15, we have

c = (ATA)"L AT,



