
3. Applications of Orthogonal Complements and Orthogonal Projection

3.1 Definition: For two affine spaces P and Q in Rn, we define the distance between P
and Q to be

dist(P,Q) = min
{

dist(a, b)
∣∣a ∈ P, b ∈ Q} .

3.2 Theorem: Let p and q be points in Rn, let U and V be subspaces of Rn, and let
P = p+ U and Q = q + V . Then

dist(P,Q) =
∥∥∥Proj(U+V )⊥(p− q)

∥∥∥ .
Proof: We have

dist(P,Q) = min
{

dist(x, y)
∣∣x ∈ P, y ∈ Q}

= min
{

dist(p+ u, q + v)
∣∣u ∈ U, v ∈ V }

= min
{
‖(q + v)− (p+ u)‖

∣∣u ∈ U, v ∈ V }
= min

{
‖(q − p)− (u− v)‖

∣∣u ∈ U, v ∈ V }
= min

{
‖(q − p)− w‖

∣∣w ∈ U + V
}

=
∥∥(q − p)− ProjU+V (q − p)

∥∥
=
∥∥Proj(U+V )⊥(q − p)

∥∥
where, on the second last line, we used the fact that ProjU+V (q− p) is the (unique) point
on U + V which is nearest to q − p.

3.3 Definition: For two subspaces U, V ⊆ Rn, we define the angle between U and V ,
which we write as θ(U, V ), as follows.

(1) If U ⊆ V or V ⊆ U then we define θ(U, V ) = 0.
(2) Otherwise, if U ∩ V = {0} then we define

θ(U, V ) = min
{
θ(u, v)

∣∣∣0 6= u ∈ U, 0 6= v ∈ V
}
,

(3) and if U ∩ V = W 6= {0} then we define θ(U, V ) = θ(U ∩W⊥, V ∩W⊥), noting that
(U ∩W⊥) ∩ (V ∩W⊥) = (U ∩ V ) ∩W⊥ = W ∩W⊥ = {0}.
We define the angle between two affine spaces in Rn to be the angle between their asso-
ciated vector spaces.
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3.4 Theorem: Let {0} 6= U, V ⊆ Rn be non-trivial subspaces with U ∩ V = {0}. Then

(1) In the case that dim(U) = 1 with U = Span {u} where u ∈ Rn with ‖u‖ = 1, we have

cos θ(U, V ) =
∥∥ProjV (u)

∥∥.
(2) In general, we have

cos θ(U, V ) = max
u∈U,‖u‖=1

∥∥ProjV (u)
∥∥.

Proof: To prove part (1), suppose that U = Span {u} where u ∈ Rn with ‖u‖ = 1. Since
every nonzero vector in U is of the form tu for some 0 6= t ∈ R, by the definition of θ(U, V )
we have

θ(U, V ) = min
{
θ(tu, w)

∣∣0 6= t ∈ R, 0 6= w ∈ V
}
.

Since θ(tu, w) = θ(u,±w)
(
indeed when t > 0 we have θ(tu, w) = θ(u,w) and when t < 0

we have θ(tu, w) = θ(u,−w)
)

it follows that

θ(U, V ) = min
{
θ(u,w)

∣∣0 6= w ∈ V
}
.

If u ∈ V ⊥ then ProjV (u) = 0 and for all 0 6= w ∈ V we have u.w = 0 so that θ(u,w) = π
2 ,

and so θ(U, V ) = min
{
θ(u,w)

∣∣0 6= w ∈ V
}

= π
2 , and hence cos θ(U, V ) = 0 =

∥∥ProjV (u)
∥∥.

Suppose that u /∈ V ⊥ and let
v = ProjV (u).

Note that v 6= 0 since u /∈ V ⊥. By Trigonometric Ratios, we have

cos θ(u, v) = ‖v‖
‖u‖ = ‖v‖.

Since cos θ(u, v) ≥ 0 we have θ(u, v) ∈
[
0, π2

]
. Let 0 6= w ∈ V and let

y = Projw(U) = u .w
‖w‖2 w.

If y = 0 then u.w = 0 and so θ(u,w) = π
2 ≥ θ(u, v). Suppose that y 6= 0. By Trigono-

metric Ratios, we have cos(u, y) = ‖y‖
‖u‖ = ‖y‖. Since θ(u, y) ≥ 0 we have θ(u, y) ∈

[
0, π2

]
.

If u.w < 0 so that θ(u,w) = π − θ(u, y) ∈
[
π
2 , π

]
, then we have θ(u,w) ≥ θ(u, v).

If u.w > 0 so that θ(u,w) = θ(u, y), then by Trigonometric Ratios, and since v is the
point in V nearest to u, we have

sin θ(u,w) = sin θ(u, y) = ‖u−y‖
‖u‖ = ‖u− y‖ ≥ ‖u− v‖ = ‖u−v‖

‖u‖ = sin θ(u, v)

and hence θ(u,w) ≥ θ(u, v). Thus for all 0 6= w ∈ V we have θ(u,w) ≥ θ(u, v), where
v = ProjV (u). It follows that θ(U, V ) = min

{
θ(u,w)

∣∣0 6= w ∈ V
}

= θ(u, v) and hence

that cos θ(U, V ) = cos θ(u, v) = ‖v‖ =
∥∥ProjV (u)

∥∥. This completes the proof of Part (1).

To prove Part (2), we no longer assume that U is 1-dimensional. Note that

θ(U, V ) = min
06=u∈U

min
0 6=v∈V

θ(u, v)

= min
u∈U,‖u‖=1

min
06=w∈Span {u}

min
06=v∈V

θ(w, v)

= min
u∈U,‖u‖=1

θ
(
Span {u}, V

)
,

and so, by Part (1) we have

cos θ(U, V ) = max
u∈U,‖u‖=1

cos θ
(
Span {u}, V

)
= max
u∈U,‖u‖=1

∥∥ProjV (u)
∥∥.
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3.5 Definition: Let a, b ∈ Rn with a 6= b. The perpendicular bisector of [a, b] is the
hyperplane in Rn through the midpoint a+b

2 which is perpendicular to the vector b− a, in

other words it is the hyperplane in Rn given by the equation
(
x− a+b

2

). (b− a) = 0.

3.6 Theorem: a point x ∈ Rn lies on the perpendicular bisector of [a, b] if and only if x
is equidistant from a and b.

Proof: Let P be the perpendicular bisector of [a, b]. Then

x ∈ P ⇐⇒
(
x− a+b

2

). (b− a) = 0 ⇐⇒
(
2x− (a+ b)

). (b− a) = 0

⇐⇒ 2x. (b− a) = (a+ b). (b− a)

⇐⇒ 2x. b− 2x. a = a. b− a. a+ b. b− b. a = ‖b‖2 − ‖a‖2

⇐⇒ −2x. a+ ‖a‖2 = −2x. b+ ‖b‖2

⇐⇒ ‖x‖2 − 2x. a+ ‖a‖2 = ‖x‖2 − 2x. b+ ‖b‖2

⇐⇒ ‖x− a‖2 = ‖x− b‖2 ⇐⇒ ‖x− a‖ = ‖x− b‖ .

3.7 Theorem: Let [a0, a1, · · · , al] be an l-simplex in Rn. For 0 ≤ j < k ≤ n, let Bjk be
the perpendicular bisector of [aj , ak]. Then there is a unique point o in the affine span
〈a0, a1, · · · , al〉 which lies in the intersection of all of the perpendicular bisectors Bjk. This
point o is called the circumcentre of the simplex.

Proof: For 1 ≤ i ≤ l let ui = ai−a0. For x ∈ 〈a0, a1, · · · , al〉 = a0+Span {u1, u2, · · · , ul}, we

can write x uniquely as x = a0 +
l∑
i=1

tiui = a0 +At where A = (u1, u2, · · · , ul) ∈Mn×l(R).

For x ∈ 〈a0, a1, · · · , al〉 with x = a0 +At we have

x ∈
l⋂

k=1

B0k ⇐⇒
(
x− a0 + ak

2

). (ak − a0) = 0 for all 1 ≤ k ≤ l

⇐⇒
(

(a0 +At)−
(
a0 + ak−a0

2

). (ak − a0) = 0 for all 1 ≤ k ≤ l

⇐⇒
(
At− 1

2 uk
).uk = 0 for all 1 ≤ k ≤ l

⇐⇒ (At).uk = 1
2‖uk‖

2 for all 1 ≤ k ≤ l

⇐⇒

 (At).u1
...

(At).ul

 = 1
2

(
‖u1‖2
...‖ul‖2

)

⇐⇒ ATA t = 1
2 u , where u =

(
‖u1‖2, ‖u2‖2, · · · , ‖ul‖2

)T
.

Since {a0, a1, · · · , al} is affinely independent, the set {u1, u2, · · · , ul} is linearly independent
so we have rank(ATA) = rank(A) = l, and hence ATA is invertible. Thus there is a unique
point o ∈ 〈a0, a1, · · · , al〉 which lies in each bisector B0k for 1 ≤ k ≤ l, namely the point

o = a0 +At = a0 + 1
2A(ATA)−1u .

Finally, note that for 1 ≤ j < k ≤ l, by the previous theorem, since o ∈ B0j and o ∈ B0k

we have ‖o − a0‖ = ‖a − aj‖ and ‖o − a0‖ = ‖o − ak‖ so that ‖o − aj‖ = ‖o − ak‖, then
by another application of the previous theorem, since ‖o − aj‖ = ‖o − ak‖ it follows that
o ∈ Bjk.
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3.8 Theorem: Let F be a field. Let A =


1 a0 a0

2 · · · a0
n

1 a1 a1
2 · · · a1

n

...
1 an an

2 · · · an
n

 with each ai ∈ F .

Then detA =
∏

0≤i<j≤n

(aj − ai).

Proof: Let An =


1 a0 a0

2 · · · a0
n

1 a1 a1
2 · · · a1

n

...
1 an an

2 · · · an
n

. Note that detA1 = det

(
1 a0
1 a1

)
= a1−a0.

Suppose, inductively, that detAn−1 =
∏

0≤i<j<n

(aj−ai). Note that if ai = aj for some i 6= j,

then An has two equal rows, and so in this case we have detAn = 0 =
∏

0≤i<j≤n

(aj − ai).

Suppose that a0, a1, · · · , an are all distinct. Replace an by x and let

f(x) = det


1 a0 a0

2 · · · a0
n

1 a1 a1
2 · · · a1

n

...
1 an−1 an−1

2 · · · an−1
n

1 x x2 · · · xn

 .

By expanding along the last row we see that f(x) is a polynomial of degree n with leading

coefficient equal to C = detAn−1 =
∏

0≤i<j<n

(aj − ai). On the other hand, for each value

of i with 0 ≤ i < n, by subtracting the ith row from the last row we see that

f(x) = det


1 a0 a0

2 · · · a0
n

1 a1 a1
2 · · · a1

n

...
1 an−1 an−1

2 · · · an−1
n

0 x− ai x2 − ai2 · · · xn − ain



= (x− ai) det


1 a0 a0

2 · · · a0
n

1 a1 a1
2 · · · a1

n

...
1 an−1 an−1

2 · · · an−1
n

0 1 x+ ai · · · xn−1 + · · ·+ x ai
n−2 + ai

n−1


and so (x− ai) divides f(x). Thus we must have

f(x) = C(x− a0)(x− a1) · · · (x− an−1) =
∏

0≤i<j<n

(aj − ai)
∏

0≤i<n

(x− ai) .

Replacing x by an gives detAn = f(an) =
∏

0≤i<j≤n

(aj − ai), as required.
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3.9 Definition: The matrix A in the above theorem is called the Vandermonde matrix
on a0, a1, · · · , an.

3.10 Corollary: Let F be any field. Let (a0, b0), (a1, b1), · · · , (an, bn) be ordered pairs of
elements in F with the ai all distinct. Then there exists a unique polynomial f ∈ Pn(F )
with f(ai) = bi for all i.

Proof: Suppose that a0, a1, · · · , an are all distinct, and let b0, b1, · · · , bn be arbitrary. Let
f ∈ Pn(F ), say f(x) = c0 + c1x+ · · · cnxn. Then we have

f(ai) = bi for all i ⇐⇒ c0 + c1ai + c2ai
2 + · · ·+ cnai

n = bi for all i

⇐⇒ Ac = b

where b = (b0, b1, · · · , bn)T , c = (c0, c1, · · · , cn)T , and A is the Vandermonde matrix on
a0, · · · , an. By the above theorem, we have detA =

∏
(aj − ai). Since a0, a1, · · · , an are all

distinct, detA 6= 0, so A is invertible and the equation Ac = b has a unique solution c.

3.11 Theorem: Let n, l ∈ Z+. Given n ordered pairs (a1, b1), (a2, b2), · · · , (an, bn) ∈ R2

such that at least l + 1 of the ai are distinct, there exists a unique polynomial f ∈ Pl(R)

which minimizes the sum
n∑
i=1

(
f(ai)− bi

)2
. This polynomial f is called the least-squares

best fit polynomial for the data points (ai, bi).

Proof: For f(x) = c0 + c1x+ · · ·+ clx
l, we have f(a1)

...
f(an)

 =

 c0 + c1a1 + c2 a1
2 + · · ·+ cl a1

l

...
c0 + c1an + c2 an

2 + · · ·+ cl an
l

 = Ac

where

A =


1 a1 a1

2 · · · a1
l

1 a2 a2
2 · · · a2

l

...
1 an an

2 · · · an
l

 ∈Mn×(l+1)(R) and c =


c0
c1
...
cl

 .

Note that the sum
n∑
i=1

(
f(ai)−bi

)2
is the square of the distance between b = (b1, b2, · · · , bn)T

and f(a) =
(
f(a1), f(a2), · · · , f(an)

)T
= Ac, so to minimize the sum we need to choose c

to minimize the diastance ‖b − Ac‖. To do this Ac must be the (unique) point in ColA
which is nearest to b, that is

Ac = ProjColA(b).

Since l + 1 of the ai are distinct, it follows that the corresponding rows of A form a
Vandermonde matrix on l + 1 distinct points. This (l + 1)× (l + 1) Vandermonde matrix
is invertible by Theorem 3.8, so these l + 1 rows are linearly independent. It follows that
rankA = l+1 and that the l+1 columns of A are linearly independent. Thus A is injective,
and so there is a unique vector c with Ac = ProjColA(b). Indeed from our formula for the
orthogonal projection given in Theorem 2.15, we have

c = (ATA)−1AT b.
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