

3. Applications of Orthogonal Complements and Orthogonal Projection

3.1 Definition: For two affine spaces P and Q in \mathbb{R}^n , we define the **distance** between P and Q to be

$$\text{dist}(P, Q) = \min \{ \text{dist}(a, b) \mid a \in P, b \in Q \}.$$

3.2 Theorem: Let p and q be points in \mathbb{R}^n , let U and V be subspaces of \mathbb{R}^n , and let $P = p + U$ and $Q = q + V$. Then

$$\text{dist}(P, Q) = \left\| \text{Proj}_{(U+V)^\perp}(p - q) \right\|.$$

Proof: We have

$$\begin{aligned} \text{dist}(P, Q) &= \min \{ \text{dist}(x, y) \mid x \in P, y \in Q \} \\ &= \min \{ \text{dist}(p + u, q + v) \mid u \in U, v \in V \} \\ &= \min \{ \|(q + v) - (p + u)\| \mid u \in U, v \in V \} \\ &= \min \{ \|(q - p) - (u - v)\| \mid u \in U, v \in V \} \\ &= \min \{ \|(q - p) - w\| \mid w \in U + V \} \\ &= \|(q - p) - \text{Proj}_{U+V}(q - p)\| \\ &= \left\| \text{Proj}_{(U+V)^\perp}(q - p) \right\| \end{aligned}$$

where, on the second last line, we used the fact that $\text{Proj}_{U+V}(q - p)$ is the (unique) point on $U + V$ which is nearest to $q - p$.

3.3 Definition: For two subspaces $U, V \subseteq \mathbb{R}^n$, we define the **angle** between U and V , which we write as $\theta(U, V)$, as follows.

- (1) If $U \subseteq V$ or $V \subseteq U$ then we define $\theta(U, V) = 0$.
- (2) Otherwise, if $U \cap V = \{0\}$ then we define

$$\theta(U, V) = \min \{ \theta(u, v) \mid 0 \neq u \in U, 0 \neq v \in V \},$$

(3) and if $U \cap V = W \neq \{0\}$ then we define $\theta(U, V) = \theta(U \cap W^\perp, V \cap W^\perp)$, noting that $(U \cap W^\perp) \cap (V \cap W^\perp) = (U \cap V) \cap W^\perp = W \cap W^\perp = \{0\}$.

We define the **angle** between two affine spaces in \mathbb{R}^n to be the angle between their associated vector spaces.

3.4 Theorem: Let $\{0\} \neq U, V \subseteq \mathbb{R}^n$ be non-trivial subspaces with $U \cap V = \{0\}$. Then

(1) In the case that $\dim(U) = 1$ with $U = \text{Span}\{u\}$ where $u \in \mathbb{R}^n$ with $\|u\| = 1$, we have

$$\cos \theta(U, V) = \|\text{Proj}_V(u)\|.$$

(2) In general, we have

$$\cos \theta(U, V) = \max_{u \in U, \|u\|=1} \|\text{Proj}_V(u)\|.$$

Proof: To prove part (1), suppose that $U = \text{Span}\{u\}$ where $u \in \mathbb{R}^n$ with $\|u\| = 1$. Since every nonzero vector in U is of the form tu for some $0 \neq t \in \mathbb{R}$, by the definition of $\theta(U, V)$ we have

$$\theta(U, V) = \min \{\theta(tu, w) \mid 0 \neq t \in \mathbb{R}, 0 \neq w \in V\}.$$

Since $\theta(tu, w) = \theta(u, \pm w)$ (indeed when $t > 0$ we have $\theta(tu, w) = \theta(u, w)$ and when $t < 0$ we have $\theta(tu, w) = \theta(u, -w)$) it follows that

$$\theta(U, V) = \min \{\theta(u, w) \mid 0 \neq w \in V\}.$$

If $u \in V^\perp$ then $\text{Proj}_V(u) = 0$ and for all $0 \neq w \in V$ we have $u \cdot w = 0$ so that $\theta(u, w) = \frac{\pi}{2}$, and so $\theta(U, V) = \min \{\theta(u, w) \mid 0 \neq w \in V\} = \frac{\pi}{2}$, and hence $\cos \theta(U, V) = 0 = \|\text{Proj}_V(u)\|$. Suppose that $u \notin V^\perp$ and let

$$v = \text{Proj}_V(u).$$

Note that $v \neq 0$ since $u \notin V^\perp$. By Trigonometric Ratios, we have

$$\cos \theta(u, v) = \frac{\|v\|}{\|u\|} = \|v\|.$$

Since $\cos \theta(u, v) \geq 0$ we have $\theta(u, v) \in [0, \frac{\pi}{2}]$. Let $0 \neq w \in V$ and let

$$y = \text{Proj}_w(U) = \frac{u \cdot w}{\|w\|^2} w.$$

If $y = 0$ then $u \cdot w = 0$ and so $\theta(u, w) = \frac{\pi}{2} \geq \theta(u, v)$. Suppose that $y \neq 0$. By Trigonometric Ratios, we have $\cos(u, y) = \frac{\|y\|}{\|u\|} = \|y\|$. Since $\theta(u, y) \geq 0$ we have $\theta(u, y) \in [0, \frac{\pi}{2}]$. If $u \cdot w < 0$ so that $\theta(u, w) = \pi - \theta(u, y) \in [\frac{\pi}{2}, \pi]$, then we have $\theta(u, w) \geq \theta(u, v)$. If $u \cdot w > 0$ so that $\theta(u, w) = \theta(u, y)$, then by Trigonometric Ratios, and since v is the point in V nearest to u , we have

$$\sin \theta(u, w) = \sin \theta(u, y) = \frac{\|u-y\|}{\|u\|} = \|u-y\| \geq \|u-v\| = \frac{\|u-v\|}{\|u\|} = \sin \theta(u, v)$$

and hence $\theta(u, w) \geq \theta(u, v)$. Thus for all $0 \neq w \in V$ we have $\theta(u, w) \geq \theta(u, v)$, where $v = \text{Proj}_V(u)$. It follows that $\theta(U, V) = \min \{\theta(u, w) \mid 0 \neq w \in V\} = \theta(u, v)$ and hence that $\cos \theta(U, V) = \cos \theta(u, v) = \|v\| = \|\text{Proj}_V(u)\|$. This completes the proof of Part (1).

To prove Part (2), we no longer assume that U is 1-dimensional. Note that

$$\begin{aligned} \theta(U, V) &= \min_{0 \neq u \in U} \min_{0 \neq v \in V} \theta(u, v) \\ &= \min_{u \in U, \|u\|=1} \min_{0 \neq w \in \text{Span}\{u\}} \min_{0 \neq v \in V} \theta(w, v) \\ &= \min_{u \in U, \|u\|=1} \theta(\text{Span}\{u\}, V), \end{aligned}$$

and so, by Part (1) we have

$$\cos \theta(U, V) = \max_{u \in U, \|u\|=1} \cos \theta(\text{Span}\{u\}, V) = \max_{u \in U, \|u\|=1} \|\text{Proj}_V(u)\|.$$

3.5 Definition: Let $a, b \in \mathbb{R}^n$ with $a \neq b$. The **perpendicular bisector** of $[a, b]$ is the hyperplane in \mathbb{R}^n through the midpoint $\frac{a+b}{2}$ which is perpendicular to the vector $b - a$, in other words it is the hyperplane in \mathbb{R}^n given by the equation $(x - \frac{a+b}{2}) \cdot (b - a) = 0$.

3.6 Theorem: a point $x \in \mathbb{R}^n$ lies on the perpendicular bisector of $[a, b]$ if and only if x is equidistant from a and b .

Proof: Let P be the perpendicular bisector of $[a, b]$. Then

$$\begin{aligned} x \in P &\iff (x - \frac{a+b}{2}) \cdot (b - a) = 0 \iff (2x - (a + b)) \cdot (b - a) = 0 \\ &\iff 2x \cdot (b - a) = (a + b) \cdot (b - a) \\ &\iff 2x \cdot b - 2x \cdot a = a \cdot b - a \cdot a + b \cdot b - b \cdot a = \|b\|^2 - \|a\|^2 \\ &\iff -2x \cdot a + \|a\|^2 = -2x \cdot b + \|b\|^2 \\ &\iff \|x\|^2 - 2x \cdot a + \|a\|^2 = \|x\|^2 - 2x \cdot b + \|b\|^2 \\ &\iff \|x - a\|^2 = \|x - b\|^2 \iff \|x - a\| = \|x - b\|. \end{aligned}$$

3.7 Theorem: Let $[a_0, a_1, \dots, a_l]$ be an l -simplex in \mathbb{R}^n . For $0 \leq j < k \leq n$, let B_{jk} be the perpendicular bisector of $[a_j, a_k]$. Then there is a unique point o in the affine span $\langle a_0, a_1, \dots, a_l \rangle$ which lies in the intersection of all of the perpendicular bisectors B_{jk} . This point o is called the **circumcentre** of the simplex.

Proof: For $1 \leq i \leq l$ let $u_i = a_i - a_0$. For $x \in \langle a_0, a_1, \dots, a_l \rangle = a_0 + \text{Span} \{u_1, u_2, \dots, u_l\}$, we can write x uniquely as $x = a_0 + \sum_{i=1}^l t_i u_i = a_0 + At$ where $A = (u_1, u_2, \dots, u_l) \in M_{n \times l}(\mathbb{R})$. For $x \in \langle a_0, a_1, \dots, a_l \rangle$ with $x = a_0 + At$ we have

$$\begin{aligned} x \in \bigcap_{k=1}^l B_{0k} &\iff \left(x - \frac{a_0 + a_k}{2} \right) \cdot (a_k - a_0) = 0 \text{ for all } 1 \leq k \leq l \\ &\iff \left((a_0 + At) - \left(a_0 + \frac{a_k - a_0}{2} \right) \right) \cdot (a_k - a_0) = 0 \text{ for all } 1 \leq k \leq l \\ &\iff (At - \frac{1}{2} u_k) \cdot u_k = 0 \text{ for all } 1 \leq k \leq l \\ &\iff (At) \cdot u_k = \frac{1}{2} \|u_k\|^2 \text{ for all } 1 \leq k \leq l \\ &\iff \begin{pmatrix} (At) \cdot u_1 \\ \vdots \\ (At) \cdot u_l \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \|u_1\|^2 \\ \vdots \\ \|u_l\|^2 \end{pmatrix} \\ &\iff At^T A t = \frac{1}{2} u, \text{ where } u = (\|u_1\|^2, \|u_2\|^2, \dots, \|u_l\|^2)^T. \end{aligned}$$

Since $\{a_0, a_1, \dots, a_l\}$ is affinely independent, the set $\{u_1, u_2, \dots, u_l\}$ is linearly independent so we have $\text{rank}(A^T A) = \text{rank}(A) = l$, and hence $A^T A$ is invertible. Thus there is a unique point $o \in \langle a_0, a_1, \dots, a_l \rangle$ which lies in each bisector B_{0k} for $1 \leq k \leq l$, namely the point

$$o = a_0 + At = a_0 + \frac{1}{2} A (A^T A)^{-1} u.$$

Finally, note that for $1 \leq j < k \leq l$, by the previous theorem, since $o \in B_{0j}$ and $o \in B_{0k}$ we have $\|o - a_0\| = \|a - a_j\|$ and $\|o - a_0\| = \|o - a_k\|$ so that $\|o - a_j\| = \|o - a_k\|$, then by another application of the previous theorem, since $\|o - a_j\| = \|o - a_k\|$ it follows that $o \in B_{jk}$.

3.8 Theorem: Let F be a field. Let $A = \begin{pmatrix} 1 & a_0 & a_0^2 & \cdots & a_0^n \\ 1 & a_1 & a_1^2 & \cdots & a_1^n \\ \vdots & & & & \\ 1 & a_n & a_n^2 & \cdots & a_n^n \end{pmatrix}$ with each $a_i \in F$.

Then $\det A = \prod_{0 \leq i < j \leq n} (a_j - a_i)$.

Proof: Let $A_n = \begin{pmatrix} 1 & a_0 & a_0^2 & \cdots & a_0^n \\ 1 & a_1 & a_1^2 & \cdots & a_1^n \\ \vdots & & & & \\ 1 & a_n & a_n^2 & \cdots & a_n^n \end{pmatrix}$. Note that $\det A_1 = \det \begin{pmatrix} 1 & a_0 \\ 1 & a_1 \end{pmatrix} = a_1 - a_0$.

Suppose, inductively, that $\det A_{n-1} = \prod_{0 \leq i < j < n} (a_j - a_i)$. Note that if $a_i = a_j$ for some $i \neq j$,

then A_n has two equal rows, and so in this case we have $\det A_n = 0 = \prod_{0 \leq i < j \leq n} (a_j - a_i)$.

Suppose that a_0, a_1, \dots, a_n are all distinct. Replace a_n by x and let

$$f(x) = \det \begin{pmatrix} 1 & a_0 & a_0^2 & \cdots & a_0^n \\ 1 & a_1 & a_1^2 & \cdots & a_1^n \\ \vdots & & & & \\ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^n \\ 1 & x & x^2 & \cdots & x^n \end{pmatrix}.$$

By expanding along the last row we see that $f(x)$ is a polynomial of degree n with leading coefficient equal to $C = \det A_{n-1} = \prod_{0 \leq i < j < n} (a_j - a_i)$. On the other hand, for each value

of i with $0 \leq i < n$, by subtracting the i^{th} row from the last row we see that

$$\begin{aligned} f(x) &= \det \begin{pmatrix} 1 & a_0 & a_0^2 & \cdots & a_0^n \\ 1 & a_1 & a_1^2 & \cdots & a_1^n \\ \vdots & & & & \\ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^n \\ 0 & x - a_i & x^2 - a_i^2 & \cdots & x^n - a_i^n \end{pmatrix} \\ &= (x - a_i) \det \begin{pmatrix} 1 & a_0 & a_0^2 & \cdots & a_0^n \\ 1 & a_1 & a_1^2 & \cdots & a_1^n \\ \vdots & & & & \\ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^n \\ 0 & 1 & x + a_i & \cdots & x^{n-1} + \cdots + x a_i^{n-2} + a_i^{n-1} \end{pmatrix} \end{aligned}$$

and so $(x - a_i)$ divides $f(x)$. Thus we must have

$$f(x) = C(x - a_0)(x - a_1) \cdots (x - a_{n-1}) = \prod_{0 \leq i < j < n} (a_j - a_i) \prod_{0 \leq i < n} (x - a_i).$$

Replacing x by a_n gives $\det A_n = f(a_n) = \prod_{0 \leq i < j \leq n} (a_j - a_i)$, as required.

3.9 Definition: The matrix A in the above theorem is called the **Vandermonde matrix** on a_0, a_1, \dots, a_n .

3.10 Corollary: Let F be any field. Let $(a_0, b_0), (a_1, b_1), \dots, (a_n, b_n)$ be ordered pairs of elements in F with the a_i all distinct. Then there exists a unique polynomial $f \in P_n(F)$ with $f(a_i) = b_i$ for all i .

Proof: Suppose that a_0, a_1, \dots, a_n are all distinct, and let b_0, b_1, \dots, b_n be arbitrary. Let $f \in P_n(F)$, say $f(x) = c_0 + c_1x + \dots + c_nx^n$. Then we have

$$\begin{aligned} f(a_i) = b_i \text{ for all } i &\iff c_0 + c_1a_i + c_2a_i^2 + \dots + c_na_i^n = b_i \text{ for all } i \\ &\iff Ac = b \end{aligned}$$

where $b = (b_0, b_1, \dots, b_n)^T$, $c = (c_0, c_1, \dots, c_n)^T$, and A is the Vandermonde matrix on a_0, \dots, a_n . By the above theorem, we have $\det A = \prod(a_j - a_i)$. Since a_0, a_1, \dots, a_n are all distinct, $\det A \neq 0$, so A is invertible and the equation $Ac = b$ has a unique solution c .

3.11 Theorem: Let $n, l \in \mathbb{Z}^+$. Given n ordered pairs $(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n) \in \mathbb{R}^2$ such that at least $l + 1$ of the a_i are distinct, there exists a unique polynomial $f \in P_l(\mathbb{R})$ which minimizes the sum $\sum_{i=1}^n (f(a_i) - b_i)^2$. This polynomial f is called the **least-squares best fit polynomial** for the data points (a_i, b_i) .

Proof: For $f(x) = c_0 + c_1x + \dots + c_lx^l$, we have

$$\begin{pmatrix} f(a_1) \\ \vdots \\ f(a_n) \end{pmatrix} = \begin{pmatrix} c_0 + c_1a_1 + c_2a_1^2 + \dots + c_la_1^l \\ \vdots \\ c_0 + c_1a_n + c_2a_n^2 + \dots + c_la_n^l \end{pmatrix} = Ac$$

where

$$A = \begin{pmatrix} 1 & a_1 & a_1^2 & \dots & a_1^l \\ 1 & a_2 & a_2^2 & \dots & a_2^l \\ \vdots & & & & \\ 1 & a_n & a_n^2 & \dots & a_n^l \end{pmatrix} \in M_{n \times (l+1)}(\mathbb{R}) \text{ and } c = \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_l \end{pmatrix}.$$

Note that the sum $\sum_{i=1}^n (f(a_i) - b_i)^2$ is the square of the distance between $b = (b_1, b_2, \dots, b_n)^T$ and $f(a) = (f(a_1), f(a_2), \dots, f(a_n))^T = Ac$, so to minimize the sum we need to choose c to minimize the distance $\|b - Ac\|$. To do this Ac must be the (unique) point in $\text{Col}A$ which is nearest to b , that is

$$Ac = \text{Proj}_{\text{Col}A}(b).$$

Since $l + 1$ of the a_i are distinct, it follows that the corresponding rows of A form a Vandermonde matrix on $l + 1$ distinct points. This $(l + 1) \times (l + 1)$ Vandermonde matrix is invertible by Theorem 3.8, so these $l + 1$ rows are linearly independent. It follows that $\text{rank}A = l + 1$ and that the $l + 1$ columns of A are linearly independent. Thus A is injective, and so there is a unique vector c with $Ac = \text{Proj}_{\text{Col}A}(b)$. Indeed from our formula for the orthogonal projection given in Theorem 2.15, we have

$$c = (A^T A)^{-1} A^T b.$$