
1. Affine Spaces, Convex Sets and Simplices

1.1 Note: In this section, we let F denote a fixed field (for example F = Q, R, C or Zp

with p prime) and let W be a fixed vector space over F.

1.2 Definition: An affine space in W is a set of the form

P = p + U =
{
p + u

∣∣u ∈ U
}

for some element p ∈ W and some subspace U ⊆ W . An element in an affine space is
called a point.

1.3 Example: Every subspace U ⊆W is also an affine space in W (since U = 0+U). For
an element a ∈ U , we can call the element a a vector if we are considering U as a vector
space, and we can call the element a point if we are considering U as an affine space.

1.4 Example: For a subspace U ⊆W , the quotient space W/U is the set

W/U =
{
p + U

∣∣p ∈W
}
.

The operations in W/U are given by (p+U)+(q+U) = (p+q)+U and t(p+U) = tp+U .

1.5 Theorem: Let p, q ∈W be points and let U, V ⊆W be subspaces. Then

(1) p + U ⊆ q + V if and only if U ⊆ V and p− q ∈ V , and
(2) p + U = q + V if and only if U = V and p− q ∈ U .

Proof: Suppose that p + U ⊆ q + V . Since p = p + 0 ∈ p + U , we also have p ∈ q + V , say
p = q + v where v ∈ V . Then p− q = v ∈ V . Let u ∈ U . Then we have p + u ∈ p + U and
so p + u ∈ q + V , say p + u = q + w where w ∈ V . Then u = w − (p − q) = w − v ∈ V .
Conversely, suppose that U ⊆ V and p − q ∈ V , say p − q = v ∈ V . Let a ∈ p + U , say
a = p+ u where u ∈ U . Then we have a = p+ u = (q + v) + u = q + (u+ v) ∈ q + V since
u + v ∈ V . This proves part (1), and part (2) follows immediately from part (1).

1.6 Definition: Let P be an affine space in W , say P = p + U where p ∈ W is a point
and U ⊆ W is a subspace. The vector space U , which by the above theorem is uniquely
determined, is called the associated vector space of P , and we say the P is the affine
space through p in the direction of U . We define the dimension of P to be

dim(P ) = dim(U).

Similarly, the codimension of P in W is codimW (P ) = codimW (U) = dim(W/U).

1.7 Definition: A line in W is a 1-dimensional affine space in W . A plane in W is a
2-dimensional affine space in W . We often call a 0-dimensional affine space in W a point
(although, strictly speaking, a 0-dimensional affine space in W is a one-element set which
contains a point). A hyperplane in W is an affine space in W of codimension 1 (so when
dim(W ) = n, a hyperplane in W is an (n− 1)-dimensional affine space in W ).
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1.8 Example: Let u1, u2, · · · , uk ∈ Fn, let A = {u1, u2, · · · , uk}, let U = SpanA, let
p ∈ Fn, P = p + U , and let A = (u1, u2, · · · , uk) ∈Mn×k(F). Note that

U = SpanA =
{ k∑

i=1

tiui

∣∣∣ each ti ∈ F
}

=
{
At
∣∣ t ∈ Fk

}
= Col(A).

We can calculate dim(P ) = dim(U) in several ways. For example, we can row reduce the
matrix A to obtain a reduced row-echelon matrix R. If the pivots in R occur in columns
1 ≤ j1 ≤ j2 ≤ · · · ≤ jr ≤ n, then {uj1 , uj2 , · · · , ujr} (the set of corresponding columns in
A) is a basis for U = Col(A) and we have dim(P ) = dim(U) = r = rank(A). Alternatively,
we can row-reduce the matrix AT to obtain a row-reduced echelon matrix S. The nonzero
rows of S then form a basis for Row(S) = Row(AT ) = U .

1.9 Example: Let A ∈Mk×n(F) and let b ∈ Fk. If P is the solution set

P =
{
x ∈ Fn

∣∣Ax = b
}

then either P = ∅ (the empty set) or P is an affine space in Fn. Indeed if p ∈ Fn is in the
solution set so that Ap = b, then for x ∈ Fn we have

Ax = b ⇐⇒ Ax = Ap ⇐⇒ A(x− p) = 0 ⇐⇒ (x− p) ∈ Null(A) ⇐⇒ x ∈ p + Null(A)

and so the solution set is the affine space P = p+U where U = Null(A). We can determine
whether Ax = b has a solution, and if so we can determine a solution and find a basis for
U = Null(A) using Gauss-Jordan elimination. We row reduce the augmented matrix (A|b)
to obtain a row-reduced augmented matrix, say

(A|b) ∼
(
R
0

∣∣∣∣ c
d

)
where R is in row reduced echelon form with non-zero rows. If d 6= 0 then there is
no solution and if d = 0 then the solution is obtained from R and c as follows. Let
1 ≤ j1 ≤ j2 ≤ · · · ≤ jr ≤ n be the pivot column indices and let 0 ≤ l1 ≤ l2 ≤ · · · ≤ ls ≤ n
be the non-pivot column indices in R (so that r+s = n). Let u1, u2, · · · , un be the columns
of R so R = (u1, u2, · · · , un) ∈ Mr×n(F). Write RJ = (uj1 , uj2 , · · · , ujr ) ∈ Mr×r(F) and
RL = (ul1 , ul2 , · · · , uls) ∈ Mr×s(F) and note that RJ = I. For B ∈ Mn×s(F) with
row vectors v1, v2, · · · , vn ∈ Fs so that we have B = (v1, · · · , vn)T ∈ Mn×s(F), write
BJ = (vj1 , vj2 , · · · , vjr )T ∈ Mr×s(F) and BL = (vl1 , vl2 , · · · , vls)T ∈ Ms×s(F), and for
p ∈ Fn write pJ = (pj1 , pj2 , · · · , pjr )T ∈ Fr and pL = (pl1 , pl2 , · · · , pls)T ∈ Fs. Then the
solution to Ax = b is given by

x = p + Bt , where pJ = c, pL = 0, BJ = −RL and BL = I.

Because the matrix B ∈ Mn×r(F) includes s linearly independent rows, namely the rows
in BL = I, it follows that the columns of B are linearly independent and form a basis for
U = Null(A) = Col(B).

1.10 Example: Let L : W → V be a linear map and let a ∈W and b ∈ V . If b /∈ Range(L)
then L−1(b) = ∅. If b ∈ Range(L) with L(a) = b then L−1(b) = a + Null(L) because for
x ∈W we have L(x) = b ⇐⇒ L(x− a) = L(x)− L(a) = b− b = 0.
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1.11 Theorem: Let K be a non-empty set and for each k ∈ K, let Pk be an affine space
in W . Let Q =

⋂
k∈K

Pk. Then either Q = ∅ or Q is an affine space in W .

Proof: Suppose that Q 6= ∅. Choose p ∈ Q. For each k ∈ K, let Uk be the associated
vector space of Pk, and note that, since p ∈ Pk, we have Pk = p + Uk. Let U =

⋂
k∈K Uk.

Note that U is a subspace of W . Indeed 0 ∈ U and if u, v ∈ U and t ∈ F, then for every
k ∈ K we have u, v ∈ Uk so that u+v ∈ Uk and tu ∈ Uk, and hence u+v ∈ U and tu ∈ U .
We claim that Q = p + U . Let x ∈ Q =

⋂
k∈K Pk =

⋂
k∈K(p + Uk). For each k ∈ K,

choose uk ∈ Uk so that x = p + uk. Fix ` ∈ K and let u = u`. Note that for all k ∈ K
we have uk = x − p = u` = u. Thus u ∈

⋂
k∈K Uk = U and we have x = p + u ∈ p + U .

Conversely, let y ∈ p+U , say y = p+u with u ∈ U . Then for every k ∈ K we have u ∈ Uk

so y = p + u ∈ p + Uk = Pk. Since y ∈ Pk for all k, we have y ∈
⋂

k∈K Pk = Q.

1.12 Definition: Let ∅ 6= A ⊆ W. We define the affine span of A, denoted by 〈A〉, to
be the smallest affine space in W which contains A, or equivalently, the intersection of all
affine spaces in W which contain A. Sometimes we omit set brackets from our notation, so
for example when a0, a1, · · · , al ∈ Fn we usually write 〈a0, a1, · · · , al〉 =

〈
{a0, a1, · · · , al}

〉
.

1.13 Theorem: Let ∅ 6= A ⊆W and let p ∈ A. Let U = Span
{
a− p

∣∣ a ∈ A
}

. Then

〈A〉 = p + U =
{ n∑

i=0

siai

∣∣∣n ∈ N , ai ∈ A , si ∈ F ,
n∑

i=0

si = 1
}
.

Proof: Let a ∈ A. Then a − p ∈ U and so a ∈ p + U . Thus p + U is an affine space in
W which contains A, and so we have 〈A〉 ⊆ p + U . Let Q be any affine space in W which
contains A. Note that since p ∈ A, we also have p ∈ Q. Let V be the associated vector
space of Q so that Q = p + V . For every a ∈ A we have a ∈ Q = p + V and so a− p ∈ V .
It follows that U = Span

{
a− p

∣∣ a ∈ A
}
⊆ V . Since U ⊆ V we have p + U ⊆ p + V = Q.

Since p + U ⊆ Q for every affine space Q which contains A, it follows that p + U ⊆ 〈A〉.
Thus we have shown that

〈A〉 = p + U = p + Span
{
a− p

∣∣ a ∈ A
}

=
{
p +

n∑
i=1

ti(ai − p)
∣∣∣n ∈ N, ai ∈ A, ti ∈ F

}
.

Finally note that

p +
n∑

i=1

ti(ai − p) =
(
1−

n∑
i=1

ti
)
p +

n∑
i=1

tiai =
n∑

i=0

siai

where a0 = p, s0 =
(
1−

n∑
i=1

ti
)
, and si = ti for i ≥ 1.

1.14 Definition: Let ∅ 6= A ⊆ W . An affine combination on A is a point in 〈A〉, that
is a point in W of the form

p =
n∑

i=0

siai where n ∈ N , ai ∈ A , si ∈ F ,
n∑

i=0

si = 1.
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1.15 Definition: Let ∅ 6= A ⊆W . We say that A is affinely independent when for all
n ∈ N, for all distinct a0, a1, · · · an ∈ A and for all s0, s1, · · · , sn ∈ F,

if
n∑

i=0

siai = 0 and
n∑

i=0

si = 0 then every si = 0.

Otherwise we say that A is affinely dependent.

1.16 Remark: Let ∅ 6= A ⊆ W . Then A is affinely independent if and only if every
element in 〈A〉 can be expressed uniquely, up to order, as an affine combination of distinct
elements in A.

1.17 Theorem: Let ∅ 6= A ⊆W , let p ∈ A, and let B =
{
a− p

∣∣ a ∈ A \ {p}
}

. Then A is
affinely independent if and only if B is linearly independent.

Proof: We prove one direction of the if and only if statement and leave the proof of the
other direction as an exercise. Suppose that A is affinely independent. Let n ∈ Z+, let

u1, u2, · · · , un be distinct elements in B, let t1, · · · , tn ∈ F and suppose that
n∑

i=1

tiui = 0.

Note that B is a set of non-zero vectors so each ui 6= 0. Let ai = ui + p and note that
a1, · · · , an are distinct elements in A with each ai 6= p. Let a0 = p, let si = ti for 1 ≤ i ≤ n

and let s0 = −
n∑

i=1

si. Note that

n∑
i=1

tiui = 0 ⇐⇒
n∑

i=1

ti(ai − p) = 0 ⇐⇒
n∑

i=0

siai = 0.

Since A is affinely independent we have si = 0 for 0 ≤ i ≤ n and hence ti = 0 for 1 ≤ i ≤ n,
so that B is linearly independent.

1.18 Corollary: Let a0, a1, · · · , a` be distinct points in W . Let P = 〈a0, a1, · · · , a`〉. Then
{a0, a1, · · · , a`} is affinely independent if and only if dim(P ) = `.

1.19 Note: For the rest of this section, we let W denote a fixed vector space over R.

1.20 Definition: For a, b ∈W , the line segment between a and b in W is the set

[a, b] =
{
a + t(b− a)

∣∣t ∈ R, 0 ≤ t ≤ 1
}

=
{
sa + tb

∣∣0 ≤ s, t ∈ R, s + t = 1
}
.

1.21 Definition: A non-empty set ∅ 6= C ⊆W is called convex when it has the property
that for all a, b ∈ C, we have [a, b] ⊆ C.

1.22 Theorem: The intersection of a set of convex sets in W is either empty or convex.

Proof: Let K be a set, and for each k ∈ K let Ck be a convex set in W . Let D =
⋂

k∈K Ck.
Suppose that D 6= ∅. Let a, b ∈ D. Then a, b ∈ Ck for all k ∈ K. Since each Ck is convex,
it follows that [a, b] ⊆ Ck for every k ∈ K, and so we have [a, b] ⊆ D.

1.23 Definition: Let ∅ 6= A ⊆ W . The convex hull of A in W , denoted by [A], is
the smallest convex set in W which contains A. Equivalently, [A] is the intersection of all
convex sets in W which contain A.
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1.24 Theorem: Let ∅ 6= A ⊆W . Then

[A] =
{ m∑

i=0

siai

∣∣∣m ∈ N, ai ∈ A, 0 ≤ si ∈ R,
m∑
i=0

si = 1
}
.

Proof: Let C denote the set on the right. We claim that C is convex. Let x, y ∈ C, say

x =
m∑
i=0

siai and y =
m∑
i=0

tiai where m ∈ N, 0 ≤ si, ti and
∑

si =
∑

ti = 1 (we can use the

same upper limits, and the same points ai, in the sums for x and y because some of the
coefficients si, ti can be zero). Let z ∈ [x, y], say z = x+r(y−x) where 0 ≤ r ≤ 1. Then we
have z =

∑
siai +r

(∑
tiai−

∑
siai

)
=
∑

riai where ri = si +r(ti−si). Since 0 ≤ si and

0 ≤ ti and ri ∈ [si, ti], we must have ri ≥ 0. Also, we have
∑

ri =
∑

si+r
(∑

ti−
∑

si
)

=
1 + r(1− 1) = 1, and so z =

∑
riai ∈ C. Thus C is convex, as claimed. Since C is convex,

and clearly A ⊆ C, we have [A] ⊆ C.
Let D be any convex set with A ⊆ D. For each k ∈ N, let

Ck =
{ k∑

i=0

siai

∣∣∣ai ∈ A, 0 ≤ si ∈ R,
k∑

i=0

si = 1
}
.

We claim that each Ck ⊆ D. Note that C0 = A ⊆ D. Fix k ≥ 1 and suppose, inductively,

that Ck−1 ⊆ D. Let x ∈ Ck, say x =
k∑

i=0

siai with 0 ≤ si,
∑

si = 1. If sk = 1 then x = ak

and so x ∈ A ⊆ D. Suppose that sk 6= 1. Let y =
k−1∑
i=0

si
1−sk ai. Note that each si

1−sk ≥ 0

and that
k−1∑
i=0

si
1−sk = 1

1−sk

k−1∑
i=0

si = 1
1−sk (1− sk) = 1 and so we have y ∈ Ck−1 ⊆ D. Also,

we have (1−sk)y =
k−1∑
i=0

siai = x−skak and so x = (1−sk)y+skak = y+sk(ak−y) ∈ [y, ak].

Since y ∈ Ck−1 ⊆ D and ak ∈ D, and x ∈ [y, ak], and D is convex, it follows that x ∈ D.
Thus Ck ⊆ D. By induction, we have Ck ⊆ D for all k ∈ N, and hence C =

⋃∞
k=0 Ck ⊆ D.

Since C is contained in every convex set D with A ⊆ D, it follows that C ⊆ [A].

1.25 Definition: Let ∅ 6= A ⊆ W . A convex combination on A is a point in [A], that
is a point of the form

p =
m∑
i=0

siai where m ∈ N , ai ∈ A , 0 ≤ si ∈ R ,
m∑
i=0

si = 1 .

1.26 Definition: Let ` ∈ N. An (ordered, non-degenerate) `-simplex in W is a convex
set of the form [a0, a1, · · · , a`] where (a0, a1, · · · , a`) is an ordered (` + 1)-tuple of distinct
points ai ∈W such that {a0, a1, · · · , a`} is affinely independent. A 0-simplex is sometimes
called a point (although it is actually a one-element set containing a point), a 1-simplex
is called a line segment, a 2-simplex is called a triangle, and a 3-simplex is called a
tetrahedron.

1.27 Definition: Let S = [a0, a1, · · · , a`] be an `-simplex in W . For each pair (j, k) with
0 ≤ j < k ≤ `, the medial hyperplane Mj,k of S is given by

Mj,k =
〈
1
2 (aj + ak), ai

∣∣i 6= j, k
〉
.
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1.28 Note: Given an `-simplex [a0, a1, · · · , a`] and a pair (j, k) with 1 ≤ j < k ≤ `,
note that the set

{
1
2 (aj + ak), ai

∣∣i 6= j, k
}

is affinely independent. Indeed if we have
s · 1

2 (aj + ak) +
∑

i 6=j,k

siai = 0 with s +
∑

si = 0 then, letting sj = sk = 1
2s, we have∑̀

i=0

siai = 0 with
∑

si = 0, and so each si = 0 (including sj and sk) because {a0, a1, · · · , a`}

is affinely independent. It follows that dim(Mj,k) = ` − 1. We remark that when ` 6= n,
the affine space Mj,k is not a hyperplane in W but rather a hyperplane in the affine span
〈a0, a1, · · · , a`〉.

1.29 Theorem: Let [a0, a1, · · · , a`] be an `-simplex in W . Then the medial hyperplanes
Mj,k have a unique point of intersection g, called the centroid of the simplex, which is
given by

g = 1
`+1

∑̀
i=0

ai.

Proof: First we show that the point g = 1
`+1

∑̀
i=0

ai lies on each medial hyperplane Mj,k.

For 1 ≤ j < k ≤ ` we have

g = 1
`+1

∑̀
i=0

ai = 1
`+1 (aj + ak) + 1

`+1

∑
i 6=j,k ai = 2

`+1 ·
1
2 (aj + ak) +

∑
i 6=j,k

1
`+1 ai.

The sum of the coefficients is 2
`+1 + (`− 1) 1

`+1 = `+1
`+1 = 1 and so g ∈Mj,k.

To show that g is the unique point which lies in every medial hyperplane Mj,k, we
shall show that there can be at most one point which lies in each medial hyperplane M0,k.
To do this we first show that ak /∈M0,k. Suppose, for a contradiction, that ak ∈M0,k, say
ak = s· 12 (a0+ak)+

∑
i 6=0,k

siai with s+
∑

i 6=0,k

si = 1. Then by letting s0 = s
2 and sk = s

2−1 we

obtain
∑̀
i=0

siai = 0 with
∑

si = 0. Since {a0, a1, · · · , a`} is affinely independent, it follows

that each si = 0. But it is not possible to have both 0 = s0 = s
2 and 0 = sk = s

2 − 1, so
we obtain the desired contradiction. Thus ak /∈M0,k.

To complete the proof, we shall show that there can be at most one point which
lies in each of the medial hyperplanes M0,k. We do this by a dimension count. Let

Pk =
⋂k

i=1 M0,k. Note that Pk 6= ∅ since we know that g ∈ Pk, and so Pk is an affine
space. For k ≥ 2 we have Pk = Pk−1 ∩M0,k so that Pk ⊆ Pk−1, and we have ak ∈ Pk−1
but ak /∈ Pk and so Pk

⊂6=Pk−1. Thus we have

M0,1 = P1
⊃6= P2

⊃6= · · · ⊃6= P`.

Since dim(P1) = dim(M0,1) = `− 1, and since Pk
⊂6=Pk−1 so that dim(Pk) < dimPk−1 for

all k ≥ 2, we must have dim(Pk) ≤ ` − k for all k. In particular dim(P`) ≤ 0 and hence
dim(P`) = 0 and so P` is a one-element set containing a point, indeed P` = {g}.
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