1. Affine Spaces, Convex Sets and Simplices

1.1 Note: In this section, we let F denote a fixed field (for example F = Q, R, C or Z,
with p prime) and let W be a fixed vector space over F.

1.2 Definition: An affine space in W is a set of the form
P=p+U={p+u|uecU}

for some element p € W and some subspace U C W. An element in an affine space is
called a point.

1.3 Example: Every subspace U C W is also an affine space in W (since U = 0+ U). For
an element a € U, we can call the element a a vector if we are considering U as a vector
space, and we can call the element a point if we are considering U as an affine space.

1.4 Example: For a subspace U C W, the quotient space W/U is the set
W/U ={p+Ulpe W}.
The operations in W/U are given by (p+U)+ (¢+U) = (p+q)+U and t(p+U) = tp+U.

1.5 Theorem: Let p,q € W be points and let U,V C W be subspaces. Then

(1) p+U Cq+Vifand only if U CV andp—q € V, and
(2)p+U=¢q+V ifand only if U =V andp—q € U.

Proof: Suppose that p+U C g+ V. Since p=p+0 € p+ U, we also have p € ¢+ V, say
p=q+vwhereveV. Thenp—qg=veV. Let u e U. Then we have p+u € p+ U and
sop+tuecqg+V,sayp+u=qg+wwherew e V. Thenu=w—-(p—q) =w—-veV.
Conversely, suppose that U CV andp—qge V,sayp—q=v € V. Let a € p+ U, say
a =p+u where u € U. Then we have a =p+u = (¢+v)+u=¢q+ (u+v) € g+ V since
u+ v € V. This proves part (1), and part (2) follows immediately from part (1).

1.6 Definition: Let P be an affine space in W, say P = p + U where p € W is a point
and U C W is a subspace. The vector space U, which by the above theorem is uniquely
determined, is called the associated vector space of P, and we say the P is the affine
space through p in the direction of U. We define the dimension of P to be

dim(P) = dim(U).
Similarly, the codimension of P in W is codimy (P) = codimy (U) = dim(W/U).

1.7 Definition: A line in W is a 1-dimensional affine space in W. A plane in W is a
2-dimensional affine space in W. We often call a O-dimensional affine space in W a point
(although, strictly speaking, a 0-dimensional affine space in W is a one-element set which
contains a point). A hyperplane in W is an affine space in W of codimension 1 (so when
dim(W) = n, a hyperplane in W is an (n — 1)-dimensional affine space in W).



1.8 Example: Let uq,ug,---,ur € F”, let A = {uy,uo,---,ux}, let U = Span A, let
peF" P=p+U, and let A = (uy,uz, -, ux) € Myxr(F). Note that

k
U =Span A= { > tiug
i=1

each t; € IF} = {At|t € F*} = Col(4).

We can calculate dim(P) = dim(U) in several ways. For example, we can row reduce the
matrix A to obtain a reduced row-echelon matrix R. If the pivots in R occur in columns
1 <ji <jo<---<jr <n, then {u;,,uj,, --,u;.} (the set of corresponding columns in
A) is a basis for U = Col(A) and we have dim(P) = dim(U) = r = rank(A). Alternatively,
we can row-reduce the matrix A7 to obtain a row-reduced echelon matrix S. The nonzero

rows of S then form a basis for Row(S) = Row(AT) = U.
1.9 Example: Let A € My, (F) and let b € F*. If P is the solution set
P:{:EEIF”}A:c:b}

then either P = () (the empty set) or P is an affine space in F". Indeed if p € F" is in the
solution set so that Ap = b, then for = € F™ we have

Az =b <= Az =Ap <= A(x—p)=0 <= (v —p) € Null(4) < z € p+ Null(4)

and so the solution set is the affine space P = p+U where U = Null(A). We can determine
whether Ax = b has a solution, and if so we can determine a solution and find a basis for
U = Null(A) using Gauss-Jordan elimination. We row reduce the augmented matrix (A|b)
to obtain a row-reduced augmented matrix, say

c
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where R is in row reduced echelon form with non-zero rows. If d # 0 then there is
no solution and if d = 0 then the solution is obtained from R and c as follows. Let
1 <71 < g2 <+ <j- <n be the pivot column indices and let 0 < [; <y < --- <[y, <n
be the non-pivot column indices in R (so that r+s = n). Let uy, us, - -, u, be the columns
of Rso R = (u1,uz, - ,up) € Mpxn(F). Write Ry = (uj,,uj,, -+, u;.) € Myyr(F) and
Ry, = (w,upy, - u,) € Myys(F) and note that Ry = I. For B € M,«(F) with
row vectors vy, va, -+, v, € F® so that we have B = (vy,--+,v,)T € M,xs(F), write
B; = (vjl,va,---,vjr)T € M,ys(F) and By, = (vi,,v1,, -,v.)T € Myxs(F), and for
p € F" write p; = (pj17pj27' o 7pj'r')T € F" and pr, = (pluplw' o 7plS)T € F°. Then the
solution to Az = b is given by

xr=p+ Bt , where p;y =c¢, pp =0, By = —Rp and By = [.

Because the matrix B € M,,«,(F) includes s linearly independent rows, namely the rows
in By, = I, it follows that the columns of B are linearly independent and form a basis for
U = Null(A) = Col(B).

1.10 Example: Let L : W — V be alinear map and let a € W and b € V. If b ¢ Range(L)
then L=1(b) = (). If b € Range(L) with L(a) = b then L™1(b) = a + Null(L) because for
x €W we have L(z) =b < L(x —a)=L(z) — L(a) =b—b=0.



1.11 Theorem: Let K be a non-empty set and for each k € K, let Py be an affine space
in W. Let Q = () Pgx. Then either Q = () or Q is an affine space in W.
keK

Proof: Suppose that Q # (. Choose p € Q). For each k € K, let U be the associated
vector space of Py, and note that, since p € Py, we have P, = p+ Uy. Let U = (¢ Us-
Note that U is a subspace of W. Indeed 0 € U and if u,v € U and t € I, then for every
k € K we have u,v € Uy so that u+v € Uy and tu € Uy, and hence u+v € U and tu € U.
We claim that Q@ = p+U. Let 2 € Q = (e Pr = pex (P + U). For each k € K,
choose up € Uy so that x = p+ ug. Fix £ € K and let u = uy. Note that for all £ € K
we have up =2 —p =ug = u. Thus u € (,cx Ur = U and we have x =p+u € p+U.
Conversely, let y € p+ U, say y = p+u with v € U. Then for every k € K we have u € Uy,
soy=p+u€p+U,= P Since y € Py for all k, we have y € (,cx Pr = Q.

1.12 Definition: Let () # .4 C W. We define the affine span of A, denoted by (A), to
be the smallest affine space in W which contains A, or equivalently, the intersection of all
affine spaces in W which contain A. Sometimes we omit set brackets from our notation, so
for example when ag,ay,---,a; € F" we usually write (ag, a1, -,a;) = <{a0, a,- - ,al}>.

1.13 Theorem: Let ) £ A C W and let p € A. Let U = Span {a —p ’ a € A}. Then

(A}zp—kUz{ismi

1=0

n
nEN,aieA,sieF,Zsizl}.
i=0

Proof: Let a € A. Then a —p € U and so a € p+ U. Thus p + U is an affine space in
W which contains A, and so we have (4) C p+ U. Let @ be any affine space in W which
contains A. Note that since p € A, we also have p € (). Let V be the associated vector
space of () so that Q =p+ V. For every a € A we havea € Q =p+V andsoa—p e V.
It follows that U = Span{a—p|a € A} CV. SinceU CV wehave p+U Cp+V = Q.
Since p + U C @ for every affine space (Q which contains A, it follows that p + U C (A).
Thus we have shown that

(A):p+U:p+Span{a—p‘a€A}
= {p'i‘iti(ai—p)‘nEN,ai € At G]F}.

=1
Finally note that

n n n n
p+ > ti(ai—p)=(1—-S ti)p+ > tia; = > sia;
i=1 i=1 i=1 i=0

n
where ag = p, sg = (1 - > ti), and s; = ¢; for ¢ > 1.
i=1

1.14 Definition: Let ) # A C WW. An affine combination on A is a point in (A4), that
is a point in W of the form

n n
p= > sia; wheren e N a; € A, s, €F, > s;,=1.



1.15 Definition: Let () # A C W. We say that A is affinely independent when for all
n € N, for all distinct ag,aq,---a, € A and for all sg,s1,---,s, € F,

n n
if > s;a; =0and > s; =0 then every s; = 0.
i=0 i=0

Otherwise we say that A is affinely dependent.
1.16 Remark: Let () # A C W. Then A is affinely independent if and only if every

element in (A) can be expressed uniquely, up to order, as an affine combination of distinct
elements in A.

1.17 Theorem: Let ) # AC W, letp € A, and let B={a—p|a € A\ {p}}. Then A is
affinely independent if and only if B is linearly independent.

Proof: We prove one direction of the if and only if statement and leave the proof of the
other direction as an exercise. Suppose that A is affinely independent. Let n € ZT, let

n
U1, Uz, -+, Uy be distinct elements in B, let t1,---,t, € F and suppose that > t;u; = 0.
i=1

Note that B is a set of non-zero vectors so each u; # 0. Let a; = u; + p and note that
ai,---,an are distinct elements in A with each a; # p. Let ag =p, let s;, =t; for 1 <1< n
n
and let so = — > s;. Note that
i=1
n n n
Ztlule < th(az—p):O < ZSZ'CLZ':O.
i=1 i=1 i=0

Since A is affinely independent we have s; = 0 for 0 < i <n and hence t; =0 for 1 <17 < n,
so that B is linearly independent.

1.18 Corollary: Let ag,aq,---,ay be distinct points in W. Let P = (ag, a1, --,ag). Then
{ag, a1, -+, ap} is affinely independent if and only if dim(P) = .

1.19 Note: For the rest of this section, we let W denote a fixed vector space over R.
1.20 Definition: For a,b € W, the line segment between a and b in W is the set
[a,b] = {a—l—t(b—a)‘tER,O <t< 1} = {sa—{—tb‘O <s,teR,s+t= 1}.

1.21 Definition: A non-empty set () # C' C W is called convex when it has the property
that for all a,b € C, we have [a,b] C C.

1.22 Theorem: The intersection of a set of convex sets in W' is either empty or convex.

Proof: Let K be a set, and for each k € K let Cy be a convex set in W. Let D = ﬂkéK Ck.
Suppose that D # (). Let a,b € D. Then a,b € C}, for all k € K. Since each C}, is convex,
it follows that [a,b] C Cj, for every k € K, and so we have [a,b] C D.

1.23 Definition: Let ) # A C W. The convex hull of A in W, denoted by [A4], is
the smallest convex set in W which contains A. Equivalently, [A] is the intersection of all
convex sets in W which contain A.



1.24 Theorem: Let () # A C W. Then

[A] = { i Sii

i=0

Proof: Let C denote the set on the right. We claim that C' is convex. Let z,y € C, say
m m

x= > s;a; and y = > t;a; where m € N, 0 < s;,t; and > s; = > t; = 1 (we can use the

=0 i=0
same upper limits, and the same points a;, in the sums for x and y because some of the

coefficients s;,t; can be zero). Let z € [z,y], say z = x+r(y—x) where 0 < r < 1. Then we
have z = ) s;a; —l—r(Ztiai > siai) = > r;a; where r; = s; +r(t; —s;). Since 0 < s; and
0 <t; and r; € [s;,t;], we must have r; > 0. Also, we have > r; = Zsﬁr(Zti—Zsi) =
14+7r(1—1)=1,and so z =) ra; € C. Thus C is convex, as claimed. Since C' is convex,
and clearly A C C, we have [A] C C.

Let D be any convex set with A C D. For each k € N, let

Cr = { ﬁjo SiQ;

We claim that each C C D. Note that Cy = A C D. Fix k > 1 and suppose, inductively,

meN,aieA,OgsiER,Zsizl}.
i=0

k
CLiEA,OSSiER,ESizl}.
=0

k
that Cy_1 C D. Let z € Cy, say . = Y s;a; with 0 < s;, > s; = 1. If s = 1 then z = ay,

i=0
k—1
and so x € A C D. Suppose that s # 1. Let y = > 151;919 a;. Note that each 1fi8k >0
i=0
k—1 k—1
and that » - = 1_18k > s = 1_13k (1 —s;) =1 and so we have y € Cp_1 C D. Also,
i=0 i=0
k—1
we have (1—sg)y = > s;a; = x—sgay and so x = (1—sg)y+sgar = y+sk(ar—y) € [y, ax.
i=0

Since y € Cx_1 € D and a;, € D, and x € [y,ax|, and D is convex, it follows that = € D.
Thus C, C D. By induction, we have C, C D for all k € N, and hence C = |J;—,Cy C D.
Since C' is contained in every convex set D with A C D, it follows that C' C [A].

1.25 Definition: Let ) # A C W. A convex combination on A is a point in [A], that
is a point of the form

m m
p= > sia; wheremeN aq; € A, 0<s;, R, > s,=1.

i=0 i=0
1.26 Definition: Let £ € N. An (ordered, non-degenerate) /-simplex in W is a convex
set of the form [ag,aq,- -, as] where (ag,a1,---,ar) is an ordered (¢ + 1)-tuple of distinct
points a; € W such that {ag, ai, -, ap} is affinely independent. A 0-simplex is sometimes
called a point (although it is actually a one-element set containing a point), a 1-simplex
is called a line segment, a 2-simplex is called a triangle, and a 3-simplex is called a
tetrahedron.

1.27 Definition: Let S = [ag, a1, -, a] be an ¢-simplex in W. For each pair (j, k) with
0 <j <k </, the medial hyperplane M ;, of S is given by

Mjk = <%(a]‘ + ak),ai‘i 75 7, k?>



1.28 Note: Given an (-simplex [ag,a1,--,a¢] and a pair (j,k) with 1 < 7 < k < 4,
note that the set {%(aj + ak),ai{z’ #* j,k:} is affinely independent. Indeed if we have
5 - %(aj +ar) + >, sia; = 0 with s 4+ > s; = 0 then, letting s; = s, = %s, we have
. i#£j,k

> sia; = 0with ) s; = 0, and so each s; = 0 (including s; and s) because {ag, a1, -, ar}
i=0

is affinely independent. It follows that dim(M; ) = ¢ — 1. We remark that when ¢ # n,
the affine space M; ;. is not a hyperplane in W but rather a hyperplane in the affine span

<a07a17 e 7a€>'

1.29 Theorem: Let [ag, a1, -, as] be an ¢-simplex in W. Then the medial hyperplanes
M; ;. have a unique point of intersection g, called the centroid of the simplex, which is
given by

1 L
:TZ:

¢

Proof: First we show that the point g = “%1 > a; lies on each medial hyperplane M; j.
i=0

For 1 < j < k </ we have

¢
:%Z ':%(a3+a’f)+€+l wajkal:Hil'%(aj+ak)+-;k@+lal
=0 i#],
The sum of the coeflicients is H% + (¢ —-1) M—Ll = ﬁi—} =1 and so g € M .

To show that g is the unique point which lies in every medial hyperplane M; ;, we
shall show that there can be at most one point which lies in each medial hyperplane Mg j.
To do this we first show that a, ¢ My . Suppose, for a contradiction, that ay € M , say

ap = s-%(a0+ak)+ > sia; with s+ > s; = 1. Then by letting so = § and s = 5 —1 we
i#£0,k i#£0,k

obtain Z sia; = 0 with >~ s; = 0. Since {ag, a1, -, ae} is affinely independent, it follows

that each s; = 0. But it is not possible to have both 0 = so = § and 0 = s = 5 — 1, so
we obtain the desired contradiction. Thus aj ¢ Mo k.

To complete the proof, we shall show that there can be at most one point which
lies in each of the medial hyperplanes My ;. We do this by a dimension count. Let
P, = ﬂle Moy . Note that P, # () since we know that g € Py, and so Py is an affine
space. For k > 2 we have P, = P,_1 N My, so that P, C P,_;, and we have a, € P,
but ay ¢ P and so Py % Pi._1. Thus we have

Moi=Pi 2P 2 - 2P

Since dim(P;) = dim(My,1) = ¢ — 1, and since P, %Pk_l so that dim(Py) < dim Py, for
all & > 2, we must have dim(Py) < ¢ — k for all k. In particular dim(P) < 0 and hence
dim(Py) = 0 and so P is a one-element set containing a point, indeed P, = {g}.



