
12. Jordan Canonical Form

12.1 Definition: Let F be a field. For m ∈ Z+ and λ ∈ F, we define the m×m Jordan
block for the eigenvalue λ to be the m×m matrix

Jmλ =



λ 1
λ 1

λ 1
. . .

. . .

λ 1
λ

 .

For n ∈ Z+, a matrix A ∈ Mn×n(F) is said to be in Jordan form when it is in the
block-diagonal form

A =


Jm1

λ1

Jm2

λ2

. . .

Jml

λl


for some l,mi ∈ Z+ and λi ∈ F.

12.2 Note: Our goal in this chapter is to prove that for every linear map L : U → U
on a finite dimensional vector space U over a field F, if fL(x) splits then there exists an
ordered basis A for U such that the matrix [L]A is in Jordan form, and that this Jordan
form matrix is unique up to the order of the Jordan blocks.

Recall that when A = {u1, u2, · · · , un} is an ordered basis for U , the matrix [L]A is
given by the formula

[L]A =
(
[Lu1]A, [Lu2]A, · · · , [Lun]A

)
∈Mn(F).

If follows immediately from this formula that when

A =
{
u11, u12, · · · , u1m1 , u21, u22, · · ·u2m2 , · · · , ul1, ul2, · · · , ulml

}
is an ordered basis for U , the matrix [L]A is of the required Jordan form with blocks Jmi

λi

precisely when for each index i with 1 ≤ i ≤ l, we have

Lui1 = λiui1 , Lui2 = ui1 + λiui2, , Lui3 = ui2 + λiui2 , · · · , Luimi
= uimi−1 + λiuimi

.

We can also write the above equations as

(L− λiI)ui1 = 0 , (L− λiI)ui2 = ui1 , (L− λI)ui3 = ui2 , · · · , (L− λiI)uimi = uimi−1 .

Notice that when these equations hold, we have

0 = (L− λI)ui,1 = (L− λI)2ui,2 = (L− λI)3ui,3 = · · · = (L− λI)miui,mi
.

These considerations lead us to make the following definitions.
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12.3 Definition: Let L : U → U where U is a finite dimensional vector space over a field
F, and let λ ∈ Spec (L). The generalized eigenspace of L for λ is the vector space

Kλ = Kλ(L) =
{
u ∈ U

∣∣(L− λI)ku = 0 for some k ∈ Z+
}
.

A cycle of generalized eigenvectors for λ is an ordered m-tuple (u1, u2, · · · , um) with each
ui ∈ U such that

(L− λI)u1 = 0 , (L− λI)u2 = u1 , (L− λI)u3 = u2 , · · · , (L− λI)um = um−1.

Note that for each index k we have (L− λI)kuk = 0 so that uk ∈ Kλ.

12.4 Note: The discussion in Note 12.2 shows that for an ordered basis A for U , the
matrix [L]A is in Jordan form if and only if A is an ordered union of cycles of generalized
eigenvectors (for various eigenvalues).

12.5 Definition: Let L : U → U be a linear map on a vector space U over a field F.
Let V ⊆ U be a subspace. We say that V is an invariant subspace of U under L when
L(V ) ⊆ V . Note that when V is invariant under L, the restriction of L to V gives a linear
map L : V → V .

12.6 Theorem: Let L : U → U be a linear map on a finite dimensional vector space U
over a field F. Suppose that fL(x) splits. Let λ ∈ Spec (L) and let µ ∈ F. Then

(1) If M : U → U is linear and commutes with L, then Kλ is invariant under M . In
particular, Kλ is invariant under L, and under L− µI.
(2) When µ 6= λ the map (L− λI) : Kµ → Kµ is an isomorphism.
(3) We have dim(Kλ) ≤ mλ where mλ is the algebraic multiplicity of λ.

Proof: Let M : U → U be any map which commutes with L and let u ∈ Kλ, say
(L−λI)uk = 0. Snce M commutes with L, M also commutes with L = λI and so we have

(L− λI)k(Mu) = M(L− λI)ku = M(0) = 0

and so M(u) ∈ Kλ. This proves Part (1).
To prove Part (2), suppose that µ 6= λ and suppose, for a contradiction, that the map

(L− λI) : Kµ → Kµ is not an isomorphism. Choose 0 6= u ∈ Kµ such that (L− λI)u = 0.
Choose k ∈ N so that (L−µI)ku 6= 0 but (L−µI)k+1u = 0 and let v = (L−µI)ku. Note
that v 6= 0 and v ∈ Eµ. Since (L − λI) commutes with (L − µI) and (L − λI)u = 0 we
have

(L− λI)v = (L− λI)(L− µI)ku = (L− µI)k(L− λI)u = (L− µI)k(0) = 0

so that v ∈ Eλ. Thus v 6= 0 and v ∈ Eλ ∩Eµ. But this is not possible since µ 6= λ so that
Eλ ∩ Eµ = {0}.

By Part (1), Kλ is an invariant subspace so we can let M : Kλ → Kλ be the restriction
of L. Note that λ ∈ Spec (M) and, since fM (x) divides fL(x) (as we can see by choosing
any basis for Kλ, extending it to a basis for U , and considering the associated matrices for
L and M), it follows that fM (x) splits and Spec (M) ⊆ Spec (L). By Part (2), when µ 6= λ
the map (L− µI) : Kλ → Kλ is an isomorphism, so that µ is not an eigenvalue of M , and
so we have Spec (M) = {λ}. Thus fM (x) = ±(x− λ)d where d = dim(Kλ) and d ≤ mλ.
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12.7 Theorem: Let L : U → U be a linear map on a finite dimensional vector space U
over a field F. Suppose that fL(x) splits. Then

U =
⊕

λ∈Spec (L)

Kλ(L).

Proof: We prove by induction on the number of distinct eigenvalues of L. When L has
only one eigenvalue λ, by Schur’s Theorem (or the Cayley-Hamilton Theorem) we have
(L− λI)d = 0 where d = dimU so U = Null(L− λI)d = Kλ(L).

Suppose that L has at least 2 distinct eigenvalues and suppose the theorem holds for
any linear map M with fewer eigenvalues that L. Let λ ∈ Spec (L). Since U is finite
dimensional, we can choose p ∈ Z with 1 ≤ p ≤ d = dimU such that

U = Range(L− λI)0 ⊃6= Range(L− λI)1 ⊃6= · · · ⊃6= Range(L− λI)p = Range(L− λI)p+1.

Note that since we have Range(L − λI)p = Range(L − λI)p+1, it follows that the map
(L− λI) : Range(L− λI)p → Range(L− λI)p+1 is surjective hence isomorphic, and so we
have Range(L− λI)p = Range(L− λI)k for all k ≥ p. It follows that we also have

{0} = Null(L− λI)0⊂6= Null(L− λI)1⊂6= · · · ⊂6= Null(L− λI)p = Null(L− λI)k

for all k ≥ p, so Kλ(L) =
{
u ∈ U

∣∣ (L−λI)ku = 0 for some k ∈ Z+
}

= Null(L−λI)p. Let

V = Range(L− λI)p.

Since L−λI : V → V , we also have L : V → V . Let M : V → V be the restriction of L to
V . Since fM (x) divides fL(x), it follows that fM (x) splits and that Spec (M) ⊆ Spec (L).
Since M − λI = L − λI : V → V is an isomorphism, λ is not an eigenvalue of M so we
have Spec (M) ⊆ Spec (L) \ {λ}. By the induction hypothesis, we have

V =
⊕

ν∈Spec (M)

Kν(M).

Let µ ∈ Spec (L) with µ 6= λ. We have

u ∈ Kµ(M) ⇐⇒ u ∈ V and (M − µI)ku = 0 for some k ∈ Z+

⇐⇒ u ∈ V and (L− µI)ku = 0 for some k ∈ Z+

⇐⇒ u ∈ V and u ∈ Kµ(L)

so Kµ(M) = Kµ(L) ∩ V . Since (L − λI) : Kµ(L) → Kµ(L) is an isomorphism, it follows
that Kµ(L) ⊆ Range(L − λI)p = V and so Kµ(M) = Kµ(L) ∩ V = Kµ(L), as claimed.
Thus we have

V =
⊕

µ∈Spec (M)

Kµ(M) =
⊕

µ∈Spec (L)\{λ}

Kµ(L).

To prove U =
⊕

λ∈SpecL
Kλ(L), we show that U =

∑
λ∈Spec (L)

Kλ(L) and
∑

λ∈Spec (L)
dim(Kλ(L)) = d

where d = dimU . Given x ∈ U , let y = (L − λI)px ∈ V . For each µ ∈ Spec (L) \ {λ},
choose vµ ∈ Kµ(L) so that y =

∑
vµ. Since (L − λI), hence also (L − λI)p, is an

automorphism from Kµ(L), we can choose uµ ∈ Kµ(L) so that (L − λI)puµ = vµ. Then
we have (L− λI)p(x−

∑
uµ) = y −

∑
vµ = 0 so we can choose uλ = x−

∑
µ 6=λ

uµ ∈ Kλ(L)

to get x = uλ +
∑
uµ. This proves that U =

∑
λ∈Spec (L)

Kλ(L). Finally, we note that since

dim
(
Kλ(L)

)
≤ mλ we have

∑
λ∈Spec (L)

dim
(
Kλ(L)

)
≤

∑
λ∈Spec (L)

mλ = dimU .
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12.8 Theorem: Let L : U → U be a linear map on a finite dimensional vector space U
over a field F and let λ ∈ Spec (L). Then Kλ has an ordered basis which is an ordered
union of cycles of generalized eigenvectors.

Proof: Consider the restriction of L− λI to Kλ. Choose m ∈ Z+ so that

Kλ = Range(L− λI)0 ⊃6= Range(L− λI)1 ⊃6= · · · ⊃6= Range(L− λI)m = Range(L− λI)m+1.

Note that Range(L−λI)m = {0} since Kλ = Null(L−λI)m, and Range(L−λI)m−1 ⊆ Eλ
because if u ∈ Range(L− λI)m−1 then (L− λI)u ∈ Range(L− λI)m = {0}.

We describe a recursive procedure for constructing an ordered union of cycles which is
an ordered basis for Kλ in which, at the kth step, we obtain a basis for Range(L−λI)m−k.
We begin with the empty set, which is a basis for {0} = Range(L− λI)m. At the 1st step
we choose a basis

{
u1,1, u2,1, · · · , un,1

}
for Range(L−λI)m−1 ⊆ Eλ. Suppose, inductively,

that after the kth step we have constructed a basis

A =
{
u1,1, u1,2, · · · , u1,`1 , u2,1, · · · , u2,`2 , · · · , ur,1, · · · , ur,`r

}
for Range(L−λI)m−k ⊆ Kλ, where

{
u1,1, · · · , ur,1

}
is a basis for Range(L−λI)m−k ∩Eλ

and ui,j = (L − λI)ui,j+1 for all 1 ≤ i ≤ r and 1 ≤ j < `r. At the (k + 1)st step, for
each index i with 1 ≤ i ≤ r we choose ui,`i+1 ∈ Kλ such that (L− λI)ui,`i+1 = ui,`i and,
in addition, we extend the basis {u1,1, · · · , ur,1} for Range(L − λI)m−k ∩ Eλ to obtain a
basis

{
u1,1,, · · · , ur,1, ur+1,1 · · · , us,1

}
for Range(L− λI)m−k−1 ∩ Eλ. We then extend the

ordered basis A to the ordered set

B =
{
u1,1,, · · · , u1,`1 , u1,`1+1, u2,1,, · · · , u2,`2+1, · · · , ur,1, · · · , ur,`r+1 , ur+1,1, · · · , us,1

}
.

It remains to prove that B is a basis for Range(L− λI)m−k−1.
Consider the map M = (L − λI) : Range(L − λI)m−k−1 → Range(L − λI)m−k.

This map is surjective so that rank(M) = dim
(
Range(L − λI)m−k

)
= |A|, and we have

Null(M) = Range(L− λI)m−k−1 ∩ Eλ so that nullity(M) = s, and it follows that

dim
(
Range(L− λI)m−k−1

)
= rank(M) + nullity(M) = |A|+ s.

Now consider the mapN= (L−λI) :Span(B) ⊆ Range(L−λI)m−k−1→ Range(L−λI)m−k.
Since (L − λI)(ui,j+1) = ui,j it follows that N is surjective so that rank(N) = |A|, and
since (L − λI)(ui,1) = 0 it follows that Range(L − λI)m−k−1 ∩ Eλ ⊆ Null(N) so that
nullity(N) ≥ s. Since B is obtained from A by adding exactly s elements, it follows that

|A|+ s = |B| ≥ dim
(
Span (B)

)
= rank(N) + nullity(N) ≥ |A|+ s

so that |B| = dim
(
Span (B)

)
= dim

(
Range(L − λI)m−k−1

)
. Thus B is a basis for

Range(L− λI)m−k−1
)
, as required.

12.9 Theorem: (Jordan Form) Let L : U → U be a linear map on a finite dimensional
vector space U over a field F. Suppose that fL(x) splits over F. Then there exists an
ordered basis A for U such that

[L]A =


Jm1

λ1

Jm2

λ2

. . .

Jml

λl


for some l,mi ∈ Z+ and some λi ∈ F, with the Jordan blocks Jmi

λi
uniquely determined

(up to order).
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Proof: The existence of the ordered basis which puts the map L into Jordan form follows
from the previous two theorems. It remains to show that the Jordan blocks are uniquely
determined (up to order). Note that for m ∈ Z+ and λ ∈ F we have

(
Jmλ − λI

)
=


0 1

0 1
. . .

. . .

. . . 1
0

 ,
(
Jmλ − λI

)2
=



0 0 1
0 0 1

. . .
. . .

. . .
. . . 1

0
0


and so on until

· · · ,
(
Jmλ − λI

)m−1
=


0 1

0

 ,
(
Jmλ − λI

)m
= 0 .

It follows that for 0 ≤ k ≤ m we have

rank(Jmλ − λI
)k

= m− k.

Also notice that for µ ∈ F with µ 6= λ we have

(
Jmλ − µI

)
=


λ− µ 1

λ− µ 1
. . .

. . .

. . . 1
λ− µ


and so

rank
(
Jmλ − µI

)
= m.

Now suppose that there exists a basis A as stated in the theorem, so that A = [L]A is in
Jordan form with Jordan blocks Jmi

λi
. The eigenvalues of L are the same as the eigenvalues

of A, namely λ1, · · · , λl. For indices i such that λi 6= λ, we have rank(Jmi

λi
− λI)k = mi.

For indices i with λi = λ and mi ≥ k, we have rank(Jmi

λi
− λI)k = mi − k. For indices

i such that λi = λ and mi < k, we have rank(Jmi

λi
− λI)k = 0. Let ak be the number of

indices i such that λi = λ and mi = k, and let bk be the number of indices i such that
λi = λ and mi ≥ k. Then since

[
(L − λiI)k

]
A = (A − λI)k, which is the block diagonal

matrix with blocks (Jmi

λi
− λI)k, we see that

rank(L− λI)k = n−
(
1 a1 + 2 a2 + 3 a3 + · · ·+ (k − 1)ak−1 + k bk

)
= n−

(
b1 + b2 + b3 + · · ·+ bk

)
and so we have

bk = rank(L− λI)k−1 − rank(L− λI)k

and hence

ak = bk − bk+1 = rank(L− λI)k−1 − 2 rank(L− λI)k + rank(L− λI)k+1 .

This formula shows that the blocks Jmi

λi
are uniquely determined (up to order).
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