12. Jordan Canonical Form

12.1 Definition: Let F be a field. For m € Z* and )\ € F, we define the m x m Jordan
block for the eigenvalue A to be the m x m matrix

Al

A1l
A

For n € Z*, a matrix A € M, «x,(F) is said to be in Jordan form when it is in the
block-diagonal form

Jy
for some {,m; € ZT and \; € .

12.2 Note: Our goal in this chapter is to prove that for every linear map L : U — U
on a finite dimensional vector space U over a field F, if fr(z) splits then there exists an
ordered basis A for U such that the matrix [L] 4 is in Jordan form, and that this Jordan
form matrix is unique up to the order of the Jordan blocks.

Recall that when A = {uq,us, -, u,} is an ordered basis for U, the matrix [L] 4 is
given by the formula

[L)a = ([Lwi]a, [Lug)a, - -+, [Lun)a) € My (F).
If follows immediately from this formula that when
A= {ulbul?a Ty Ulmg, U215, U22, - U2mg, * 0 UL, U2, - ,Uzml}

is an ordered basis for U, the matrix [L] 4 is of the required Jordan form with blocks J)"*
precisely when for each index ¢ with 1 <+ <[, we have

Lujy = Awiy y Lugg = win + Awia, , Lugg = wig + Ajwgg -+ Luim; = Wim;—1 + ANitlim, -
We can also write the above equations as
(L—=XT)uipn =0, (L —XNDujo =usn , (L—Auiz =i, -+, (L= XNI)Ujm, = Uim,_,-
Notice that when these equations hold, we have

0= (L—A)u;1 = (L—X)ujp=(L—AN)u3="--=(L—=X)™Um,.

These considerations lead us to make the following definitions.



12.3 Definition: Let L : U — U where U is a finite dimensional vector space over a field
F, and let A € Spec (L). The generalized eigenspace of L for )\ is the vector space

Ky =K\(L)={u € U[(L — AXI)*u = 0 for some k € Z" }.

A cycle of generalized eigenvectors for A is an ordered m-tuple (uq,ug, - - -, u;,) with each
u; € U such that
(L=X)uy =0, (L—X)uzg=wuy , (L=X)ug=u2, -+, (L—N)up, = tUpm_1.

Note that for each index k we have (L — AI)*u; = 0 so that uy € K.

12.4 Note: The discussion in Note 12.2 shows that for an ordered basis A for U, the
matrix [L] 4 is in Jordan form if and only if A is an ordered union of cycles of generalized
eigenvectors (for various eigenvalues).

12.5 Definition: Let L : U — U be a linear map on a vector space U over a field F.
Let V C U be a subspace. We say that V is an invariant subspace of U under L when
L(V) C V. Note that when V' is invariant under L, the restriction of L to V gives a linear
map L:V = V.

12.6 Theorem: Let L : U — U be a linear map on a finite dimensional vector space U
over a field F. Suppose that fr(x) splits. Let A € Spec (L) and let y € F. Then

(1) If M : U — U is linear and commutes with L, then K is invariant under M. In
particular, K is invariant under L, and under L — 1.

(2) When ;v # X the map (L — XI) : K, — K, is an isomorphism.

(3) We have dim(K ) < my where my is the algebraic multiplicity of \.

Proof: Let M : U — U be any map which commutes with L and let u € K, say
(L—AI)u* = 0. Snce M commutes with L, M also commutes with L = AI and so we have

(L = A)*(Mu) = M(L — M) u = M(0) =0

and so M (u) € K. This proves Part (1).

To prove Part (2), suppose that u # A and suppose, for a contradiction, that the map
(L—X): K, — K, is not an isomorphism. Choose 0 # u € K, such that (L —AI)u = 0.
Choose k € N so that (L — pI)*u # 0 but (L — puI)**'u = 0 and let v = (L — puI)*u. Note
that v # 0 and v € E,,. Since (L — AI) commutes with (L — ul) and (L — A)u = 0 we
have

(L —X)v=(L—-M)(L—pl)*u=(L—-pl)*(L—-X)u=(L—-pl)*0)=0

so that v € Ey. Thus v # 0 and v € Ey N E,. But this is not possible since yu # A so that
Ey\nN EH = {0}

By Part (1), K is an invariant subspace so we can let M : Ky — K be the restriction
of L. Note that A\ € Spec (M) and, since fy;(z) divides fr(x) (as we can see by choosing
any basis for K, extending it to a basis for U, and considering the associated matrices for
L and M), it follows that fys(x) splits and Spec (M) C Spec (L). By Part (2), when p # A
the map (L — ul) : Ky — K is an isomorphism, so that u is not an eigenvalue of M, and
so we have Spec (M) = {\}. Thus fu(z) = £(x — \)? where d = dim(K) and d < m.



12.7 Theorem: Let L : U — U be a linear map on a finite dimensional vector space U
over a field F. Suppose that fr(x) splits. Then

U= P K(L)
A€Spec (L)

Proof: We prove by induction on the number of distinct eigenvalues of L. When L has
only one eigenvalue A, by Schur’s Theorem (or the Cayley-Hamilton Theorem) we have
(L — M)% =0 where d = dimU so U = Null(L — A\I)% = K (L).

Suppose that L has at least 2 distinct eigenvalues and suppose the theorem holds for
any linear map M with fewer eigenvalues that L. Let A € Spec(L). Since U is finite
dimensional, we can choose p € Z with 1 < p < d = dim U such that

U = Range(L — \I)" 2 Range(L — VAR 2 -+ 2 Range(L — AI)” = Range(L — DVALAES
Note that since we have Range(L — AI)P = Range(L — AI)P*! it follows that the map

(L — X\I) : Range(L — A\ )? — Range(L — AI)P™! is surjective hence isomorphic, and so we
have Range(L — A )P = Range(L — \I)* for all k > p. It follows that we also have

{0} = Null(L — \I)° & Null(L — VAR G GNull(L — AI)P = Null(L — AP
for all k > p, so Kx(L) = {ueU | (L — X )*u =0 for some k € Z*} = Null(L — A)P. Let
V = Range(L — \I)P.

Since L— X :V — V wealsohave L: V — V. Let M : V — V be the restriction of L to
V. Since fy(z) divides fr(x), it follows that fys(z) splits and that Spec (M) C Spec (L).
Since M — A = L — A\ : V — V is an isomorphism, A is not an eigenvalue of M so we
have Spec (M) C Spec (L) \ {\}. By the induction hypothesis, we have

V= P K.M)
vESpec (M)
Let o € Spec (L) with p # A. We have
ue K,(M) <= ueV and (M — pul)*u =0 for some k € Z"

= weVand (L — pul)*u =0 for some k € Z"

< ueVandue K,(L)
so K,,(M)=K,(L)NnV. Since (L —XI) : K,(L) = K,(L) is an isomorphism, it follows
that K,(L) C Range(L — AI)? =V and so K,(M) = K,(L)NV = K, (L), as claimed.

Thus we have
V= & K.M= b k.0

wESpec (M) neSpec (L)\{\}
To prove U = @ Kyx(L), we show that U = > Ky(L)and > 6 dim(Kx(L))=d
A€Spec L A€Spec (L) A€Spec (L)

where d = dimU. Given x € U, let y = (L — AI)Pz € V. For each p € Spec (L) \ {\},
choose v, € K,(L) so that y = > v,. Since (L — AI), hence also (L — AI)?, is an
automorphism from K, (L), we can choose u, € K, (L) so that (L — AI)Pu, = v,. Then
we have (L — A\I)P(x — > u,) =y — > v, = 0so we can choose uy = — » u, € K\(L)
#A
to get © = uy + > u,. This proves that U = > K)(L). Finally, we note that since
A€Spec (L)

dim (Kx(L)) <my we have > dim (Kx(L)) < >  my=dimU.
A€Spec (L) A€Spec (L)



12.8 Theorem: Let L : U — U be a linear map on a finite dimensional vector space U
over a field F and let A € Spec(L). Then Ky has an ordered basis which is an ordered
union of cycles of generalized eigenvectors.

Proof: Consider the restriction of L — A\ to K. Choose m € ZT so that
K = Range(L — \I)° % Range(L — \I)* % e % Range(L — AI)™ = Range(L — A\I)™"*.

Note that Range(L — A\I)™ = {0} since Ky = Null(L —AI)™, and Range(L — )™~ C E,
because if u € Range(L — A\I)™~! then (L — AI)u € Range(L — A\I)™ = {0}.

We describe a recursive procedure for constructing an ordered union of cycles which is
an ordered basis for K in which, at the k*® step, we obtain a basis for Range(L — \I)™~*.
We begin with the empty set, which is a basis for {0} = Range(L — A\I)™. At the 15 step
we choose a basis {ulyl, U 1, ,un,l} for Range(L — A\I)™~! C E). Suppose, inductively,
that after the k' step we have constructed a basis

A= {Ul,17u1,27 UL gy, U2y U2 gy U Tyt 7u7“,fr}

for Range(L — AI)™~* C K, where {u1,1, -+, ur1} is a basis for Range(L — XI)™"* N E)
and w; ; = (L — AM)u; j41 for all 1 < i <rand 1 < j < {.. At the (k+ 1) step, for
each index ¢ with 1 < ¢ < r we choose u; ¢,+1 € Ky such that (L — A )u; ¢, +1 = u; ¢, and,
in addition, we extend the basis {uj 1, -,u,1} for Range(L — AI)™~* N E) to obtain a
basis {uLL, e Up 1, U1 1t ,us,l} for Range(L — A\I)™ %=1 N E\. We then extend the
ordered basis A to the ordered set

B = {U1,1,, UL Ly, UL 415U,y U 041y Ur 1yttt U 041y Upr 41,150 ,Us,1}-
It remains to prove that B is a basis for Range(L — A\I)™ k=1,
Consider the map M = (L — AI) : Range(L — AI)™ %=1 — Range(L — \I)™*.
This map is surjective so that rank(M) = dim (Range(L — AI)™ %) = |A|, and we have
Null(M) = Range(L — AXI)™ %=1 N E, so that nullity (M) = s, and it follows that

dim (Range(L — AI)™~*~') = rank(M) + nullity (M) = | A| + s.
Now consider the map N = (L—\I):Span(B) C Range(L—\I)™ "%~ — Range(L—A\I)™%.
Since (L — M )(u; j+1) = w;,; it follows that N is surjective so that rank(N) = |A|, and

since (L — A)(u;1) = 0 it follows that Range(L — A\I)™ %=1 N E, C Null(N) so that
nullity(N) > s. Since B is obtained from A by adding exactly s elements, it follows that

|A| + s = |B|] > dim (Span (B)) = rank(N) + nullity(N) > |A| + s

so that [B] = dim (Span(B)) = dim (Range(L — AI)™ *~1). Thus B is a basis for
Range(L — AI)™%~1), as required.
12.9 Theorem: (Jordan Form) Let L : U — U be a linear map on a finite dimensional

vector space U over a field F. Suppose that fr(x) splits over F. Then there exists an
ordered basis A for U such that

J\M

!

for some I, m; € Z* and some \; € I, with the Jordan blocks Jj\f" uniquely determined
(up to order).



Proof: The existence of the ordered basis which puts the map L into Jordan form follows
from the previous two theorems. It remains to show that the Jordan blocks are uniquely
determined (up to order). Note that for m € Z* and A € F we have

0 1 "0 0
0 1 ‘
(J3F = ) = (=) =
. 1 1
0 0
0
and so on until
0 1
m m—1 0 m m
e, (N =MD = , (J=X)" =0.
It follows that for 0 < k < m we have
rank(Jy" — )\I)k =m—k.
Also notice that for p € F with p # A we have
A— 1
A—p 1
(J3" = pl) =
1
A—p

and so
rank (JY" — pl) =m.

Now suppose that there exists a basis A as stated in the theorem, so that A = [L] 4 is in
Jordan form with Jordan blocks J;\n The eigenvalues of L are the same as the eigenvalues
of A, namely Ay,---,\;. For indices i such that A; # A, we have rank(Jy"* — M)k = m,.
For indices 7 with A; = X and m; > k, we have rank(Jj\fi — M)* = m; — k. For indices
i such that A\; = A and m; < k, we have rank(JjC" — M)¥ = 0. Let aj, be the number of
indices 7 such that \; = A and m; = k, and let by be the number of indices i such that
Ai = A and m; > k. Then since [(L — )\iI)k}A = (A — XI)¥, which is the block diagonal
matrix with blocks (J{7* — M)*, we see that

rank(L—)\I)k:n—(1a1+2a2+3a3+--~+(k—l)ak_1+kbk)
=n— (by+by+bg+--+by)

and so we have

by = rank(L — A\I)*~ — rank(L — A\I)*
and hence
ap = b, — bpy1 = rank(L — M)~ — 2rank(L — A\I)* + rank(L — A\I)F*1.

This formula shows that the blocks J{** are uniquely determined (up to order).



