

11. Tensor Algebras

11.1 Definition: Recall that for a vector space U over a field \mathbb{F} , we define the **dual space** of U to be the vector space

$$U^* = \{ \text{linear maps } L : U \rightarrow \mathbb{F} \}.$$

Recall also, that when U is finite dimensional and $\mathcal{U} = \{u_1, u_2, \dots, u_n\}$ is a basis for U , we can define linear maps $f_i : U \rightarrow \mathbb{F}$ for $i = 1, 2, \dots, n$ by requiring that $f_i(u_j) = \delta_{ij}$, and then $\mathcal{F} = \{f_1, f_2, \dots, f_n\}$ is a basis for U^* which is called the **dual basis** to \mathcal{U} . We shall sometimes identify the double dual U^{**} with U by identifying the element $u \in U$ with the linear map $u : U^* \rightarrow \mathbb{F}$ given by $u(f) = f(u)$.

11.2 Definition: Let U_1, U_2, \dots, U_k and V be vector spaces over a field \mathbb{F} . A map

$$L : U_1 \times U_2 \times \dots \times U_k \rightarrow V$$

is called k -linear when

$$\begin{aligned} L(u_1, \dots, t u_i, \dots, u_k) &= t L(u_1, \dots, u_i, \dots, u_k), \text{ and} \\ L(u_1, \dots, v + w, \dots, u_k) &= L(u_1, \dots, v, \dots, u_k) + L(u_1, \dots, w, \dots, u_k) \end{aligned}$$

for all indices i , all vectors u_1, \dots, u_k, v, w in the appropriate vector spaces, and all $t \in \mathbb{F}$. When U_1, U_2, \dots, U_k are finite dimensional, the **tensor product** of U_1, U_2, \dots, U_k is the vector space

$$U_1 \otimes U_2 \otimes \dots \otimes U_k = \left\{ k\text{-linear maps } L : U_1^* \times U_2^* \times \dots \times U_k^* \rightarrow \mathbb{F} \right\}.$$

For u_1, u_2, \dots, u_k with each $u_i \in U_i$, we define $(u_1 \otimes u_2 \otimes \dots \otimes u_k) \in U_1 \otimes U_2 \otimes \dots \otimes U_k$ by

$$(u_1 \otimes u_2 \otimes \dots \otimes u_k)(g_1, g_2, \dots, g_k) = g_1(u_1)g_2(u_2) \cdots g_k(u_k),$$

where each $g_i \in U_i^*$.

11.3 Example: The dot product $\cdot : (\mathbb{F}^n)^2 \rightarrow \mathbb{F}$ given by $u \cdot v = v^T u$ is a 2-linear map.

11.4 Example: An inner product $\langle \cdot, \cdot \rangle : U^2 \rightarrow \mathbb{R}$ on a vector space U over \mathbb{R} is 2-linear.

11.5 Example: The determinant $D : (\mathbb{F}^n)^n \rightarrow \mathbb{F}$ given by $D(u_1, u_2, \dots, u_n) = \det(A)$, where $A = (u_1, u_2, \dots, u_n) \in M_{n \times n}(\mathbb{F})$, is an n -linear map.

11.6 Example: The generalized cross product $X : (\mathbb{F}^n)^{n-1} \rightarrow \mathbb{F}$ is $(n-1)$ -linear.

11.7 Theorem: Let U_1, U_2, \dots, U_k be finite dimensional vector spaces. For each index i , let \mathcal{U}_i be a basis for U_i . Then the set

$$\{u_1 \otimes u_2 \otimes \dots \otimes u_k \mid \text{each } u_i \in \mathcal{U}_i\}$$

is a basis for $U_1 \otimes U_2 \otimes \dots \otimes U_k$. In particular $\dim(U_1 \otimes U_2 \otimes \dots \otimes U_k) = \prod_{i=1}^k \dim(U_i)$.

Proof: Let $\mathcal{U}_i = \{u_{i1}, u_{i2}, \dots, u_{in_i}\}$ be a basis for U_i and let $\mathcal{F}_i = \{f_{i1}, f_{i2}, \dots, f_{in_i}\}$ be the dual basis for U_i^* . Then for appropriate indices i_1, i_2, \dots, i_k and j_1, j_2, \dots, j_k (that is for $1 \leq i_1 \leq n_1, 1 \leq i_2 \leq n_2, \dots, 1 \leq i_k \leq n_k$ and similarly for j_1, j_2, \dots, j_k) we have

$$\begin{aligned} (u_{1,i_1} \otimes u_{2,i_2} \otimes \dots \otimes u_{k,i_k})(f_{1,j_1}, f_{2,j_2}, \dots, f_{k,j_k}) &= f_{1,j_1}(u_{1,i_1})f_{2,j_2}(u_{2,i_2}) \dots f_{k,j_k}(u_{k,i_k}) \\ &= \delta_{i_1,j_1} \delta_{i_2,j_2} \dots \delta_{i_k,j_k} = \begin{cases} 1 & \text{if } i_1 = j_1, i_2 = j_2, \dots, i_k = j_k \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

It follows that the set of elements of the form $(u_{1,i_1} \otimes u_{2,i_2} \otimes \dots \otimes u_{k,i_k})$ is linearly independent because if $0 = \alpha = \sum_{i_1, i_2, \dots, i_k} a_{i_1 i_2 \dots i_k} (u_{1,i_1} \otimes u_{2,i_2} \otimes \dots \otimes u_{k,i_k})$ then for all appropriate choices of indices j_1, j_2, \dots, j_k we have

$$0 = \sum_{i_1, i_2, \dots, i_k} a_{i_1 i_2 \dots i_k} (u_{1,i_1} \otimes \dots \otimes u_{k,i_k})(f_{1,j_1}, \dots, f_{k,j_k}) = a_{j_1 j_2 \dots j_k}$$

More generally, for $g_i \in U_i^*$ with say $g_i = \sum c_{ij} f_{ij}$ we have

$$\begin{aligned} (u_{1,i_1} \otimes u_{2,i_2} \otimes \dots \otimes u_{k,i_k})(g_1, g_2, \dots, g_k) &= (u_{1,i_1} \otimes u_{2,i_2} \otimes \dots \otimes u_{k,i_k}) \left(\sum_{j_1} c_{1,j_1} f_{1,j_1}, \sum_{j_2} c_{2,j_2} f_{2,j_2}, \dots, \sum_{j_k} c_{k,j_k} f_{k,j_k} \right) \\ &= \sum_{j_1, j_2, \dots, j_k} c_{1,j_1} c_{2,j_2} \dots c_{k,j_k} (u_{1,i_1} \otimes u_{2,i_2} \otimes \dots \otimes u_{k,i_k})(f_{1,j_1}, f_{2,j_2}, \dots, f_{k,j_k}) \\ &= \sum_{j_1, j_2, \dots, j_k} c_{1,j_1} c_{2,j_2} \dots c_{k,j_k} \delta_{i_1,j_1} \delta_{i_2,j_2} \dots \delta_{i_k,j_k} = c_{1,i_1} c_{2,i_2} \dots c_{k,i_k}. \end{aligned}$$

It follows that the set of elements of the form $(u_{1,i_1} \otimes u_{2,i_2} \otimes \dots \otimes u_{k,i_k})$ spans $U_1 \otimes U_2 \otimes \dots \otimes U_k$ because given $L \in U_1 \otimes U_2 \otimes \dots \otimes U_k$, for g_1, g_2, \dots, g_k with each $g_i \in U_i^*$, with say $g_i = \sum c_{ij} f_{ij}$, we have

$$\begin{aligned} L(g_1, g_2, \dots, g_k) &= L \left(\sum_{i_1} c_{1,i_1} f_{1,i_1}, \sum_{i_2} c_{2,i_2} f_{2,i_2}, \dots, \sum_{i_k} c_{k,i_k} f_{k,i_k} \right) \\ &= \sum_{i_1, i_2, \dots, i_k} c_{1,i_1} c_{2,i_2} \dots c_{k,i_k} L(f_{1,i_1}, f_{2,i_2}, \dots, f_{k,i_k}) \\ &= \sum_{i_1, i_2, \dots, i_k} L(f_{1,i_1}, f_{2,i_2}, \dots, f_{k,i_k})(u_{1,i_1} \otimes u_{2,i_2} \otimes \dots \otimes u_{k,i_k})(g_1, g_2, \dots, g_k) \end{aligned}$$

so $L = \sum_{i_1, i_2, \dots, i_k} a_{i_1 i_2 \dots i_k} (u_{1,i_1} \otimes u_{2,i_2} \otimes \dots \otimes u_{k,i_k})$ with $a_{i_1 i_2 \dots i_k} = L(f_{1,i_1}, f_{2,i_2}, \dots, f_{k,i_k})$.

11.8 Example: For finite dimensional vector spaces U and V , there is a natural isomorphism $U^* \otimes V \cong \text{Lin}(U, V)$ obtained by identifying the element $f \otimes v \in U^* \otimes V$ with the linear map $f \otimes v : U \rightarrow V$ given by $(f \otimes v)(u) = f(u)v$.

11.9 Remark: For finite dimensional vector spaces U_1, U_2, \dots, U_k and V , there is a natural isomorphism between the space of k -linear maps $L : U_1 \times U_2 \times \dots \times U_k \rightarrow V$ and the space of linear maps $M : U_1 \otimes U_2 \otimes \dots \otimes U_k \rightarrow V$. This isomorphism sends the k -linear map $L : U_1 \times U_2 \times \dots \times U_k \rightarrow V$ to the linear map $M : U_1 \otimes U_2 \otimes \dots \otimes U_k \rightarrow V$ given by $M(u_1 \otimes u_2 \otimes \dots \otimes u_k) = L(u_1, u_2, \dots, u_k)$ for all $u_i \in U_i$.

11.10 Remark: When some of the vector spaces U_1, U_2, \dots, U_k are infinite dimensional, for vectors u_1, u_2, \dots, u_k with each $u_i \in U_i$, we can still define the k -linear map

$$u_1 \otimes u_2 \otimes \dots \otimes u_k : U_1^* \times U_2^* \times \dots \times U_k^* \rightarrow \mathbb{F}$$

by

$$(u_1 \otimes u_2 \otimes \dots \otimes u_k)(g_1, g_2, \dots, g_k) = g_1(u_1)g_2(u_2) \dots g_k(u_k).$$

When \mathcal{U}_i is a basis for U_i for each i , the set of k -linear maps

$$\mathcal{S} = \{(u_1 \otimes u_2 \otimes \dots \otimes u_k) \mid \text{each } u_i \in \mathcal{U}_i\}$$

is linearly independent (but does not span the vector space of all k -linear maps). In this case we define the tensor product $U_1 \otimes U_2 \otimes \dots \otimes U_k$ to be the span of \mathcal{S} .

11.11 Example: We have natural isomorphisms $\mathbb{F}[x] \otimes \mathbb{F}[x] \cong \mathbb{F}[x] \otimes \mathbb{F}[y] \cong \mathbb{F}[x, y]$. The element $f(x) \otimes g(x) \in \mathbb{F}[x] \otimes \mathbb{F}[x]$ corresponds to the element $f(x) \otimes g(y) \in \mathbb{F}[x] \otimes \mathbb{F}[y]$ which corresponds to the element $f(x)g(y) \in \mathbb{F}[x, y]$.

11.12 Definition: For $k \in \mathbb{Z}^+$ we let S_k denote the set of all permutations of $\{1, 2, \dots, k\}$, that is the set of all bijective maps $\sigma : \{1, 2, \dots, k\} \rightarrow \{1, 2, \dots, k\}$. For a permutation $\sigma \in S_k$ we denote the **parity** of σ by $(-1)^\sigma$, in other words $(-1)^\sigma = \det(P_\sigma)$ where P_σ is the $k \times k$ permutation matrix $P_\sigma = (e_{\sigma(1)}, e_{\sigma(2)}, \dots, e_{\sigma(k)})$

11.13 Definition: Let U and V be vector spaces over a field \mathbb{F} . Let $L : U^k \rightarrow V$ be k -linear. We say that L is **symmetric** when

$$L(u_1, \dots, u_i, \dots, u_j, \dots, u_k) = L(u_1, \dots, u_j, \dots, u_i, \dots, u_k)$$

for all indices i, j and all vectors $u_1, u_2, \dots, u_k \in U$. Equivalently L is symmetric when

$$L(u_1, u_2, \dots, u_k) = L(u_{\sigma(1)}, u_{\sigma(2)}, \dots, u_{\sigma(k)})$$

for all vectors $u_1, u_2, \dots, u_k \in U$ and for every permutation $\sigma \in S_k$. We say that L is **alternating** (or **skew-symmetric**) when

$$L(u_1, \dots, u_i, \dots, u_j, \dots, u_k) = -L(u_1, \dots, u_j, \dots, u_i, \dots, u_k)$$

for all indices i, j and all vectors $u_1, u_2, \dots, u_k \in U$. Equivalently, L is skew-symmetric when

$$L(u_1, u_2, \dots, u_k) = (-1)^\sigma L(u_{\sigma(1)}, u_{\sigma(2)}, \dots, u_{\sigma(k)})$$

for all vectors $u_1, u_2, \dots, u_k \in U$ and all permutations $\sigma \in S_k$.

11.14 Definition: Let U be a finite dimensional vector space. We define the space of **k -tensors** on U , the space of **symmetric k -tensors** on U , and the space of **alternating k -tensors** on U to be

$$T^k U = \bigotimes_{i=1}^k U = U \otimes U \otimes \cdots \otimes U = \{k\text{-linear maps } L : (U^*)^k \rightarrow \mathbb{F}\},$$

$$S^k U = \{S \in T^k U \mid S \text{ is symmetric}\},$$

$$\Lambda^k U = \{A \in T^k U \mid A \text{ is alternating}\}.$$

11.15 Example: We have $T^1 U = S^1 U = \Lambda^1 U = \{\text{linear maps } L : U^* \rightarrow \mathbb{F}\} = U^{**}$, which we identify with U .

11.16 Definition: Let U be a finite dimensional vector space. For $u_1, u_2, \dots, u_k \in U$, we defined the **tensor product** $(u_1 \otimes u_2 \otimes \cdots \otimes u_k) \in T^k U$ by

$$(u_1 \otimes u_2 \otimes \cdots \otimes u_k)(g_1, g_2, \dots, g_k) = g_1(u_1)g_2(u_2) \cdots g_k(u_k)$$

where each $g_i \in U^*$. We also define the **symmetric product** $u_1 \odot u_2 \odot \cdots \odot u_k \in S^k U$ by

$$\begin{aligned} (u_1 \odot u_2 \odot \cdots \odot u_k)(g_1, g_2, \dots, g_k) &= \sum_{\sigma \in S_k} (u_1 \otimes u_2 \otimes \cdots \otimes u_k)(g_{\sigma(1)}, g_{\sigma(2)}, \dots, g_{\sigma(k)}) \\ &= \sum_{\sigma \in S_k} g_{\sigma(1)}(u_1)g_{\sigma(2)}(u_2) \cdots g_{\sigma(k)}(u_k). \end{aligned}$$

and we define the **wedge product** $u_1 \wedge u_2 \wedge \cdots \wedge u_k \in \Lambda^k U$ by

$$\begin{aligned} (u_1 \wedge u_2 \wedge \cdots \wedge u_k)(g_1, g_2, \dots, g_k) &= \sum_{\sigma \in S_k} (-1)^\sigma (u_1 \otimes u_2 \otimes \cdots \otimes u_k)(g_{\sigma(1)}, g_{\sigma(2)}, \dots, g_{\sigma(k)}) \\ &= \sum_{\sigma \in S_k} (-1)^\sigma g_{\sigma(1)}(u_1)g_{\sigma(2)}(u_2) \cdots g_{\sigma(k)}(u_k) \\ &= \det \begin{pmatrix} g_1(u_1) & g_1(u_2) & \cdots & g_1(u_k) \\ g_2(u_1) & g_2(u_2) & \cdots & g_2(u_k) \\ \vdots & \vdots & & \vdots \\ g_k(u_1) & g_k(u_2) & \cdots & g_k(u_k) \end{pmatrix} \end{aligned}$$

11.17 Theorem: Let U be a finite dimensional vector space. Let $\mathcal{U} = \{u_1, u_2, \dots, u_n\}$ be a basis for U . Then

- (1) $\{(u_{i_1} \otimes u_{i_2} \otimes \cdots \otimes u_{i_k}) \mid 1 \leq i_1, i_2, \dots, i_k \leq n\}$ is a basis for $T^k U$,
- (2) $\{(u_{i_1} \otimes u_{i_2} \otimes \cdots \otimes u_{i_k}) \mid 1 \leq i_1 \leq i_2 \leq \cdots \leq i_k \leq n\}$ is a basis for $S^k U$, and
- (3) $\{(u_{i_1} \wedge u_{i_2} \wedge \cdots \wedge u_{i_k}) \mid 1 \leq i_1 < i_2 < \cdots < i_k \leq n\}$ is a basis for $\Lambda^k U$.

In particular we have $\dim(T^k U) = n^k$, $\dim(S^k U) = \binom{n+k-1}{k}$ and $\dim(\Lambda^k U) = \binom{n}{k}$.

Proof: Part (1) follows immediately from Theorem 11.7. We shall prove Part (3) and leave the proof of Part (2) as an exercise. Let $\mathcal{F} = \{f_1, f_2, \dots, f_n\}$ be the dual basis for U^* . Note that

$$\begin{aligned}
(u_{i_1} \wedge u_{i_2} \wedge \dots \wedge u_{i_k})(f_{j_1}, f_{j_2}, \dots, f_{j_k}) &= \det \begin{pmatrix} f_{j_1}(u_{i_1}) & f_{j_1}(u_{i_2}) & \dots & f_{j_1}(u_{i_k}) \\ \vdots & \vdots & & \vdots \\ f_{j_k}(u_{i_1}) & f_{j_k}(u_{i_2}) & \dots & f_{j_k}(u_{i_k}) \end{pmatrix} \\
&= \det \begin{pmatrix} \delta_{i_1, j_1} & \delta_{i_1, j_2} & \dots & \delta_{i_1, j_k} \\ \vdots & \vdots & & \vdots \\ \delta_{i_k, j_k} & \delta_{i_2, j_k} & \dots & \delta_{i_k, j_k} \end{pmatrix} \\
&= \begin{cases} 0 & \text{if for some } l \text{ we have } i_l \neq j_m \text{ for all } m \\ 0 & \text{if } i_l = i_m \text{ for some } l \neq m \\ (-1)^\sigma & \text{if } i_l = j_{\sigma(l)} \text{ for all } l \text{ and some } \sigma \in S_k. \end{cases}
\end{aligned}$$

In particular, when $I = (i_1, i_2, \dots, i_k)$ and $J = (j_1, j_2, \dots, j_k)$ are increasing (that is when $i_1 < i_2 < \dots < i_k$ and $j_1 < j_2 < \dots < j_k$) we have

$$(u_{i_1} \wedge u_{i_2} \wedge \dots \wedge u_{i_k})(f_{j_1}, f_{j_2}, \dots, f_{j_k}) = \begin{cases} 0 & \text{if } I = J \\ 1 & \text{if } I \neq J. \end{cases}$$

It follows that the set

$$\mathcal{S} = \{u_I = (u_{i_1} \wedge u_{i_2} \wedge \dots \wedge u_{i_k}) \mid I = (i_1, i_2, \dots, i_k) \text{ is increasing}\}$$

is linearly independent because if $\sum_{I \text{ incr}} a_I u_I = 0$ then for all increasing $J = (j_1, j_2, \dots, j_k)$

we have

$$0 = \left(\sum_{I \text{ incr}} a_I u_I \right) (f_{j_1}, f_{j_2}, \dots, f_{j_k}) = a_J.$$

Given $L \in \Lambda^k U$, for each increasing $I = (i_1, i_2, \dots, i_k)$, let $a_I = L(f_{1, i_1}, f_{2, i_2}, \dots, f_{k, i_k})$. Then for $g_1, g_2, \dots, g_k \in U^*$ with say $g_j = \sum_i c_{j, i} f_i$, we have

$$\begin{aligned}
L(g_1, g_2, \dots, g_k) &= L\left(\sum_{i_1} c_{1, i_1} f_{i_1}, \sum_{i_2} c_{2, i_2} f_{i_2}, \dots, \sum_{i_k} c_{k, i_k} f_{i_k}\right) \\
&= \sum_{\text{all } I} (c_{1, i_1} c_{2, i_2} \dots c_{k, i_k}) L(f_{1, i_1}, f_{2, i_2}, \dots, f_{k, i_k}) \\
&= \sum_{I \text{ incr}} \sum_{\sigma \in S_k} (c_{1, i_{\sigma(1)}} c_{2, i_{\sigma(2)}} \dots c_{k, i_{\sigma(k)}}) (-1)^\sigma L(f_{1, i_1}, f_{2, i_2}, \dots, f_{k, i_k}) \\
&= \sum_{I \text{ incr}} a_I \sum_{\sigma \in S_k} (-1)^\sigma c_{1, i_{\sigma(1)}} c_{2, i_{\sigma(2)}} \dots c_{k, i_{\sigma(k)}} \\
&= \sum_{I \text{ incr}} a_I \det \begin{pmatrix} c_{1, i_1} & c_{1, i_2} & \dots & c_{1, i_k} \\ \vdots & \vdots & & \vdots \\ c_{k, i_1} & c_{k, i_2} & \dots & c_{k, i_k} \end{pmatrix} = \sum_{I \text{ incr}} a_I u_I(g_1, g_2, \dots, g_k).
\end{aligned}$$

Thus we have $L = \sum_{I \text{ incr}} a_I u_I \in \text{Span}(\mathcal{S})$ and so \mathcal{S} spans $\Lambda^k U$.

11.18 Example: Let $\mathcal{U} = \{u_1, u_2, \dots, u_n\}$ and $\mathcal{V} = \{v_1, v_2, \dots, v_n\}$ be two bases for U . Let $\alpha \in \Lambda^k U$. Say $\alpha = \sum_{I \text{ incr}} a_I u_I = \sum_{J \text{ incr}} b_J v_J$. Determine how a_I and b_J are related.

Solution: Let $\mathcal{F} = \{f_1, f_2, \dots, f_n\}$ and $\mathcal{G} = \{g_1, g_2, \dots, g_n\}$ be the bases for U^* which are dual to \mathcal{U} and \mathcal{V} . Let P be the change of basis matrix $P = [I]_{\mathcal{U}}^{\mathcal{V}}$ so that we have $v_j = \sum_i p_{ij} u_i$. Note that

$$f_i(v_j) = f_i\left(\sum_k p_{kj} u_k\right) = \sum_k p_{kj} f_i(u_k) = \sum_k p_{kj} \delta_{ik} = p_{ij}.$$

We have

$$\begin{aligned} a_I &= \alpha(f_{i_1}, f_{i_2}, \dots, f_{i_k}) = \sum_J b_J v_J(f_{i_1}, f_{i_2}, \dots, f_{i_k}) \\ &= \sum_J b_J \det \begin{pmatrix} f_{i_1}(v_{j_1}) & f_{i_1}(v_{j_2}) & \cdots & f_{i_1}(v_{j_k}) \\ \vdots & \vdots & & \vdots \\ f_{i_k}(v_{j_1}) & f_{i_k}(v_{j_2}) & \cdots & f_{i_k}(v_{j_k}) \end{pmatrix} \\ &= \sum_J b_J \det \begin{pmatrix} p_{i_1, j_1} & p_{i_1, j_2} & \cdots & p_{i_1, j_k} \\ \vdots & \vdots & & \vdots \\ p_{i_k, j_1} & p_{i_k, j_2} & \cdots & p_{i_k, j_k} \end{pmatrix} \end{aligned}$$

11.19 Definition: Given an n -dimensional vector space U , we define vector spaces

$$TU = \bigoplus_{k=0}^{\infty} T^k U, \quad SU = \bigoplus_{k=0}^{\infty}, \quad \Lambda U = \bigoplus_{k=0}^n \Lambda^k U.$$

The operations \otimes , \odot and \wedge , which are defined on basis vectors, determine products on each of the above vector spaces. A vector space with a compatible multiplication is called an algebra, so the above three vector spaces, together with their products, are called the **tensor algebra**, the **symmetric algebra**, and the **exterior algebra**.

11.20 Example: If $\alpha \in \Lambda^k U$ and $\beta \in \Lambda^l U$ then we have $\alpha \wedge \beta \in \Lambda^{k+l} U$. Indeed if $\mathcal{U} = \{u_1, u_2, \dots, u_n\}$ is a basis for U and we have $\alpha = \sum_{I \text{ incr}} a_I u_I$ and $\beta = \sum_{J \text{ incr}} b_J u_J$, then

$$\alpha \wedge \beta = \sum_{I \text{ incr}} \sum_{J \text{ incr}} a_I b_J u_I \wedge u_J$$

where

$$\begin{aligned} u_I \wedge u_J &= (u_{i_1} \wedge \cdots \wedge u_{i_k}) \wedge (u_{j_1} \wedge \cdots \wedge u_{j_l}) \\ &= u_{i_1} \wedge \cdots \wedge u_{i_k} \wedge u_{j_1} \wedge \cdots \wedge u_{j_l}. \end{aligned}$$