11. Tensor Algebras

11.1 Definition: Recall that for a vector space U over a field I, we define the dual space
of U to be the vector space

U* = {linear maps L: U — F}.

Recall also, that when U is finite dimensional and U = {uy,us, -, u,} is a basis for U,
we can define linear maps f; : U — F for i = 1,2, - -, n by requiring that f;(u;) = J;;, and
then F = {f1, fo, -+, fn} is a basis for U* which is called the dual basis to &. We shall
sometimes identify the double dual U** with U by identifying the element v € U with the
linear map u : U* — F given by u(f) = f(u).

11.2 Definition: Let Uy,Us,---, Uy and V be vector spaces over a field F. A map
L:UyxUyx---xU,—=V
is called k-linear when
L(uy, -+, tu;, - ux) =t L(uy, -, ui, -+, ug) , and
L(ut, v +w, - ug) = Llut, 0, up) + Llug, - w, - ug)

for all indices %, all vectors uq,---,ug,v,w in the appropriate vector spaces, and all t € .
When Uy, Us, - - -, Uy are finite dimensional, the tensor product of Uy, Us, -, Uy is the
vector space

U1®U2®---®Uk:{k—linearmapsL:Ul* x U3 ><---><U;€“_>IE‘},
For wy, us, -+, u, with each u; € U;, we define (u1 Qua ® - Q@ug) € U1 QUa ® -+ - @ Uy, by

(U1 @u2 @ -+ @up)(91,92, > gk) = g1(u1)g2(u2) - - - gr(ur),

where each g; € U;".

11.3 Example: The dot product - : (F")? — F given by u « v = vT

u is a 2-linear map.
11.4 Example: An inner product (, ): U? — R on a vector space U over R is 2-linear.

11.5 Example: The determinant D : (F")" — F given by D(uy,ug, -, u,) = det(A),
where A = (uy,usg, -, u,) € Myxn(F), is an n-linear map.

11.6 Example: The generalized cross product X : (F*)"~! — F is (n — 1)-linear.



11.7 Theorem: Let Uy, Us,,---, Uy be finite dimensional vector spaces. For each index 1,
let U; be a basis for U;. Then the set

{u1®uQ®~-®uk| each u; EUZ-}
k
is a basis for Uy @ Uy ® - -+ ® Uy. In particular dim(U; @ Us ® - -- @ Uy) = [] dim(U;).
i=1

Proof: Let U; = {u;1, w2, -+, uin, } be a basis for U; and let F; = {fi1, fiz, -+, fin, } be
the dual basis for U. Then for appropriate indices i1, i, -, i and ji,jo, -, Jr (that is
for 1 <43 <ny,1<is<ng, -, 1<i, <nyg and similarly for ji, jo, -, jx) we have

(U1,iy @ U2y @ - @ Uk iy ) (1415 f2gas s Srgn) = Frn (Wiiy) fago (Waiy) - frein (U, k)
5 s 5 it iy = ji,i0 = Jo, -+, ik = Jk
TR Tk 0 otherwise.

It follows that the set of elements of the form (u1,;, ®ug 4, ®- - - ®uy ;, ) is linearly indepen-

dent because if 0 =a = > @iyipeif (U1, U2, ® - -+, Qug 4, ) then for all appropriate
i17i25”'7ik:
choices of indices ji, jo, - - -, jr We have

0= Z Qiydg--ig, (ul,il - ® uk,ik)(fLJ'N ) fk,jk) = Qjyjoji

i15i27'“7ik
More generally, for g; € U with say g; = ) ¢;; fi; we have
(Wi,iy @ Uiy @ @ Upiy ) (91, 92, 5 Gk)
= (U1, @ Uzip @+ @ Uky) ( Do 1 20 C2 g S50 5 20 C2,j2f2,j2>
J1 J2 Jk

= D cnCag g (U O Uz, @ @ uk g ) (1 fages s Fre)

J1:925 0k
= E C1,41C2,js " " Ch,jy, Oiy gy Oig o * " i i = Clyiy C2yin ** " Chiyig -
J1:J25 0k

It follows that the set of elements of the form (u1 ;, ®ug ;, ®- - -Quy ;) ) spans U1 @Uz®- - -QUj,
because given L € U; ® Uy ® --- ® Uy, for g1,92, -+, gr with each g; € U}, with say
g; = Z Cijfij, we have

L(g1.92,+, 9K) = L(ch,ilfl,m > C2in f2i05 chzkfmk>
11 12 (23
- Z C1,i1C2,ip " CkvikL(fLil? IPRAERE 7fk7’ik)

11,52,k
= Z L(f1ivs forins s frin) (U1, @ U2y @ -+ @ Uk iy ) (91,92, Gk)
7:177;27"'77:79
so L= 3 Qiigeip (U1, ® U245 @+ @ Uk, ) With @iigeiy, = L{f1iys forins o fryin)-
11,22, ",k



11.8 Example: For finite dimensional vector spaces U and V, there is a natural isomor-
phism U* ® V = Lin(U, V') obtained by identifying the element f ® v € U* ® V with the
linear map f®v: U — V given by (f ® v)(u) = f(u)v.

11.9 Remark: For finite dimensional vector spaces Uy,Us,---,U; and V, there is a
natural isomorphism between the space of k-linear maps L : Uy X Uy x --- x U — V and
the space of linear maps M : U3 ®Us ®---® U, — V. This isomorphism sends the k-linear
map L :U; xUs X ... x Up — V to the liner map M : U; @ U, ® --- ® U — V given by
Mu; @ug ® -+ - @ug) = L(uy,ug, -+, ug) for all u; € U;.

11.10 Remark: When some of the vector spaces Uy, Us, - - -, U are infinite dimensional,
for vectors uy,us, - - -, ux with each u; € U;, we can still define the k-linear map
U Quo ® - Qug : Uy x Uy x---xUp - F
by
(ul ® (%) (RN uk>(917927 e >gk) = gl(u1)92<u2) o gk(uk)
When U; is a basis for U; for each ¢, the set of k-linear maps
S = {(u1 ®uz®---®uk)‘ each u; Eui}
is linearly independent (but does not span the vector space of all k-linear maps). In this

case we define the tensor product U; ® Us ® - -- ® Ui to be the span of S.

11.11 Example: We have natural isomorphisms F[x] ® F[x] = Flz] ® Fly] = F[z,y]. The
element f(z) ® g(z) € Flz] ® F[x] corresponds to the element f(z) ® g(y) € F[z] ® Fy]
which corresponds to the element f(z)g(y) € Flz,y].

11.12 Definition: For k € Z* we let Sy denote the set of all permutations of {1,2,---,k},
that is the set of all bijective maps o : {1,2,---,k} — {1,2,---,k}. For a permutation
o € Sk we denote the parity of o by (—1)7, in other words (—1)? = det(P,) where P, is
the k£ x k permutation matrix Py = (€5(1), €x(2), " " €o(k))

11.13 Definition: Let U and V be vector spaces over a field F. Let L : U* — V be
k-linear. We say that L is symmetric when

L(ul,'",Ui,"‘,u]',"',Uk) :L(”la"'v“jf"7uia"'7uk)
for all indices i, j and all vectors uy, ug,---,ur € U. Equivalently L is symmetric when
L(u17u27 T 7“14:) = L(“o‘(l),ua(Z)a T 7u0(k))
for all vectors wi,us,---,ur € U and for every permutation o € S;. We say that L is

alternating (or skew-symmetric) when

L(“la"'?“ia"'7uj7"'7uk:) = _L(ulv"'auja'"7ui7"'7uk)
for all indices 7,7 and all vectors uy,us,---,ur € U. Equivalently, L is skew-symmetric
when
L(uy,ug, -, ug) = (—1)7 L(Uo (1), U (2), " > Uo(k))
for all vectors uy,usg,---,ur € U and all permutations o € Sj.



11.14 Definition: Let U be a finite dimensional vector space. We define the space of
k-tensors on U, the space of symmetric k-tensors on U, and the space of alternating
k-tensors on U to be

k
TkU:®U:U®U®---®U:{k—line&wmapsL:(U*)"?—>IE‘}7

=1
SFU = {S € TkU‘S is symmetric},
AU = {A € TkU’A is alternating}.

11.15 Example: We have T'U = S'U = A'U = {linear maps L : U* — F} = U**,
which we identify with U.

11.16 Definition: Let U be a finite dimensional vector space. For uy,us, -, ur € U, we
defined the tensor product (u; @ us ® -+ - @ ug) € TFU by

(1 ®@uz ® -+ ®@uk)(g1, 92, -+ g) = g1(u1)g2(u2) - - - gr(ur)
where each g; € U*. We also define the symmetric product u; ®uy ®---®uy € S*U by

(w1 Ou2 © - ©ug)(gr, g2, k) = Z (w1 ®u2 @ ®@uk)(g1, 92, gk)
oESE

= Z 9o (1) (U1)go2) (U2) - Go (k) (Uk)-

oESE

and we define the wedge product u; Aus A--- A ug € AFU by

(ur Aug A Au)(gr, g2, gk) = 3 (=1)7(u1 @ uz @ -+ @ ) (gor(1)o(2) *** » (k)
o€Sk

= Z (=1)7 9o (1) (U1)go(2)(U2) - - - Gor (k) (u)
oESk

g1(ur)  gi(uz) -+ g1(ug)
g2(u1)  ga(uz) -+ ga(uk)

gn(ur) gk(uz) - gnlup)

11.17 Theorem: Let U be a finite dimensional vector space. Let U = {uq,ug, -+, up}
be a basis for U. Then

(2) {(ui, @ ui, ® -~ Dujy
(3) {(u“ /\ui2 /\---/\uik

1 <iq,i9, -, 0k Sn} is a basis for TFU,
1§i1§i2§~-§@'k§n} is a basis for S*U, and
1§i1<i2<---<z’k§n} is a basis for AFU.

(1V\_/\_/

|
|
|
In particular we have dim (T*U) = n*, dim (S*U) = (n+£_1> and dim (A*U) = (7).



Proof: Part (1) follows immediately from Theorem 11.7. We shall prove Part (3) and leave
the proof of Part (2) as an exercise. Let F = {fl, fo, - ,fn} be the dual basis for U*.
Note that

fi(uiy)  fu(ui) - fi(ug)
(uil/\ui2/\---/\uik)(fjl,fjw---,fjk):det :
finlwiy)  fin(uiy) - fi(uqy)

Oivji Oinga = Oy
= det

Oivji  Oings " Oigj

0 if for some [ we have i; # j,,, for all m
= 0 if ¢, =i, for some l #m

(=1)7 if 4 = j, () for all I and some o € Sk.

In particular, when I = (1,42, --,4x) and J = (j1,Jo," -, Jk) are increasing (that is when
i1 <idg < ---<ipand j; < jo <--- < jg ) we have

0if I =J
(ui1/\uiz/\"'/\uik)(fj1ﬂfj27"'7fjk): 11fI§AJ
It follows that the set
S = {uI = (Uiy AUy A+ A ulk)’I = (41,42, -, 0k) IS increasing}

is linearly independent because if Z aruy = 0 then for all increasing J = (j1,j2, ", Jk)

I incr

0= ( > aﬂu) (Firs Fizse s fia) = au

I incr

we have

Given L € A*U, for each increasing I = (i1,ia, -, i), let ar = L(f1iys f2.inr s [hiin)-
Then for g1, g2, -+, gr € U* with say g; = > ¢, ;fi, we have
i

L<gl7g27 to ;gk) = L(ch,i1f’i17262,izf’i27 ce ',ch,ikfik)
il 7:2 'Lk
= Z (c1,60C2,5 * Chyip ) L(friins f2i00 7+ Thoir)

all T

= Z Z (Cl,ig(l)CQ,iU(g) U Ck,ig(k))<_1)aL(f1,i1 3 f2,i27 Ty fk,’bk)

I incr c€Sg

= Z ar Z <_1)Uclyza(1)c27zo(2) T Ckalo'(k)

I incr o€Sk
Cli;  Cliy "0 Clyy
= Z ay det = Z arur(gi, g2, gk)-
I incr Chkiy Chis “'° Chip I incr
Thus we have L = Y. aju; € Span (S) and so S spans A*U.
I incr



11.18 Example: Let U = {uq,u2, -, u,} and V = {vyvg,---,v,} be two bases for U.
Let o € AFU. Say a = > aruy = > byvy. Determine how a; and b; are related.

I incr J incr

Solution: Let F = {f1,f2, -+, fu} and G = {g1,92, -, gn} be the bases for U* which
are dual to & and V. Let P be the change of basis matrix P = [I]}; so that we have
v; = Y piju;. Note that
fi(vi) = fi( X prjur) = 3 prj fi(ur) = 3 prjbin = pij -
k k

We have
ar = a(fis figre s fin) = Y bavs(firs fins o fir)
J

fil(vjl) fh(vjz) fh(vjk)

7 i) Fiulo) o Filv3)

Pir,ji Pirge 7 Pirge

Pip,ji Pirga " Pirje
11.19 Definition: Given an n-dimensional vector space U, we define vector spaces
oo o n
TU=@TU, SU= @ , AU = @ A*U.
k=0 k=0 k=0

The operations ®, ® and A, which are defined on basis vectors, determine products on
each of the above vector spaces. A vector space with a compatible multiplication is called
an algebra, so the above three vector spaces, together with their products, are called the
tensor algebra, the symmetric algebra, and the exterior algebra.

11.20 Example: If o € AU and 8 € A'U then we have a A B € AFHU. Indeed if
U ={ui,ug, - +,uy} is a basis for U and we have « = > ajuy and = > bjyuy, then

I incr J incr

al B = Z Z arby ur Nuy

I incr J incr

where
u[AuJ:(uil/\---/\uik)/\(ujl/\---/\ujl)

:uil/\~~-/\uik/\uj1/\~~~/\ujl.



