
11. Tensor Algebras

11.1 Definition: Recall that for a vector space U over a field F, we define the dual space
of U to be the vector space

U∗ =
{

linear maps L : U → F
}
.

Recall also, that when U is finite dimensional and U = {u1, u2, · · · , un} is a basis for U ,
we can define linear maps fi : U → F for i = 1, 2, · · · , n by requiring that fi(uj) = δij , and
then F = {f1, f2, · · · , fn} is a basis for U∗ which is called the dual basis to U . We shall
sometimes identify the double dual U∗∗ with U by identifying the element u ∈ U with the
linear map u : U∗ → F given by u(f) = f(u).

11.2 Definition: Let U1, U2, · · · , Uk and V be vector spaces over a field F. A map

L : U1 × U2 × · · · × Uk → V

is called k-linear when

L(u1, · · · , t ui, · · · , uk) = t L(u1, · · · , ui, · · · , uk) , and

L(u1, · · · , v + w, · · · , uk) = L(u1, · · · , v, · · · , uk) + L(u1, · · · , w, · · · , uk)

for all indices i, all vectors u1, · · · , uk, v, w in the appropriate vector spaces, and all t ∈ F.
When U1, U2, · · · , Uk are finite dimensional, the tensor product of U1, U2, · · · , Uk is the
vector space

U1 ⊗ U2 ⊗ · · · ⊗ Uk =
{
k-linear maps L : U∗1 × U∗2 × · · · × U∗k → F

}
.

For u1, u2, · · · , uk with each ui ∈ Ui, we define (u1⊗u2⊗ · · ·⊗uk) ∈ U1⊗U2⊗ · · ·⊗Uk by

(u1 ⊗ u2 ⊗ · · · ⊗ uk)(g1, g2, · · · , gk) = g1(u1)g2(u2) · · · gk(uk),

where each gi ∈ U∗i .

11.3 Example: The dot product . : (Fn)2 → F given by u. v = vTu is a 2-linear map.

11.4 Example: An inner product 〈 , 〉 : U2 → R on a vector space U over R is 2-linear.

11.5 Example: The determinant D : (Fn)n → F given by D(u1, u2, · · · , un) = det(A),
where A = (u1, u2, · · · , un) ∈Mn×n(F), is an n-linear map.

11.6 Example: The generalized cross product X : (Fn)n−1 → F is (n− 1)-linear.
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11.7 Theorem: Let U1, U2, · · · , Uk be finite dimensional vector spaces. For each index i,
let Ui be a basis for Ui. Then the set{

u1 ⊗ u2 ⊗ · · · ⊗ uk
∣∣ each ui ∈ Ui

}
is a basis for U1 ⊗ U2 ⊗ · · · ⊗ Uk. In particular dim(U1 ⊗ U2 ⊗ · · · ⊗ Uk) =

k∏
i=1

dim(Ui).

Proof: Let Ui = {ui1, ui2, · · · , ui,ni} be a basis for Ui and let Fi = {fi1, fi2, · · · , fi,ni} be
the dual basis for U∗i . Then for appropriate indices i1, i2, · · · , ik and j1, j2, · · · , jk (that is
for 1 ≤ i1 ≤ n1 , 1 ≤ i2 ≤ n2 , · · · , 1 ≤ ik ≤ nk and similarly for j1, j2, · · · , jk) we have

(u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,ik)(f1,j1 , f2,j2 , · · · , fk,jk) = f1,j1(u1,i1)f2,j2(u2,i2) · · · fk,ik(uk, ik)

= δi1,j1δi2,j2 · · · δik,jk =

{
1 if i1 = j1, i2 = j2, · · · , ik = jk

0 otherwise.

It follows that the set of elements of the form (u1,i1⊗u2,i2⊗· · ·⊗uk,ik) is linearly indepen-
dent because if 0 = α =

∑
i1,i2,···,ik

ai1i2···ik(u1,i1⊗u2,i2⊗· · · ,⊗uk,ik) then for all appropriate

choices of indices j1, j2, · · · , jk we have

0 =
∑

i1,i2,···,ik
ai1i2···ik(u1,i1 ⊗ · · · ⊗ uk,ik)(f1,j1 , · · · , fk,jk) = aj1j2···jk

More generally, for gi ∈ U∗i with say gi =
∑
cijfij we have

(u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,ik)(g1, g2, · · · , gk)

= (u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,ik)
(∑
j1

c1,j1f1,j1 ,
∑
j2

c2,j2f2,j2 , · · · ,
∑
jk

c2,j2f2,j2

)
=

∑
j1,j2,···,jk

c1,j1c2,j2 · · · ck,jk(u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,jk)(f1,j1 , f2,j2 , · · · , fk,jk)

=
∑

j1,j2,···,jk

c1,j1c2,j2 · · · ck,jkδi1,j1δi2,j2 · · · δik,jk = c1,i1c2,i2 · · · ck,ik .

It follows that the set of elements of the form (u1,i1⊗u2,i2⊗· · ·⊗uk,ik) spans U1⊗U2⊗· · ·⊗Uk
because given L ∈ U1 ⊗ U2 ⊗ · · · ⊗ Uk, for g1, g2, · · · , gk with each gi ∈ U∗i , with say
gi =

∑
cijfij , we have

L(g1, g2, · · · , gk) = L
(∑
i1

c1,i1f1,i1 ,
∑
i2

c2,i2f2,i2 , · · · ,
∑
ik

ck,ikfk,ik

)
=

∑
i1,i2,···,ik

c1,i1c2,i2 · · · ck,ikL(f1,i1 , f2,i2 , · · · , fk,ik)

=
∑

i1,i2,···,ik

L(f1,i1 , f2,i2 , · · · , fk,ik)(u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,ik)(g1, g2, · · · , gk)

so L =
∑

i1,i2,···,ik
ai1i2···ik(u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,ik) with ai1i2···ik = L(f1,i1 , f2,i2 , · · · , fk,ik).
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11.8 Example: For finite dimensional vector spaces U and V , there is a natural isomor-
phism U∗ ⊗ V ∼= Lin(U, V ) obtained by identifying the element f ⊗ v ∈ U∗ ⊗ V with the
linear map f ⊗ v : U → V given by (f ⊗ v)(u) = f(u)v.

11.9 Remark: For finite dimensional vector spaces U1, U2, · · · , Uk and V , there is a
natural isomorphism between the space of k-linear maps L : U1 × U2 × · · · × Uk → V and
the space of linear maps M : U1⊗U2⊗· · ·⊗Uk → V . This isomorphism sends the k-linear
map L : U1 × U2 × . . .× Uk → V to the liner map M : U1 ⊗ U2 ⊗ · · · ⊗ Uk → V given by
M(u1 ⊗ u2 ⊗ · · · ⊗ uk) = L(u1, u2, · · · , uk) for all ui ∈ Ui.

11.10 Remark: When some of the vector spaces U1, U2, · · · , Uk are infinite dimensional,
for vectors u1, u2, · · · , uk with each ui ∈ Ui, we can still define the k-linear map

u1 ⊗ u2 ⊗ · · · ⊗ uk : U∗1 × U∗2 × · · · × U∗k → F

by
(u1 ⊗ u2 ⊗ · · · ⊗ uk)(g1, g2, · · · , gk) = g1(u1)g2(u2) · · · gk(uk).

When Ui is a basis for Ui for each i, the set of k-linear maps

S =
{

(u1 ⊗ u2 ⊗ · · · ⊗ uk)
∣∣ each ui ∈ Ui

}
is linearly independent (but does not span the vector space of all k-linear maps). In this
case we define the tensor product U1 ⊗ U2 ⊗ · · · ⊗ Uk to be the span of S.

11.11 Example: We have natural isomorphisms F[x]⊗ F[x] ∼= F[x]⊗ F[y] ∼= F[x, y]. The
element f(x) ⊗ g(x) ∈ F[x] ⊗ F[x] corresponds to the element f(x) ⊗ g(y) ∈ F[x] ⊗ F[y]
which corresponds to the element f(x)g(y) ∈ F[x, y].

11.12 Definition: For k ∈ Z+ we let Sk denote the set of all permutations of {1, 2, · · · , k},
that is the set of all bijective maps σ : {1, 2, · · · , k} → {1, 2, · · · , k}. For a permutation
σ ∈ Sk we denote the parity of σ by (−1)σ, in other words (−1)σ = det(Pσ) where Pσ is
the k × k permutation matrix Pσ = (eσ(1), eσ(2), · · · eσ(k))

11.13 Definition: Let U and V be vector spaces over a field F. Let L : Uk → V be
k-linear. We say that L is symmetric when

L(u1, · · · , ui, · · · , uj , · · · , uk) = L(u1, · · · , uj , · · · , ui, · · · , uk)

for all indices i, j and all vectors u1, u2, · · · , uk ∈ U . Equivalently L is symmetric when

L(u1, u2, · · · , uk) = L(uσ(1), uσ(2), · · · , uσ(k))

for all vectors u1, u2, · · · , uk ∈ U and for every permutation σ ∈ Sk. We say that L is
alternating (or skew-symmetric) when

L(u1, · · · , ui, · · · , uj , · · · , uk) = −L(u1, · · · , uj , · · · , ui, · · · , uk)

for all indices i, j and all vectors u1, u2, · · · , uk ∈ U . Equivalently, L is skew-symmetric
when

L(u1, u2, · · · , uk) = (−1)σL(uσ(1), uσ(2), · · · , uσ(k))

for all vectors u1, u2, · · · , uk ∈ U and all permutations σ ∈ Sk.
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11.14 Definition: Let U be a finite dimensional vector space. We define the space of
k-tensors on U , the space of symmetric k-tensors on U , and the space of alternating
k-tensors on U to be

T kU =
k⊗
i=1

U = U ⊗ U ⊗ · · · ⊗ U =
{
k-linear maps L : (U∗)k → F

}
,

SkU =
{
S ∈ T kU

∣∣S is symmetric
}
,

ΛkU =
{
A ∈ T kU

∣∣A is alternating
}
.

11.15 Example: We have T 1U = S1U = Λ1U =
{

linear maps L : U∗ → F
}

= U∗∗,
which we identify with U .

11.16 Definition: Let U be a finite dimensional vector space. For u1, u2, · · · , uk ∈ U , we
defined the tensor product (u1 ⊗ u2 ⊗ · · · ⊗ uk) ∈ T kU by

(u1 ⊗ u2 ⊗ · · · ⊗ uk)(g1, g2, · · · , gk) = g1(u1)g2(u2) · · · gk(uk)

where each gi ∈ U∗. We also define the symmetric product u1�u2�· · ·�uk ∈ SkU by

(u1 � u2 � · · · � uk)(g1, g2, · · · , gk) =
∑
σ∈Sk

(u1 ⊗ u2 ⊗ · · · ⊗ uk)(g1, g2, · · · , gk)

=
∑
σ∈Sk

gσ(1)(u1)gσ(2)(u2) · · · gσ(k)(uk).

and we define the wedge product u1 ∧ u2 ∧ · · · ∧ uk ∈ ΛkU by

(u1 ∧ u2 ∧ · · · ∧ uk)(g1, g2, · · · , gk) =
∑
σ∈Sk

(−1)σ(u1 ⊗ u2 ⊗ · · · ⊗ uk)(gσ(1)gσ(2) · · · , gσ(k))

=
∑
σ∈Sk

(−1)σgσ(1)(u1)gσ(2)(u2) · · · gσ(k)(uk)

= det


g1(u1) g1(u2) · · · g1(uk)
g2(u1) g2(u2) · · · g2(uk)

...
...

...
gk(u1) gk(u2) · · · gk(uk)


11.17 Theorem: Let U be a finite dimensional vector space. Let U = {u1, u2, · · · , un}
be a basis for U . Then

(1)
{

(ui1 ⊗ ui2 ⊗ · · · ⊗ uik)
∣∣ 1 ≤ i1, i2, · · · , ik ≤ n} is a basis for T kU ,

(2)
{

(ui1 ⊗ ui2 ⊗ · · · ⊗ uik)
∣∣ 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n} is a basis for SkU , and

(3)
{

(ui1 ∧ ui2 ∧ · · · ∧ uik)
∣∣ 1 ≤ i1 < i2 < · · · < ik ≤ n

}
is a basis for ΛkU .

In particular we have dim
(
T kU

)
= nk, dim

(
SkU

)
=
(
n+k−1

k

)
and dim

(
ΛkU

)
=
(
n
k

)
.
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Proof: Part (1) follows immediately from Theorem 11.7. We shall prove Part (3) and leave
the proof of Part (2) as an exercise. Let F =

{
f1, f2, · · · , fn

}
be the dual basis for U∗.

Note that

(
ui1 ∧ ui2 ∧ · · · ∧ uik

)(
fj1 , fj2 , · · · , fjk

)
= det

 fj1(ui1) fj1(ui2) · · · fj1(uik)
...

...
...

fjk(ui1) fjk(ui2) · · · fjk(uik)



= det

 δi1,j1 δi1,j2 · · · δi1,jk
...

...
...

δi1,jk δi2,jk · · · δik,jk



=


0 if for some l we have il 6= jm for all m

0 if il = im for some l 6= m

(−1)σ if il = jσ(l) for all l and some σ ∈ Sk.

In particular, when I = (i1, i2, · · · , ik) and J = (j1, j2, · · · , jk) are increasing (that is when
i1 < i2 < · · · < ik and j1 < j2 < · · · < jk ) we have

(
ui1 ∧ ui2 ∧ · · · ∧ uik

)(
fj1 , fj2 , · · · , fjk

)
=

{
0 if I = J

1 if I 6= J.

It follows that the set

S =
{
uI = (ui1 ∧ ui2 ∧ · · · ∧ uik)

∣∣I = (i1, i2, · · · , ik) is increasing
}

is linearly independent because if
∑
I incr

aIuI = 0 then for all increasing J = (j1, j2, · · · , jk)

we have
0 =

( ∑
I incr

aIuI

)(
fj1 , fj2 , · · · , fjk

)
= aJ .

Given L ∈ ΛkU , for each increasing I = (i1, i2, · · · , ik), let aI = L(f1,i1 , f2,i2 , · · · , fk,ik).
Then for g1, g2, · · · , gk ∈ U∗ with say gj =

∑
i

cj,ifi, we have

L(g1, g2, · · · , gk) = L
(∑
i1

c1,i1fi1 ,
∑
i2

c2,i2fi2 , · · · ,
∑
ik

ck,ikfik

)
=
∑
all I

(
c1,i1c2,i2 · · · ck,ik

)
L
(
f1,i1 , f2,i2 , · · · , fk,ik

)
=
∑
I incr

∑
σ∈Sk

(
c1,iσ(1)c2,iσ(2) · · · ck,iσ(k)

)
(−1)σL

(
f1,i1 , f2,i2 , · · · , fk,ik

)
=
∑
I incr

aI
∑
σ∈Sk

(−1)σc1,iσ(1)c2,iσ(2) · · · ck,iσ(k)

=
∑
I incr

aI det

 c1,i1 c1,i2 · · · c1,ik
...

...
...

ck,i1 ck,i2 · · · ck,ik

 =
∑
I incr

aIuI(g1, g2, · · · , gk).

Thus we have L =
∑
I incr

aIuI ∈ Span (S) and so S spans ΛkU .
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11.18 Example: Let U = {u1, u2, · · · , un} and V = {v1v2, · · · , vn} be two bases for U .
Let α ∈ ΛkU . Say α =

∑
I incr

aIuI =
∑

J incr

bJvJ . Determine how aI and bJ are related.

Solution: Let F = {f1, f2, · · · , fn} and G = {g1, g2, · · · , gn} be the bases for U∗ which
are dual to U and V. Let P be the change of basis matrix P = [I]VU so that we have
vj =

∑
i

pijui. Note that

fi(vj) = fi
(∑
k

pkjuk
)

=
∑
pkjfi(uk) =

∑
k

pkjδik = pij .

We have
aI = α(fi1 , fi2 , · · · , fik) =

∑
J

bJvJ(fi1 , fi2 , · · · , fik)

=
∑
J

bJ det

 fi1(vj1) fi1(vj2) · · · fi1(vjk)
...

...
...

fik(vj1) fik(vj2) · · · fik(vjk)



=
∑
J

bJ det

 pi1,j1 pi1,j2 · · · pi1,jk
...

...
...

pik,j1 pik,j2 · · · pik,jk


11.19 Definition: Given an n-dimensional vector space U , we define vector spaces

TU =
∞⊕
k=0

T kU , SU =
∞⊕
k=0

, ΛU =
n⊕
k=0

ΛkU.

The operations ⊗, � and ∧, which are defined on basis vectors, determine products on
each of the above vector spaces. A vector space with a compatible multiplication is called
an algebra, so the above three vector spaces, together with their products, are called the
tensor algebra, the symmetric algebra, and the exterior algebra.

11.20 Example: If α ∈ ΛkU and β ∈ ΛlU then we have α ∧ β ∈ Λk+lU . Indeed if
U = {u1, u2, · · · , un} is a basis for U and we have α =

∑
I incr

aIuI and β =
∑

J incr

bJuJ , then

α ∧ β =
∑
I incr

∑
J incr

aIbJ uI ∧ uJ

where
uI ∧ uJ = (ui1 ∧ · · · ∧ uik) ∧ (uj1 ∧ · · · ∧ ujl)

= ui1 ∧ · · · ∧ uik ∧ uj1 ∧ · · · ∧ ujl .
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