10. Quadratic Forms

10.1 Definition: Let U be a vector space over a field F. A quadratic form on U is a
map K : U — F of the form K(u) = L(u,u) for some symmetric bilinear form L on U.
Note that for u,v € U we have

K(u+v) = Llu+v,u+v) = L(u,u) + L(u,v) + L(v,u) + L(v,v) = K(u)+2L(u,v) + K (v)
and so when char (IF) # 2 we have the Polarization Identity
L(u,v) = (K (u+v) — K(u) — K(v)).

This shows that L is uniquely determined from K. Given a basis A for U, we define the
matrix of K with respect to A to be the matrix of its (unique) associated symmetric
bilinear form L, that is
[K]a = [L]a
so that for u € U we have
K (u) = [u] 4 [K]alu] 4.

When A = {ui,ug, -, u,}, the matrix A = [K|4 € M,,(F) has entries A; ; = L(uj,u;),
and writing z = [u] 4 we have

K(U) = xTAa: = Z SCZ'AZ',]'JTJ' = Z AZ',Z'ZCZ'Q + 2 Z Ai’j{IIi.’IJj.
i=1 i=1 i<j
When we diagonalize the symmetric matrix A by choosing an invertible matrix P € M, (F)
so that PTAP = D = diag(dy,ds, - --,d,), if we write x = Pt, or equivalently t = P~ 'z,
then we have .
K(u) = 27Ax = t" PTAPt = t"Dt = Y d;t,;°.

=1
10.2 Example: A polynomial or power series in the variables x1, zo, - - -, x,, can be written
as
fl@)y= Y cheamta ez = Y fil)
1,02, >0 k20
where

frl@) = Y Cipnm ez

11,92, ,in >0
i1 tigt-tin=k

For each k > 0, the polynomial fy(z) is a homogeneous polynomial of degree k, which
means that fi(tz) = t¥ fi.(z) for all x € R™ and all t € R. By relabeling the coefficients,
we can also write

fo(r) =a, fi(z) = f: a;ixi , fo(x) = > aijzixy, fa(x)= >  aijrxiziT

1<i<n 1<i<j<n 1<i<j<k<n
and so on. In particular, when char (F) # 2, we have fa(x) = > a;;zm; = 2TAx
1<i<j<n

where A € M, (F) is the matrix with entries A; ; = a; for 1 <i<nand 4; ; = A, = %ai,j
for 1 < i < j < n. Thus a quadratic form on F” is the same thing as a homogeneous
polynomial in 1, ---,x, of degree 2.



10.3 Example: Sketch or describe the curve 3z? — 4zy + 6y% = 10.
Solution: Let K be the quadratic form on R? given by K (z,y) = 322 — 4zy + 6y>. Note

that
K(z,y) = (z y)A (Z) where A = (_32 _62)

The characteristic polynomial of A is

3—xz =2

fA(x):det(A—:I;I):det( 9 G

):($2—9x+14:(x—7)(x—2)

so the eigenvalues of A are A\ = 7 and Ay = 2. We have

4 -2\ (2 1
A_’\J:(—z —1)2(0 0)

T is a unit eigenvector for A;. Since A is symmetric, the eigenspace

and so u; = \/ig(l, —2)

of Ay is orthogonal to the eigenspace of A1, so us = \%(2, 1) is a unit eigenvector for \o.
Thus we have

T _ - _ 1 1 2 . )\1 0 . 7 0
P*AP = D where P—(ul,u2)—\/g(_2 1 and D = 0 A= \0 2/

We make a change in coordinates by writing (;) =P <i), and then we have

K(z,y) = (= y)A(Z) — (s t)pTAp(j) — (s )D (j) 75 4 2

and so
52 t2 1

K =10 < 7> +2° =10 <—

Thus, in the st-plane, the curve is the ellipse with vertices at :i:(, / 1—70, ()) and :I:(O, i\/g)

Since our change of coordinate matrix P is an orthogonal matrix it preserves inner product,
norm and angle (indeed P is a rotation matrix), in the zy-plane, the curve is an ellipse of
the same shape with vertices at

PP =V (G 1) () A (h)
Pave) =0 (1) ()= (0)



10.4 Theorem: Let U be an n-dimensional inner product space over R and let K : U — R
be a quadratic form on U. Let A = {uy,us,--,u,} be an orthonormal basis for U such
that [K]A =D = diag(/\l,)\g, N ';)\n) with )\1 Z )\2 Z st Z )\n. Then

max K(u)=K(u1) =X and min K(u)= K(u,) = \,.

weU,|u|=1 uwel,|u|=1
Proof: Let u € U and write x = [u] 4. Note that |z| = |u| since A is orthonormal. When
lu| = |x| = 1 we have

K(u) =2"Dx = Sz < S Mz =M > wl =Mz =\
= i=1 i=1

=1

and when u = u; we have x = [u1]4 = e; so that K(u) = K(uy) = e;? De; = \;. This

shows that I&lﬁc K(u) = K(uy) = A1, and the proof that gl‘m| K(u) = K(up) = A\
uwelU,|u|=1 uwelU,|u|=1
is similar.

10.5 Theorem: Let U and V' be finite dimensional inner product spaces over R and let
L :U — V be a linear map. Then

ueg},ﬁﬁzl }L(u)‘ = ‘L(ul)‘ =01 and ueg,l\izﬂzl ’L(u)| = |L(un)| =on

where o1 and o, are the largest and smallest singular values of L and u; and u,, are unit

eigenvectors of the map L*L for the eigenvalues \; = 012 and \,, = 0,,°.

Proof: Choose an orthonormal basis A = {uy,ug, -, u,} for U such that
[L*L]A =D = dia‘g(A:l? )\25 o 7)\n)

where Ai,---, A\, are the eigenvalues of L*L with A\ > Ay > --- > \,,, and let 0; = V).
Choose any orthonormal basis B for V and let A = [L]5;. Note that

ATA = A*A = [L*5[L)j = [L*L)a = D.
Let u € U and write = [u] 4. Note that |z| = |u| and
2 2 2 2
|L(w)|” = |[L(w)]s|” = |[L]“é[u],4‘ = |Az|” = (Ax)T (Az) = 27 ATAz = 2" Dz
As in the proof of the previous theorem, we see that

2 2 :
uegl,ﬁﬁzl‘l;(u)’ = ‘L(ul)‘ =\ and ue?,\lzﬂﬂ’L(uH = ‘L(un)’ = An

and so

s L] = Ll =ov and | min | 2] = |Ewn)] = o

10.6 Theorem: Let U and V be non-trivial subspaces of R™ with U NV = {0}. Then
6(U,V) = cos~!(01) where oy is the largest singular value of the map P : U — V given by
P(x) = Projy (z).

Proof: The proof is left as an exercise.



10.7 Example: Let U C R" be an open set with a € U. Let f : U — R be smooth
(meaning that the partial derivatives of all orders all exist in U). The Taylor polynomial
of degree 2 centred at x = a for a smooth function of the variables x1,xo, -, x, can be
written as

T(z) = f(a) + Df(a) (x — a) + (z — a)" Hf (a) (x — a)
where Df(a) € Mix,(R) and Hf(a) € M, x,(R) are the matrices with entries
of 0% f
= 9 =55 (a)
ox; Ox; Ox;
10.8 Theorem: (The Second Derivative Test) Let U C R™ be an open set with a € U.
Let f : U — R be smooth. Suppose that Df(a) = 0. Then

(1) if Hf (a) is positive definite then f(z) has a local minimum at x = a,
(2) if Hf (a) is negative definite then f(x) has a local maximum at x = a, and
(3) if Hf (a) is indefinite then f(x) has a saddle point at x = a.

Df(a)i (a) and Hf(a)i;

Proof: We omit the proof. This theorem is often proven in a calculus course.

10.9 Remark: Let U, V and W be a vector spaces over C. Amap L : U xV — W is
called sesquilinear when

L(zy + x2,y) = L(z1,y) + L(z2,y) ,  L(tw, T
L(z,y1 +y2) = L(z,y1) + L(2,y2) and L(z,ty) =t L(z,y)
for all x,z1,22 € U, and all y,y1,y2 € V and for all t € C. Hermitian form is

A
a sesquilinear map L : U x U — C with the property that L(y,x) = L(x,y) for all
x,y € U, and a skew-Hermitian form is a sesquilinear map L : U x U — C such that

L(y,x) = —L(z,y) for all z,y € U.

10.10 Example: As an exercise, think about how the theory of bilinear and quadratic
forms, from this and the previous chapter, carry over to Hermitian forms.



