
10. Quadratic Forms

10.1 Definition: Let U be a vector space over a field F. A quadratic form on U is a
map K : U → F of the form K(u) = L(u, u) for some symmetric bilinear form L on U .
Note that for u, v ∈ U we have

K(u+v) = L(u+v, u+v) = L(u, u)+L(u, v)+L(v, u)+L(v, v) = K(u)+2L(u, v)+K(v)

and so when char (F) 6= 2 we have the Polarization Identity

L(u, v) = 1
2

(
K(u+ v)−K(u)−K(v)

)
.

This shows that L is uniquely determined from K. Given a basis A for U , we define the
matrix of K with respect to A to be the matrix of its (unique) associated symmetric
bilinear form L, that is

[K]A = [L]A

so that for u ∈ U we have
K(u) = [u]A

T
[K]A[u]A.

When A = {u1, u2, · · · , un}, the matrix A = [K]A ∈ Mn(F) has entries Ai,j = L(uj , ui),
and writing x = [u]A we have

K(u) = xTAx =
n∑

i=1

xiAi,jxj =
n∑

i=1

Ai,ixi
2 + 2

∑
i<j

Ai,jxixj .

When we diagonalize the symmetric matrix A by choosing an invertible matrix P ∈Mn(F)
so that PTAP = D = diag(d1, d2, · · · , dn), if we write x = Pt, or equivalently t = P−1x,
then we have

K(u) = xTAx = tTPTAP t = tTDt =
n∑

i=1

diti
2.

10.2 Example: A polynomial or power series in the variables x1, x2, · · · , xn can be written
as

f(x) =
∑

i1,i2,···,in≥0

ci1,···,inx1
i1x2

i2 · · ·xnin =
∑
k≥0

fk(x)

where
fk(x) =

∑
i1,i2,···,in≥0

i1+i2+···+in=k

ci1,···,inx1
i1 · · ·xnin .

For each k ≥ 0, the polynomial fk(x) is a homogeneous polynomial of degree k, which
means that fk(tx) = tkfk(x) for all x ∈ Rn and all t ∈ R. By relabeling the coefficients,
we can also write

f0(x) = a , f1(x) =
n∑

1≤i≤n
aixi , f2(x) =

∑
1≤i≤j≤n

ai,j xixj , f3(x) =
∑

1≤i≤j≤k≤n
ai,j,k xixjxk

and so on. In particular, when char (F) 6= 2, we have f2(x) =
∑

1≤i≤j≤n
ai,j xixj = xTAx

where A ∈Mn(F) is the matrix with entries Ai,i = ai for 1 ≤ i ≤ n and Ai,j = Aj,i = 1
2ai,j

for 1 ≤ i < j ≤ n. Thus a quadratic form on Fn is the same thing as a homogeneous
polynomial in x1, · · · , xn of degree 2.
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10.3 Example: Sketch or describe the curve 3x2 − 4xy + 6y2 = 10.

Solution: Let K be the quadratic form on R2 given by K(x, y) = 3x2 − 4xy + 6y2. Note
that

K(x, y) =
(
x y
)
A

(
x
y

)
where A =

(
3 −2
−2 6

)
.

The characteristic polynomial of A is

fA(x) = det
(
A− xI

)
= det

(
3− x −2
−2 6− x

)
= (x2 − 9x+ 14 = (x− 7)(x− 2)

so the eigenvalues of A are λ1 = 7 and λ2 = 2. We have

A− λ1I =

(
−4 −2
−2 −1

)
∼=
(

2 1
0 0

)
and so u1 = 1√

5
(1,−2)T is a unit eigenvector for λ1. Since A is symmetric, the eigenspace

of λ2 is orthogonal to the eigenspace of λ1, so u2 = 1√
5
(2, 1)T is a unit eigenvector for λ2.

Thus we have

PTAP = D where P =
(
u1, u2

)
= 1√

5

(
1 2
−2 1

)
and D =

(
λ1 0
0 λ2

)
=

(
7 0
0 2

)
.

We make a change in coordinates by writing

(
x
y

)
= P

(
s
t

)
, and then we have

K(x, y) =
(
x y
)
A

(
x
y

)
=
(
s t
)
PTAP

(
s
t

)
=
(
s t
)
D

(
s
t

)
= 7s2 + 2t2

and so

K(x, y) = 10 ⇐⇒ 7s2 + 2t2 = 10 ⇐⇒ s2

10/7
+
t2

5
= 1.

Thus, in the st-plane, the curve is the ellipse with vertices at ±
(√

10
7 , 0

)
and ±

(
0,±
√

5
)
.

Since our change of coordinate matrix P is an orthogonal matrix it preserves inner product,
norm and angle (indeed P is a rotation matrix), in the xy-plane, the curve is an ellipse of
the same shape with vertices at

P

(
±
√

10
7

0

)
= ±

√
10
7 ·

1√
5

(
1 2
−2 1

)(
1
0

)
= ±

√
2
7

(
1
−2

)
, and

P

(
0
±
√

5

)
= ±
√

5 · 1√
5

(
1 2
−2 1

)(
0
1

)
= ±

(
2
1

)
.
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10.4 Theorem: Let U be an n-dimensional inner product space over R and let K : U → R
be a quadratic form on U . Let A = {u1, u2, · · · , un} be an orthonormal basis for U such
that [K]A = D = diag(λ1, λ2, · · · , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn. Then

max
u∈U,|u|=1

K(u) = K(u1) = λ1 and min
u∈U,|u|=1

K(u) = K(un) = λn.

Proof: Let u ∈ U and write x = [u]A. Note that |x| = |u| since A is orthonormal. When
|u| = |x| = 1 we have

K(u) = xTDx =
n∑

i=1

λixi
2 ≤

n∑
i=1

λ1xi
2 = λ1

n∑
i=1

xi
2 = λ1|x|2 = λ1

and when u = u1 we have x = [u1]A = e1 so that K(u) = K(u1) = e1
TDe1 = λ1. This

shows that max
u∈U,|u|=1

K(u) = K(u1) = λ1, and the proof that min
u∈U,|u|=1

K(u) = K(un) = λn

is similar.

10.5 Theorem: Let U and V be finite dimensional inner product spaces over R and let
L : U → V be a linear map. Then

max
u∈U,|u|=1

∣∣L(u)
∣∣ =

∣∣L(u1)
∣∣ = σ1 and min

u∈U,|u|=1

∣∣L(u)
∣∣ =

∣∣L(un)
∣∣ = σn

where σ1 and σn are the largest and smallest singular values of L and u1 and un are unit
eigenvectors of the map L∗L for the eigenvalues λ1 = σ1

2 and λn = σn
2.

Proof: Choose an orthonormal basis A = {u1, u2, · · · , un} for U such that

[L∗L]A = D = diag(λ1, λ2, · · · , λn)

where λ1, · · · , λn are the eigenvalues of L∗L with λ1 ≥ λ2 ≥ · · · ≥ λn, and let σi =
√
λi.

Choose any orthonormal basis B for V and let A = [L]AB . Note that

ATA = A∗A = [L∗]BA[L ]AB = [L∗L]A = D.

Let u ∈ U and write x = [u]A. Note that |x| = |u| and∣∣L(u)
∣∣2 =

∣∣[L(u)]B
∣∣2 =

∣∣[L]AB [u]A
∣∣2 =

∣∣Ax∣∣2 = (Ax)T (Ax) = xTATAx = xTDx.

As in the proof of the previous theorem, we see that

max
u∈U,|u|=1

∣∣L(u)
∣∣2 =

∣∣L(u1)
∣∣2 = λ1 and min

u∈U,|u|=1

∣∣L(u)
∣∣2 =

∣∣L(un)
∣∣2 = λn

and so

max
u∈U,|u|=1

∣∣L(u)
∣∣ =

∣∣L(u1)
∣∣ = σ1 and min

u∈U,|u|=1

∣∣L(u)
∣∣ =

∣∣L(un)
∣∣ = σn.

10.6 Theorem: Let U and V be non-trivial subspaces of Rn with U ∩ V = {0}. Then
θ(U, V ) = cos−1(σ1) where σ1 is the largest singular value of the map P : U → V given by
P (x) = ProjV (x).

Proof: The proof is left as an exercise.
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10.7 Example: Let U ⊆ Rn be an open set with a ∈ U . Let f : U → R be smooth
(meaning that the partial derivatives of all orders all exist in U). The Taylor polynomial
of degree 2 centred at x = a for a smooth function of the variables x1, x2, · · · , xn can be
written as

T (x) = f(a) +Df(a) (x− a) + (x− a)THf(a) (x− a)

where Df(a) ∈M1×n(R) and Hf(a) ∈Mn×n(R) are the matrices with entries

Df(a)i =
∂f

∂xi
(a) and Hf(a)i,j =

∂2f

∂xi ∂xj
(a).

10.8 Theorem: (The Second Derivative Test) Let U ⊆ Rn be an open set with a ∈ U .
Let f : U → R be smooth. Suppose that Df(a) = 0. Then

(1) if Hf(a) is positive definite then f(x) has a local minimum at x = a,
(2) if Hf(a) is negative definite then f(x) has a local maximum at x = a, and
(3) if Hf(a) is indefinite then f(x) has a saddle point at x = a.

Proof: We omit the proof. This theorem is often proven in a calculus course.

10.9 Remark: Let U , V and W be a vector spaces over C. A map L : U × V → W is
called sesquilinear when

L(x1 + x2, y) = L(x1, y) + L(x2, y) , L(tx, y) = t L(x, y) ,
L(x, y1 + y2) = L(x, y1) + L(x, y2) and L(x, ty) = t L(x, y)

for all x, x1, x2 ∈ U , and all y, y1, y2 ∈ V and for all t ∈ C. A Hermitian form is
a sesquilinear map L : U × U → C with the property that L(y, x) = L(x, y) for all
x, y ∈ U , and a skew-Hermitian form is a sesquilinear map L : U × U → C such that
L(y, x) = −L(x, y) for all x, y ∈ U .

10.10 Example: As an exercise, think about how the theory of bilinear and quadratic
forms, from this and the previous chapter, carry over to Hermitian forms.
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