

10. Quadratic Forms

10.1 Definition: Let U be a vector space over a field \mathbb{F} . A **quadratic form** on U is a map $K : U \rightarrow \mathbb{F}$ of the form $K(u) = L(u, u)$ for some symmetric bilinear form L on U . Note that for $u, v \in U$ we have

$$K(u+v) = L(u+v, u+v) = L(u, u) + L(u, v) + L(v, u) + L(v, v) = K(u) + 2L(u, v) + K(v)$$

and so when $\text{char}(\mathbb{F}) \neq 2$ we have the **Polarization Identity**

$$L(u, v) = \frac{1}{2}(K(u+v) - K(u) - K(v)).$$

This shows that L is uniquely determined from K . Given a basis \mathcal{A} for U , we define the **matrix** of K with respect to \mathcal{A} to be the matrix of its (unique) associated symmetric bilinear form L , that is

$$[K]_{\mathcal{A}} = [L]_{\mathcal{A}}$$

so that for $u \in U$ we have

$$K(u) = [u]_{\mathcal{A}}^T [K]_{\mathcal{A}} [u]_{\mathcal{A}}.$$

When $\mathcal{A} = \{u_1, u_2, \dots, u_n\}$, the matrix $A = [K]_{\mathcal{A}} \in M_n(\mathbb{F})$ has entries $A_{i,j} = L(u_j, u_i)$, and writing $x = [u]_{\mathcal{A}}$ we have

$$K(u) = x^T A x = \sum_{i=1}^n x_i A_{i,j} x_j = \sum_{i=1}^n A_{i,i} x_i^2 + 2 \sum_{i < j} A_{i,j} x_i x_j.$$

When we diagonalize the symmetric matrix A by choosing an invertible matrix $P \in M_n(\mathbb{F})$ so that $P^T A P = D = \text{diag}(d_1, d_2, \dots, d_n)$, if we write $x = Pt$, or equivalently $t = P^{-1}x$, then we have

$$K(u) = x^T A x = t^T P^T A P t = t^T D t = \sum_{i=1}^n d_i t_i^2.$$

10.2 Example: A polynomial or power series in the variables x_1, x_2, \dots, x_n can be written as

$$f(x) = \sum_{i_1, i_2, \dots, i_n \geq 0} c_{i_1, \dots, i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n} = \sum_{k \geq 0} f_k(x)$$

where

$$f_k(x) = \sum_{\substack{i_1, i_2, \dots, i_n \geq 0 \\ i_1 + i_2 + \dots + i_n = k}} c_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n}.$$

For each $k \geq 0$, the polynomial $f_k(x)$ is a **homogeneous** polynomial of degree k , which means that $f_k(tx) = t^k f_k(x)$ for all $x \in \mathbb{R}^n$ and all $t \in \mathbb{R}$. By relabeling the coefficients, we can also write

$$f_0(x) = a, \quad f_1(x) = \sum_{1 \leq i \leq n} a_i x_i, \quad f_2(x) = \sum_{1 \leq i \leq j \leq n} a_{i,j} x_i x_j, \quad f_3(x) = \sum_{1 \leq i \leq j \leq k \leq n} a_{i,j,k} x_i x_j x_k$$

and so on. In particular, when $\text{char}(\mathbb{F}) \neq 2$, we have $f_2(x) = \sum_{1 \leq i \leq j \leq n} a_{i,j} x_i x_j = x^T A x$

where $A \in M_n(\mathbb{F})$ is the matrix with entries $A_{i,i} = a_i$ for $1 \leq i \leq n$ and $A_{i,j} = A_{j,i} = \frac{1}{2}a_{i,j}$ for $1 \leq i < j \leq n$. Thus a quadratic form on \mathbb{F}^n is the same thing as a homogeneous polynomial in x_1, \dots, x_n of degree 2.

10.3 Example: Sketch or describe the curve $3x^2 - 4xy + 6y^2 = 10$.

Solution: Let K be the quadratic form on \mathbb{R}^2 given by $K(x, y) = 3x^2 - 4xy + 6y^2$. Note that

$$K(x, y) = (x \ y) A \begin{pmatrix} x \\ y \end{pmatrix} \quad \text{where} \quad A = \begin{pmatrix} 3 & -2 \\ -2 & 6 \end{pmatrix}.$$

The characteristic polynomial of A is

$$f_A(x) = \det(A - xI) = \det \begin{pmatrix} 3-x & -2 \\ -2 & 6-x \end{pmatrix} = (x^2 - 9x + 14) = (x-7)(x-2)$$

so the eigenvalues of A are $\lambda_1 = 7$ and $\lambda_2 = 2$. We have

$$A - \lambda_1 I = \begin{pmatrix} -4 & -2 \\ -2 & -1 \end{pmatrix} \cong \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$$

and so $u_1 = \frac{1}{\sqrt{5}}(1, -2)^T$ is a unit eigenvector for λ_1 . Since A is symmetric, the eigenspace of λ_2 is orthogonal to the eigenspace of λ_1 , so $u_2 = \frac{1}{\sqrt{5}}(2, 1)^T$ is a unit eigenvector for λ_2 . Thus we have

$$P^T A P = D \quad \text{where} \quad P = (u_1, u_2) = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}.$$

We make a change in coordinates by writing $\begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} s \\ t \end{pmatrix}$, and then we have

$$K(x, y) = (x \ y) A \begin{pmatrix} x \\ y \end{pmatrix} = (s \ t) P^T A P \begin{pmatrix} s \\ t \end{pmatrix} = (s \ t) D \begin{pmatrix} s \\ t \end{pmatrix} = 7s^2 + 2t^2$$

and so

$$K(x, y) = 10 \iff 7s^2 + 2t^2 = 10 \iff \frac{s^2}{10/7} + \frac{t^2}{5} = 1.$$

Thus, in the st -plane, the curve is the ellipse with vertices at $\pm(\sqrt{\frac{10}{7}}, 0)$ and $\pm(0, \pm\sqrt{5})$. Since our change of coordinate matrix P is an orthogonal matrix it preserves inner product, norm and angle (indeed P is a rotation matrix), in the xy -plane, the curve is an ellipse of the same shape with vertices at

$$\begin{aligned} P \begin{pmatrix} \pm\sqrt{\frac{10}{7}} \\ 0 \end{pmatrix} &= \pm\sqrt{\frac{10}{7}} \cdot \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \pm\sqrt{\frac{2}{7}} \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \text{ and} \\ P \begin{pmatrix} 0 \\ \pm\sqrt{5} \end{pmatrix} &= \pm\sqrt{5} \cdot \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \pm \begin{pmatrix} 2 \\ 1 \end{pmatrix}. \end{aligned}$$

10.4 Theorem: Let U be an n -dimensional inner product space over \mathbb{R} and let $K : U \rightarrow \mathbb{R}$ be a quadratic form on U . Let $\mathcal{A} = \{u_1, u_2, \dots, u_n\}$ be an orthonormal basis for U such that $[K]_{\mathcal{A}} = D = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$. Then

$$\max_{u \in U, |u|=1} K(u) = K(u_1) = \lambda_1 \quad \text{and} \quad \min_{u \in U, |u|=1} K(u) = K(u_n) = \lambda_n.$$

Proof: Let $u \in U$ and write $x = [u]_{\mathcal{A}}$. Note that $|x| = |u|$ since \mathcal{A} is orthonormal. When $|u| = |x| = 1$ we have

$$K(u) = x^T D x = \sum_{i=1}^n \lambda_i x_i^2 \leq \sum_{i=1}^n \lambda_1 x_i^2 = \lambda_1 \sum_{i=1}^n x_i^2 = \lambda_1 |x|^2 = \lambda_1$$

and when $u = u_1$ we have $x = [u_1]_{\mathcal{A}} = e_1$ so that $K(u) = K(u_1) = e_1^T D e_1 = \lambda_1$. This shows that $\max_{u \in U, |u|=1} K(u) = K(u_1) = \lambda_1$, and the proof that $\min_{u \in U, |u|=1} K(u) = K(u_n) = \lambda_n$ is similar.

10.5 Theorem: Let U and V be finite dimensional inner product spaces over \mathbb{R} and let $L : U \rightarrow V$ be a linear map. Then

$$\max_{u \in U, |u|=1} |L(u)| = |L(u_1)| = \sigma_1 \quad \text{and} \quad \min_{u \in U, |u|=1} |L(u)| = |L(u_n)| = \sigma_n$$

where σ_1 and σ_n are the largest and smallest singular values of L and u_1 and u_n are unit eigenvectors of the map $L^* L$ for the eigenvalues $\lambda_1 = \sigma_1^2$ and $\lambda_n = \sigma_n^2$.

Proof: Choose an orthonormal basis $\mathcal{A} = \{u_1, u_2, \dots, u_n\}$ for U such that

$$[L^* L]_{\mathcal{A}} = D = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of $L^* L$ with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$, and let $\sigma_i = \sqrt{\lambda_i}$. Choose any orthonormal basis \mathcal{B} for V and let $A = [L]_{\mathcal{B}}^{\mathcal{A}}$. Note that

$$A^T A = A^* A = [L^*]_{\mathcal{A}}^{\mathcal{B}} [L]_{\mathcal{B}}^{\mathcal{A}} = [L^* L]_{\mathcal{A}} = D.$$

Let $u \in U$ and write $x = [u]_{\mathcal{A}}$. Note that $|x| = |u|$ and

$$|L(u)|^2 = |[L(u)]_{\mathcal{B}}|^2 = |[L]_{\mathcal{B}}^{\mathcal{A}}[u]_{\mathcal{A}}|^2 = |Ax|^2 = (Ax)^T (Ax) = x^T A^T A x = x^T D x.$$

As in the proof of the previous theorem, we see that

$$\max_{u \in U, |u|=1} |L(u)|^2 = |L(u_1)|^2 = \lambda_1 \quad \text{and} \quad \min_{u \in U, |u|=1} |L(u)|^2 = |L(u_n)|^2 = \lambda_n$$

and so

$$\max_{u \in U, |u|=1} |L(u)| = |L(u_1)| = \sigma_1 \quad \text{and} \quad \min_{u \in U, |u|=1} |L(u)| = |L(u_n)| = \sigma_n.$$

10.6 Theorem: Let U and V be non-trivial subspaces of \mathbb{R}^n with $U \cap V = \{0\}$. Then $\theta(U, V) = \cos^{-1}(\sigma_1)$ where σ_1 is the largest singular value of the map $P : U \rightarrow V$ given by $P(x) = \text{Proj}_V(x)$.

Proof: The proof is left as an exercise.

10.7 Example: Let $U \subseteq \mathbb{R}^n$ be an open set with $a \in U$. Let $f : U \rightarrow \mathbb{R}$ be smooth (meaning that the partial derivatives of all orders all exist in U). The Taylor polynomial of degree 2 centred at $x = a$ for a smooth function of the variables x_1, x_2, \dots, x_n can be written as

$$T(x) = f(a) + Df(a)(x - a) + (x - a)^T Hf(a)(x - a)$$

where $Df(a) \in M_{1 \times n}(\mathbb{R})$ and $Hf(a) \in M_{n \times n}(\mathbb{R})$ are the matrices with entries

$$Df(a)_i = \frac{\partial f}{\partial x_i}(a) \quad \text{and} \quad Hf(a)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}(a).$$

10.8 Theorem: (The Second Derivative Test) Let $U \subseteq \mathbb{R}^n$ be an open set with $a \in U$. Let $f : U \rightarrow \mathbb{R}$ be smooth. Suppose that $Df(a) = 0$. Then

- (1) if $Hf(a)$ is positive definite then $f(x)$ has a local minimum at $x = a$,
- (2) if $Hf(a)$ is negative definite then $f(x)$ has a local maximum at $x = a$, and
- (3) if $Hf(a)$ is indefinite then $f(x)$ has a saddle point at $x = a$.

Proof: We omit the proof. This theorem is often proven in a calculus course.

10.9 Remark: Let U , V and W be vector spaces over \mathbb{C} . A map $L : U \times V \rightarrow W$ is called **sesquilinear** when

$$\begin{aligned} L(x_1 + x_2, y) &= L(x_1, y) + L(x_2, y) \quad , \quad L(tx, y) = t L(x, y) , \\ L(x, y_1 + y_2) &= L(x, y_1) + L(x, y_2) \quad \text{and} \quad L(x, ty) = \overline{t} L(x, y) \end{aligned}$$

for all $x, x_1, x_2 \in U$, and all $y, y_1, y_2 \in V$ and for all $t \in \mathbb{C}$. A **Hermitian form** is a sesquilinear map $L : U \times U \rightarrow \mathbb{C}$ with the property that $L(y, x) = \overline{L(x, y)}$ for all $x, y \in U$, and a **skew-Hermitian form** is a sesquilinear map $L : U \times U \rightarrow \mathbb{C}$ such that $L(y, x) = -\overline{L(x, y)}$ for all $x, y \in U$.

10.10 Example: As an exercise, think about how the theory of bilinear and quadratic forms, from this and the previous chapter, carry over to Hermitian forms.