

Name (print): _____

Signature: _____

ID Number: _____

MATH 239, Introduction to Combinatorics

Final Examination, Winter Term, 2012

University of Waterloo, UAE Campus

Instructor: Stephen New

Date: April 15, 2012

Time: 9:30 am - 12:00 noon

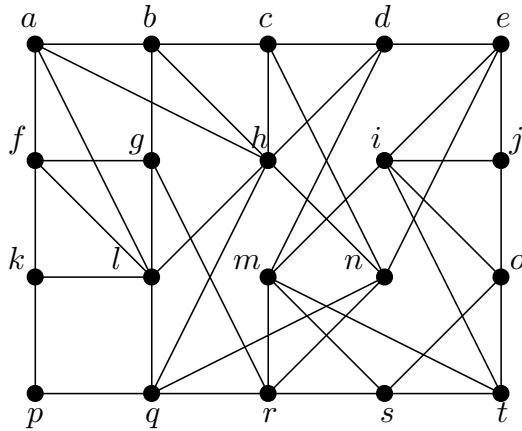
Instructions:

1. Place your name, signature and ID number in the spaces provided at the top of this page.
2. This test contains 8 pages, including this cover page and a page at the end for rough work.
3. No calculators are allowed.
4. Answer all 6 questions; all questions will be given equal value.
5. Provide full explanations with all your solutions.

Question	Mark
1	/10
2	/10
3	/10
4	/10
5	/10
6	/10
Total	/60

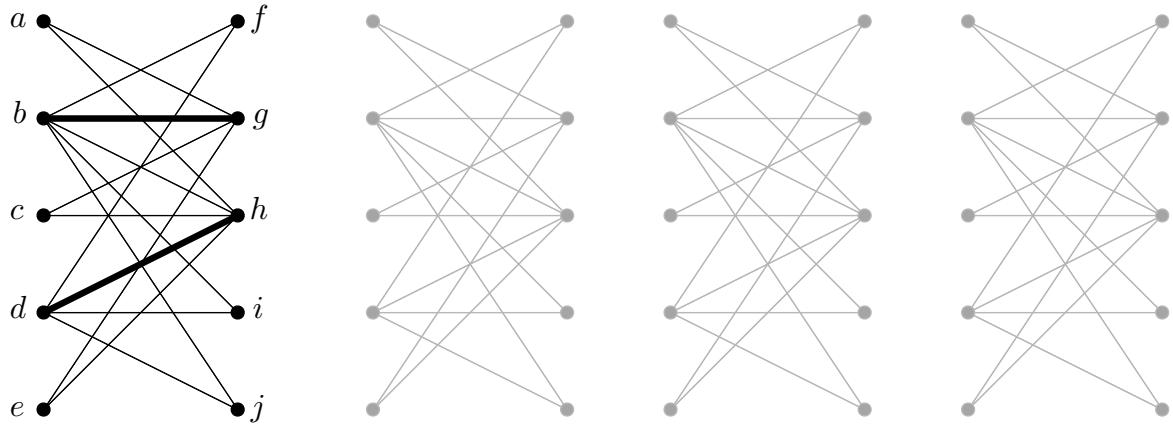
- [10] **1:** (a) Given a positive integer n , find the number of sequences (a_1, a_2, \dots, a_n) with each $a_i \in \{1, 2, 3, 4\}$ such that no even number is followed by an odd number.

- (b) Given positive integers k and n with $\frac{n}{2} \leq k \leq n$, find the number of ordered pairs (A, B) where A and B are k -element subsets of $S = \{1, 2, \dots, n\}$ with $A \cup B = S$.

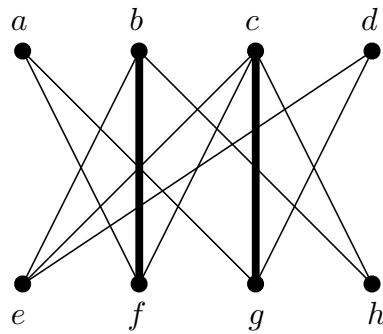

[10] **2:** (a) Let $\phi(x) = \frac{1+x+2x^2}{1-x+x^2-2x^3}$. Find $[x^8]\phi(x)$ (hint: use a recursion formula).

(b) Let $a_0 = 0$, $a_1 = 1$, $a_2 = 2$ and $a_n = 3a_{n-1} - 4a_{n-3}$ for $n \geq 3$. Find a non-recursive formula for a_n in terms of n (hint: $x^3 - 3x^2 + 4 = (x-2)^2(x+1)$).

- [10] **3:** (a) Given positive integers n and k , find the number of compositions of n into $2k$ parts a_i with $a_i \equiv i \pmod{2}$ for all i (hint: use a generating function).


- (b) Find the generating function with respect to length, expressed as a rational function, for the set of binary strings in which no 0-block is followed by a 1-block of the same length.

- [10] **4:** (a) Find a BFS spanning tree in the following graph G , and use the tree to find a minimum length path in G from a to t . Show your work on the second copy of the graph, labelling the vertices a_0, a_1, a_2, \dots in the order in which they are added to the tree.



- (b) Find the number of BFS spanning trees in the 3-cube Q_3 with root $a_0 = (0, 0, 0)$.

- [10] 5: (a) Use the Maximum Matching Algorithm to find a maximum matching and a minimum cover in the following graph G , beginning with the given matching (shown in bold). Show your work on the extra copies of the graph. At each stage, indicate the augmenting path.

- (b) Find the total number of augmenting paths from some point $x \in A \setminus V(M)$ to some point $y \in B \setminus V(M)$ in the following graph, where $A = \{a, b, c, d\}$, $B = \{e, f, g, h\}$ and M is the given matching, shown in bold.

- [10] **6:** (a) Let G be a graph with $\deg(v) \geq 3$ for every vertex v , which has a planar embedding in which $\deg(f) \geq 5$ for every face f . Show that G has at least 20 vertices.

- (b) Find the number of connected graphs with vertex set $V = \{(0,0), (1,0), (0,1), (1,1)\}$ (hint: it is easier to count the disconnected graphs).

This page is for rough work. It will not be marked.