MATH 239 Intro to Combinatorics, Solutions to Assignment 4

: (a) Find the incidence matrix for the graph with vertex set and edge set

V= {1727334a576} and £ = {{132}3 {133}7 {174}7 {176}7 {375}7 {475}7 {476}}

Solution: The incidence matrix is 1 111 0 00
10 00 0 00

A 01 001 00

001 0011

0 00O0OT1T1FO0

0 001 0 01

(b) Using the 6 points in the plane given by py = e for | = 1,2,---,6 (these are the vertices of a regular
hexagon), draw a picture of the graph with adjacency matrix

01 0 1 10
1 0 01 0 1
0 0 0 0 1 1
A= 11 0 0 0 1
1 01 0 0 O
01 1.1 0 O
Solution:
D2 P1
p3.\ >P6
D4 D5

(c) Let A be the adjacency matrix for a graph G. Show that (A™); is equal to the number of walks of
length n from vy to v; in G.

Solution: Consider the case that n = 1. A walk of length 1 is of the form u, v where {u,v} is an edge. Thus
if Ay; =1 (so {ak,a;} is an edge) then there is exactly one walk of length 1 from ay to a; (namely the path
ak,a;) and if Agp; = 0 (so {ax,a;} is not an edge) then there is no walk from aj to a;. Thus the number
of walks of length 1 from aj to a; is equal to Ay ;. Now let n > 1 and suppose, inductively, that for all
i,j, (A"1); ; is equal to the number of walks of length n — 1 from a; to a;. Note that there is a bijective
correspondence between the set of all walks of length n from a; to a; and the set of all walks of length n — 1
from ay, to some vertex a; which is joined by an edge to a; (the walk a, = vg,v1,- -, v, = a; corresponds to
the walk ay = vo,v1,- -+, vp—1 = a; with {v,_1,v,} = {a;,ar}). Thus

the # of walks of length n — 1 from a; to g
= Z (# of walks of length n — 1 from ay to ai)
i s.t. {vi,ux}EE
= Z (A"_l);m , by the induction hypothesis
i s.t. {vi,ox}EE
p 1if {ak,a,;}EE
Z (A" )iAy , since Ay =
| 0if {ax,a;} ¢ E

= (A™)k, , by matrix multiplication.



2: (a) Up to isomorphism, there are 20 graphs with 5 vertices with at most 5 edges. Without proof, draw a
picture of one graph for each of these 20 isomorphism classes.

A S A

AT
QPP
naz oz

(b) Find two connected graphs with 5 vertices which are not isomorphic but have the same number of vertices
of each degree.

Solution: @ 6

Solution:



3: (a) Let S, x,; be the graph whose vertex set V' is the set of k-element subsets of {1,2,---,n} and whose edge
set E is the set of 2-element sets {4, B} with A, B € V such that |[AN B| = 4. Find the number of edges in
Sp.k,; and find the value of 7 such that S, 1 ; is r-regular.

Solution: The number of edges in S, i ; is equal to the number of unordered pairs {A, B} where A and B
are k-element subsets of {1,2,---,n} with |A N B| = 4. The number of ways to choose the k elements in
A is equal to (Z) The number of ways to choose the i elements in A N B from the k elements in A is

equal to (’:) The number of ways to choose the remaining k — i elements in B from the remaining n — k

elements in {1,2,---,n}\ A is (2:’:) Thus the number of ways to choose the ordered pair (A4, B) is equal

to (Z) (f) (Z:f) and so the number of edges is % (Z) (f) (Z:f)
The required value of r is equal to the number of ways of choosing B when A is fixed. Having fixed the

k-element set A, there are ( * ways to choose the i elements in AN B from A, and there are n-k ways
7 k—1

to choose the remaining k — ¢ elements from the set {1,2,---,n} \ A, and so r = (f) (2:’;)

(b) Let K, be the complete graph with vertex set V' = {1,2,---,n} whose edge set F is the set of all
2-element sets {a, b} with a,b € V. Find the number of subgraphs of K, and find the number of paths from
1tonin K,.

Solution: To form a subgraph H of K,,, the vertex set of H can be any subset S C V and then the edge set
of H can be any subset of the set of all edges of K,, with both ends in S. For each k, there are (Z) ways to
choose the k-element set S. The edges of K,, with both ends in S are precisely the 2-element subsets of .5,

and there are (’;) = k(kgl) of these. The number of subsets of this @—element set is equal to 2F(—1)/2,

Thus the number of subgraphs H of K, is equal to > () 2kk=1)/2,
k=1

A path of length [ from 1 to n in K, is of the form 1= Vg, V1, -+, V] = n where the vertices v; are distinct.
There are n — 2 ways to choose vy, then n — 3 ways to choose v, and so on, and so the number of paths of
length [ from 1 to n is equal to (n —2)(n —3)--- (n — ). Thus the total number of paths in K, from 1 to n
isequal to > (n—2)(n—3)---(n—1).

=1



4: (a) Draw a picture of a 3-regular graph which has a bridge.

Solution: Here is one such graph.

(b) Prove that no 4-regular graph has a bridge.

Solution: Let G be a 4-regular graph. Suppose, for a contradiction, that G has a bridge. Let e = {u,v}
be a bridge. Then the graph G — e has 2 components, one containing v and the other containing v. In the
component containing u, all vertices have degree 4 except for u which has degree 3. This is not possible
since, as shown in class, every graph has an odd number of vertices of odd degree.

(c) Suppose that G is a graph with exactly two vertices of odd degree, namely a and b. Prove that there
exists a path from a to b in G.

Solution: We prove this by induction on ¢, the number of edges in G. When ¢ = 1, in order for a and b to
have odd degree we must have E(G) = {{a, b}}7 and so a, b is a path of length 1 from a to b. Let ¢ > 2 and
suppose, inductively, that for every graph H with ¢ — 1 edges, if H has exactly two vertices of odd degree
then there is a path in H between these two vertices. Let G be any graph with ¢ vertices with exactly two
vertices, say a and b, of odd degree. Let e be an edge at a in G, say e = {a,u}. If u = b then a,u is a path
of length 1 from a to b in G. Suppose that u # b and note that deg(u) is even (since only a and b have
odd degree). Let H be the graph G — e. Then H has ¢ — 1 edges and H has exactly two vertices of odd
degree, namely u and b (since the degrees of a and u decrease by 1 when we remove the edge e). By the
induction hypothesis, there is a path in H from w to b, say u = vg,v1,--,v; = b is such a path. If a = v;
for some ¢, then v;,v;41,--+,v; = b is a path from a to b in H (hence also in G). If a # v; for any i then
a,u = vg,v1, -, = bis a path from a to b in G.



5: Let G be a graph.

(a) For a € V(G), let U(a) = {v € V(G)|a ~ v} and let H(a) be the maximal connected subgraph of
G containing a. Show that H(a) is the subgraph of G induced by U(a). (The graph H(a) is called the
connected component of G containing a).

Solution: Write H = H(a) and U = U(a). We must show that V(H) = U and that E(H) = E(U), where
E(U) is the set of all edges in G whose endpoints both lie in U. First we show that V(H) C U. Let
v € V(H). Since a,v € V(H) and H is connected, we have a ~ v in H, hence a ~ v in G, ans so v € U(a).
Thus V(H) C U, as claimed. Next we show that U C V(H). Let v € U, so we have a ~ v in G. Suppose, for
a contradiction that v ¢ V(H). Choose a path a = vg,v1,-++, v = v from a to v in G. Since a € V(H(a))
and v ¢ V(H) we can choose k so that vg,v1, -+, vk—1 € V(H) but v ¢ V(H(a)). Let e = {vgp_1, v}
Let H + e be the graph with vertex set V(H +¢e) = V(H) U {v;} and edge set E(H +¢e) = E(H) U {e}.
We shall show that H + e is connected, contradicting the maximality of the connected component H. Let
z,y € V(H +e). If z and y both lie in V(H) then x ~ y in H (since H is connected), hence also in H + e.
Otherwise, one of = and y lies in V(H) and the other is equal to vi, say € V(H) and y = vi. In this case
we have x ~ vp_1 in H (since x,vi_1 € V(H) and H is connected), hence also in H + e, and vg_1 ~ vy in
H + e (since e = {vk_1, vk} 80 vg—1, v is a path of length 1 in H +e¢), and so x ~y in H +e. Thus H +e
is connected, as claimed, giving the desired contradiction. This shows that V(H) = U.

It remains to show that E(H) = E(U). Since all edges of H have both ends in V(H) = U, we have
E(H) C E(U). On the other hand, we have E(U) C E(H) since every edge e of G with both ends in
U = V(H) must lie in the edge set F(H) since, if not, then the graph H + e with vertex set V(H +e) = V(H)
and edge set E(H+e¢) = E(H)U{e} would be a larger connected subgraph of G, contradicting the maximality
of H.

(b) Show that for all a,b € V(G), either H(a) = H(b) or H(a) N H(b) = (. (This shows that the connected
components of G are disjoint).

Solution: Suppose that H(a) N H(b) # 0. Then V(H(a)) NV (H(b)) # 0, that is U(a) NU(b) # B. Choose
uw € U(a)NU(D). Then a ~ u in G and b ~ u in G, so we have a ~ b in G. Thus for any vector = € V(G),
wehave x € U(a) <= z~ainG < x~bin G < v € U(b), and so U(a) = U(b). By part (a) this
implies that H(a) = H(b).



