
MATH 239 Intro to Combinatorics, Solutions to Assignment 4

1: (a) Find the incidence matrix for the graph with vertex set and edge set

V = {1, 2, 3, 4, 5, 6} and E =
{
{1, 2}, {1, 3}, {1, 4}, {1, 6}, {3, 5}, {4, 5}, {4, 6}

}
.

Solution: The incidence matrix is

A =


1 1 1 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 1
0 0 0 0 1 1 0
0 0 0 1 0 0 1

 .

(b) Using the 6 points in the plane given by pk = e
i kπ/3

for k = 1, 2, · · · , 6 (these are the vertices of a regular
hexagon), draw a picture of the graph with adjacency matrix

A =


0 1 0 1 1 0
1 0 0 1 0 1
0 0 0 0 1 1
1 1 0 0 0 1
1 0 1 0 0 0
0 1 1 1 0 0

 .

Solution:
p2 p1

p3 p6

p4 p5

(c) Let A be the adjacency matrix for a graph G. Show that (An)k,l is equal to the number of walks of
length n from vk to vl in G.

Solution: Consider the case that n = 1. A walk of length 1 is of the form u, v where {u, v} is an edge. Thus
if Ak,l = 1 (so {ak, al} is an edge) then there is exactly one walk of length 1 from ak to al (namely the path
ak, al) and if Ak,l = 0 (so {ak, al} is not an edge) then there is no walk from ak to al. Thus the number
of walks of length 1 from ak to al is equal to Ak,l. Now let n ≥ 1 and suppose, inductively, that for all
i, j, (An−1)i,j is equal to the number of walks of length n − 1 from ai to aj . Note that there is a bijective
correspondence between the set of all walks of length n from ak to al and the set of all walks of length n− 1
from ak to some vertex ai which is joined by an edge to al (the walk ak = v0, v1, · · · , vn = al corresponds to
the walk ak = v0, v1, · · · , vn−1 = ai with {vn−1, vn} = {ai, ak}). Thus

the # of walks of length n− 1 from ak to al

=
∑

i s.t. {vi,vk}∈E

(
# of walks of length n− 1 from ak to ai

)
=

∑
i s.t. {vi,vk}∈E

(An−1)k,i , by the induction hypothesis

=

p∑
i=1

(An−1)k,iAi,l , since Ak,l =

{
1 if {ak, ai} ∈ E

0 if {ak, ai} /∈ E

= (An)k,l , by matrix multiplication.



2: (a) Up to isomorphism, there are 20 graphs with 5 vertices with at most 5 edges. Without proof, draw a
picture of one graph for each of these 20 isomorphism classes.

Solution:

(b) Find two connected graphs with 5 vertices which are not isomorphic but have the same number of vertices
of each degree.

Solution:



3: (a) Let Sn,k,i be the graph whose vertex set V is the set of k-element subsets of {1, 2, · · · , n} and whose edge
set E is the set of 2-element sets {A,B} with A,B ∈ V such that |A ∩B| = i. Find the number of edges in
Sn,k,i and find the value of r such that Sn,k,i is r-regular.

Solution: The number of edges in Sn,k,i is equal to the number of unordered pairs {A,B} where A and B
are k-element subsets of {1, 2, · · · , n} with |A ∩ B| = i. The number of ways to choose the k elements in
A is equal to

(
n
k

)
. The number of ways to choose the i elements in A ∩ B from the k elements in A is

equal to
(
k
i

)
. The number of ways to choose the remaining k − i elements in B from the remaining n − k

elements in {1, 2, · · · , n} \A is
(
n−k
k−i

)
. Thus the number of ways to choose the ordered pair (A,B) is equal

to
(
n
k

)(
k
i

)(
n−k
k−i

)
and so the number of edges is 1

2

(
n
k

)(
k
i

)(
n−k
k−i

)
.

The required value of r is equal to the number of ways of choosing B when A is fixed. Having fixed the

k-element set A, there are
(
k
i

)
ways to choose the i elements in A ∩ B from A, and there are

(
n−k
k−i

)
ways

to choose the remaining k − i elements from the set {1, 2, · · · , n} \A, and so r =
(
k
i

)(
n−k
k−i

)
.

(b) Let Kn be the complete graph with vertex set V = {1, 2, · · · , n} whose edge set E is the set of all
2-element sets {a, b} with a, b ∈ V . Find the number of subgraphs of Kn and find the number of paths from
1 to n in Kn.

Solution: To form a subgraph H of Kn, the vertex set of H can be any subset S ⊆ V and then the edge set
of H can be any subset of the set of all edges of Kn with both ends in S. For each k, there are

(
n
k

)
ways to

choose the k-element set S. The edges of Kn with both ends in S are precisely the 2-element subsets of S,

and there are
(
k
2

)
= k(k−1)

2 of these. The number of subsets of this k(k−1)
2 -element set is equal to 2k(k−1)/2.

Thus the number of subgraphs H of Kn is equal to
n∑
k=1

(
n
k

)
2k(k−1)/2.

A path of length l from 1 to n in Kn is of the form 1 = v0, v1, · · · , vl = n where the vertices vi are distinct.
There are n− 2 ways to choose v1, then n− 3 ways to choose v2, and so on, and so the number of paths of
length l from 1 to n is equal to (n− 2)(n− 3) · · · (n− l). Thus the total number of paths in Kn from 1 to n

is equal to
n∑
l=1

(n− 2)(n− 3) · · · (n− l).



4: (a) Draw a picture of a 3-regular graph which has a bridge.

Solution: Here is one such graph.

(b) Prove that no 4-regular graph has a bridge.

Solution: Let G be a 4-regular graph. Suppose, for a contradiction, that G has a bridge. Let e = {u, v}
be a bridge. Then the graph G− e has 2 components, one containing u and the other containing v. In the
component containing u, all vertices have degree 4 except for u which has degree 3. This is not possible
since, as shown in class, every graph has an odd number of vertices of odd degree.

(c) Suppose that G is a graph with exactly two vertices of odd degree, namely a and b. Prove that there
exists a path from a to b in G.

Solution: We prove this by induction on q, the number of edges in G. When q = 1, in order for a and b to
have odd degree we must have E(G) =

{
{a, b}

}
, and so a, b is a path of length 1 from a to b. Let q ≥ 2 and

suppose, inductively, that for every graph H with q − 1 edges, if H has exactly two vertices of odd degree
then there is a path in H between these two vertices. Let G be any graph with q vertices with exactly two
vertices, say a and b, of odd degree. Let e be an edge at a in G, say e = {a, u}. If u = b then a, u is a path
of length 1 from a to b in G. Suppose that u 6= b and note that deg(u) is even (since only a and b have
odd degree). Let H be the graph G − e. Then H has q − 1 edges and H has exactly two vertices of odd
degree, namely u and b (since the degrees of a and u decrease by 1 when we remove the edge e). By the
induction hypothesis, there is a path in H from u to b, say u = v0, v1, · · · , vl = b is such a path. If a = vi
for some i, then vi, vi+1, · · · , vl = b is a path from a to b in H (hence also in G). If a 6= vi for any i then
a, u = v0, v1, · · · , vl = b is a path from a to b in G.



5: Let G be a graph.

(a) For a ∈ V (G), let U(a) =
{
v ∈ V (G)

∣∣a ∼ v
}

and let H(a) be the maximal connected subgraph of
G containing a. Show that H(a) is the subgraph of G induced by U(a). (The graph H(a) is called the
connected component of G containing a).

Solution: Write H = H(a) and U = U(a). We must show that V (H) = U and that E(H) = E(U), where
E(U) is the set of all edges in G whose endpoints both lie in U . First we show that V (H) ⊆ U . Let
v ∈ V (H). Since a, v ∈ V (H) and H is connected, we have a ∼ v in H, hence a ∼ v in G, ans so v ∈ U(a).
Thus V (H) ⊆ U , as claimed. Next we show that U ⊆ V (H). Let v ∈ U , so we have a ∼ v in G. Suppose, for
a contradiction that v /∈ V (H). Choose a path a = v0, v1, · · · , vl = v from a to v in G. Since a ∈ V (H(a))
and v /∈ V (H) we can choose k so that v0, v1, · · · , vk−1 ∈ V (H) but vk /∈ V (H(a)). Let e = {vk−1, vk}.
Let H + e be the graph with vertex set V (H + e) = V (H) ∪ {vk} and edge set E(H + e) = E(H) ∪ {e}.
We shall show that H + e is connected, contradicting the maximality of the connected component H. Let
x, y ∈ V (H + e). If x and y both lie in V (H) then x ∼ y in H (since H is connected), hence also in H + e.
Otherwise, one of x and y lies in V (H) and the other is equal to vk, say x ∈ V (H) and y = vk. In this case
we have x ∼ vk−1 in H (since x, vk−1 ∈ V (H) and H is connected), hence also in H + e, and vk−1 ∼ vk in
H + e (since e = {vk−1, vk} so vk−1, vk is a path of length 1 in H + e), and so x ∼ y in H + e. Thus H + e
is connected, as claimed, giving the desired contradiction. This shows that V (H) = U .

It remains to show that E(H) = E(U). Since all edges of H have both ends in V (H) = U , we have
E(H) ⊆ E(U). On the other hand, we have E(U) ⊆ E(H) since every edge e of G with both ends in
U = V (H) must lie in the edge set E(H) since, if not, then the graph H+e with vertex set V (H+e) = V (H)
and edge set E(H+e) = E(H)∪{e} would be a larger connected subgraph of G, contradicting the maximality
of H.

(b) Show that for all a, b ∈ V (G), either H(a) = H(b) or H(a) ∩H(b) = ∅. (This shows that the connected
components of G are disjoint).

Solution: Suppose that H(a) ∩H(b) 6= ∅. Then V (H(a)) ∩ V (H(b)) 6= ∅, that is U(a) ∩ U(b) 6= ∅. Choose
u ∈ U(a) ∩ U(b). Then a ∼ u in G and b ∼ u in G, so we have a ∼ b in G. Thus for any vector x ∈ V (G),
we have x ∈ U(a) ⇐⇒ x ∼ a in G ⇐⇒ x ∼ b in G ⇐⇒ v ∈ U(b), and so U(a) = U(b). By part (a) this
implies that H(a) = H(b).


