MATH 239 Intro to Combinatorics, Solutions to Assignment 3

: Given n,k € N = {0,1,2,---}, find the number of sequences (ay,as, -, as;) with each a; € N such that
a1+ as + -+ + ag + 2ap41 + 2a42 + - - - + 2a2, = n. In particular, what is the number of such sequences
when k=5 and n =77

Solution: Let S be the set of sequences (by,- -, bg,bg+1, -, box) with b; € N for 1 < ¢ < k and b; €
2N ={0,2,4, - - -} with weight w(by,--,bax) = by + - - - + bag. Notice that the required number of sequences

(a1, -+, Qk, Qk41, -+, a2k) is equal to |S,|, as we can see using the bijection given by b; = a; for 1 < i < k
and b; = 2a; for k < i < 2k. We have
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In particular, when k = 5 and n = 7 we have
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2: For a positive integer n, let ¢, be the number of compositions of n into an even number of parts each of which
is odd. Find the generating function Y ¢, 2™ expressed as a rational function, obtain a recursion formula for
cn, and use the recursion formula to find cqg.

Solution: Let Sk be the set of compositions of positive integers into k odd parts, that is Sk, is the set of integer
sequences (ag, - -+, a) with each a; € {1,3,5,7,-- -}, with weight given by w(ay,---,ar) = a;+---+ay. Let S
be the set of compositions of positive integers into an even number of odd parts, that is S = SoUS,USgU- - -.
We have
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If we write ¢g(x) = Z cnx™ then we have ¢; = 0 for all odd indices ¢, and
i>0
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and so ¢g = 0, ¢ = 0 and for n even with n > 4 we have ¢, = 3¢,,_2 — ¢,_4. In particular we have

n 02 4 6 8 10
c, 0 1 3 8 21 55



3: Given positive integers n and k, find the number of integer sequences (ay,ag, -, a;) with 1 < a3 < as <
-+ < ap < n such that a; = ¢ (mod 3) for all i. Express your answer in simplified form using the floor
function.

Solution: Using the bijection ¥(a1,az, -, ax) = (a1,a2—a1,a3—asg, -+, ag—ag—1,n—ax) = (b1, -+, bg, bg+1),
we see that the number of such sequences (a1, - - -, ax) is equal to the number of sequences (by, b, - -, b, brt1)
with each b; > 1 with b; = 1 (mod 3), that is b; € {1,4,7,10,---}, for 1 <4 < k, with by41 > 0 and with
by + b + -+ bry1 = n. We let S be the set of sequences (by,- -+, bk, bg+1) with b; € {1,4,7,10,---} for
1 <i <k and with bgy1 > 0, where the weight is given by w(by, -+, bg, bg+1) = b1 + -+, bg + bgr1. We need
to find |S,|. We have
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To find |S,| = [2"]¢, we choose i so that n = k +3i, n = k+ 1+ 3i or n = k + 2 + 3¢, that is we choose
1= %7 1= ”_’g_l ori= n—§—27 depending on whether n —k = 0, 2 or 1 modulo 3. Note that in all cases,
we have i = [2ZE | Thus we have
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4: For each n € N, let ¢, be the number of binary strings of length n which do not contain either 0000 or
1111 as substrings. Find the generating function ) ¢, 2™ expressed as a rational function, obtain a recursion
formula for ¢,, and find cg.

Solution: Let S be the set of all binary strings which do not contain either 000 or 111 as substrings. Note
that
S ={e1,11, 111}({0,00,000}{17 11, 111})*{6,0,00,000}.

We have
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If we write ¢s = > c,2™ then we have
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and socg =1, ¢; =2, co =4, c3 = 8 and for n > 4 we have ¢, = ¢,_1 + ¢h_2 + ¢,_3. In particular, the first

few values of ¢,, are as follows
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5: Find the generating function with respect to length, expressed as a rational function, for the set of binary
strings in which no 0-block is followed by a 1-block of greater length. In particular, find the number of such
sequences of length 8.

Solution: Let S be the set of binary strings in which no 0-block is followed by a 1-block of greater length.
Let M = {01,0011,000111,00001111, - - -} and note that
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Write ¢g = > cpz™. Then we have
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andsocyg=1,¢c1=2,co =4 and ¢, =¢,,_1 + 2¢,_2 — ¢,,_3 for n > 3. In particular, the first few values of
¢, are
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