

- 1:** Given $n, k \in \mathbf{N} = \{0, 1, 2, \dots\}$, find the number of sequences $(a_1, a_2, \dots, a_{2k})$ with each $a_i \in \mathbf{N}$ such that $a_1 + a_2 + \dots + a_k + 2a_{k+1} + 2a_{k+2} + \dots + 2a_{2k} = n$. In particular, what is the number of such sequences when $k = 5$ and $n = 7$?
- 2:** For a positive integer n , let c_n be the number of compositions of n into an even number of parts each of which is odd. Find the generating function $\sum c_n x^n$ expressed as a rational function, obtain a recursion formula for c_n , and use the recursion formula to find c_{10} .
- 3:** Given positive integers n and k , find the number of integer sequences (a_1, a_2, \dots, a_k) with $1 \leq a_1 < a_2 < \dots < a_k \leq n$ such that $a_i \equiv i \pmod{3}$ for all i . Express your answer in simplified form using the floor function.
- 4:** For each $n \in \mathbf{N}$, let c_n be the number of binary strings of length n which do not contain either 0000 or 1111 as substrings. Find the generating function $\sum c_n x^n$ expressed as a rational function, obtain a recursion formula for c_n , and find c_6 .
- 5:** Find the generating function with respect to length, expressed as a rational function, for the set of binary strings in which no 0-block is followed by a 1-block of greater length. In particular, find the number of such sequences of length 8.