

- 1:** Given a positive integer n , find the number of sequences (a_1, a_2, \dots, a_n) , with $a_i \in \{1, 2, 3\}$ for all i , which do not contain 11, 22 or 33 as substrings.
- 2:** Given a positive integer n , find the number of binary sequences of length n which do not contain either 000 or 111 as a subsequence.
- 3:** Given positive integers n and k , determine the number of sequences (a_1, a_2, \dots, a_k) , with $-1 \leq a_i \in \mathbf{Z}$ for all i , such that $a_1 + a_2 + \dots + a_k = n$.
- 4:** Given a positive integer $n \geq 2$, show that the total number of sequences (a_1, a_2, \dots, a_k) with $1 \leq k$, $2 \leq a_i \in \mathbf{Z}$ for all i , and $a_1 + a_2 + \dots + a_k = n$ is equal to F_{n-1} , the $(n-1)^{\text{st}}$ Fibonacci number.
- 5:** Let c_n be the number of sequences (a_1, a_2, \dots, a_n) , with each $a_i \in \{1, 2\}$, such that we have $a_1 + a_2 + \dots + a_k = n$ for some $k \leq n$.
 - (a) Show that $c_n = c_{n-1} + 2c_{n-2}$.
 - (b) Find a formula for c_n in terms of n .