

1: Find the Laplace transform of each of the following functions $f(t)$.

(a) $f(t) = t^3 e^{-t/2}$.

(b) $(t + e^t)^3$.

(c) $f(t) = a \sinh(\omega t) + b \cosh(\omega t)$.

2: Find the Laplace transform of each of the following functions $f(t)$.

(a) $f(t) = \begin{cases} t & \text{, if } 0 \leq t < 1, \\ 3 - 2t & \text{, if } 1 \leq t < 2, \\ t - 3 & \text{, if } 2 \leq t < 3, \\ 0 & \text{, if } 3 \leq t. \end{cases}$

(b) $f(t) = 2e^t \cos\left(2t - \frac{\pi}{3}\right)$.

(c) $f(t) = t e^{-t} \sin 3t$.

3: Find the inverse Laplace transform of the following functions $F(s)$.

(a) $F(s) = \frac{s - 3}{s^3 + s^2 + s + 1}$.

(b) $F(s) = \frac{5s + 7}{s^3 + 4s^2 + s - 6}$.

(c) $F(s) = \frac{s - 2}{s^4 + 4s^3 + 8s^2}$.

4: Find the inverse Laplace transform of the following functions $F(s)$.

(a) $F(s) = \frac{(s + 1)e^{-s}}{s(s + 2)}$.

(b) $F(s) = \frac{4 + se^{-2s}}{s^2 - 4}$.

(c) $F(s) = \frac{s^2 - 1}{(s^2 + 1)^2}$.

5: (a) Show that if $f(t)$ is periodic with period T (this means that $f(t + T) = f(t)$ for all t) then

$$\mathcal{L}[f(t)](s) = \frac{1}{1 - e^{-Ts}} \int_0^T f(t)e^{-st} dt.$$

(b) Find the Laplace transform of the sawtooth function $f(t)$ which is given by $f(t) = t - n$ for $n \leq t < n + 1$ for each integer $n \geq 0$.