

MATH 218 Differential Equations, Solutions to Assignment 7

1: Find the 5th Taylor polynomial centered at 0 for the solution to the IVP $(1-x)y'' - 2y = 4$ with $y(0) = 1$ and $y'(0) = 3$.

Solution: We try a solution of the form $y = \sum_{n=0}^{\infty} a_n x^n$. Then $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$ and $y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$.

Put these in the DE to get

$$\begin{aligned} 0 &= (1-x)y'' - 2y - 4 \\ &= \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2} - \sum_{n=2}^{\infty} n(n-1) a_n x^{n-1} - \sum_{n=0}^{\infty} 2a_n x^n - 4 \\ &= \sum_{m=0}^{\infty} (m+2)(m+1) a_{m+2} x^m - \sum_{m=1}^{\infty} (m+1)m a_{m+1} x^m - \sum_{m=0}^{\infty} 2a_m x^m - 4 \\ &= (2a_2 - 2a_0 - 4)x^0 + \sum_{m=1}^{\infty} ((m+2)(m+1)a_{m+2} - m(m+1)a_{m+1} - 2a_m)x^m. \end{aligned}$$

The coefficients must all vanish so we have $a_2 = a_0 + 2$ and for $m \geq 1$ we have $a_{m+2} = \frac{m(m+1)a_{m+1} + 2a_m}{(m+2)(m+1)}$.

To get $y(0) = 1$ we need $a_0 = 1$ and to get $y'(0) = 3$ we need $a_1 = 3$. The recursion formula then gives $a_2 = a_0 + 2 = 3$, $a_3 = \frac{1 \cdot 2 a_3 + 2a_2}{2 \cdot 3} = \frac{6+6}{6} = 2$, $a_4 = \frac{2 \cdot 3 a_4 + 2a_3}{3 \cdot 4} = \frac{12+6}{12} = \frac{3}{2}$, and $a_5 = \frac{3 \cdot 4 a_5 + 2a_4}{4 \cdot 5} = \frac{18+4}{20} = \frac{11}{10}$. Thus the 5th Taylor polynomial is $T_5(x) = 1 + 3x + 3x^2 + 2x^3 + \frac{3}{2}x^4 + \frac{11}{10}x^5$.

2: Find the 5th Taylor polynomial centered at 0 for the solution to the IVP $y'' + 2y' + e^x y = \sin x$ with $y(0) = 2$ and $y'(0) = 1$.

Solution: We try $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \dots$. Then $y' = a_1 + 2a_2 x + 3a_3 x^2 + 4a_4 x^3 + 5a_5 x^4 + \dots$, $y'' = 2a_2 + 6a_3 x + 12a_4 x^2 + 20a_5 x^3 + \dots$, and

$$\begin{aligned} e^x y &= \left(1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots\right) (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots) \\ &= (a_0 + (a_1 + a_0)x + (a_2 + a_1 + \frac{1}{2}a_0)x^2 + (a_3 + a_2 + \frac{1}{2}a_1 + \frac{1}{6}a_0)x^3 + \dots). \end{aligned}$$

Put these in the DE to get

$$\begin{aligned} &(2a_2 + 6a_3 x + 12a_4 x^2 + 20a_5 x^3 + \dots) + 2(a_1 + 2a_2 x + 3a_3 x^2 + 4a_4 x^3 + \dots) \\ &+ (a_0 + (a_1 + a_0)x + (a_2 + a_1 + \frac{1}{2}a_0)x^2 + (a_3 + a_2 + \frac{1}{2}a_1 + \frac{1}{6}a_0)x^3 + \dots) \\ &= (x - \frac{1}{6}x^3 + \dots). \end{aligned}$$

Equate coefficients to get $2a_2 + 2a_1 + a_0 = 0$ (1), $6a_3 + 4a_2 + a_1 + a_0 = 1$ (2), $12a_4 + 6a_3 + a_2 + a_1 + \frac{1}{2}a_0 = 0$ (3) and $20a_5 + 8a_4 + a_3 + a_2 + \frac{1}{2}a_1 + \frac{1}{6}a_0 = -\frac{1}{6}$ (4). To get $y(0) = 2$ we need $a_0 = 2$ and to get $y'(0) = 1$ we need $a_1 = 1$. Put these in the recursion formulas (1)-(4) to get $a_2 = \frac{-2a_1 - a_0}{2} = \frac{-2-2}{2} = -2$, $a_3 = \frac{1-4a_2 - a_1 - a_0}{6} = \frac{1+8-1-2}{6} = 1$, $a_4 = \frac{-6a_3 - a_2 - a_1 - \frac{1}{2}a_0}{12} = \frac{-6+2-1-1}{12} = -\frac{1}{2}$ and $a_5 = \frac{-\frac{1}{6}-8a_4 - a_3 - a_2 - \frac{1}{2}a_1 - \frac{1}{6}a_0}{20} = \frac{-\frac{1}{6}+4-1+2-\frac{1}{2}-\frac{1}{3}}{20} = \frac{1}{5}$. Thus the 5th Taylor polynomial is $T_5(x) = 2 + x - 2x^2 + x^3 - \frac{1}{2}x^4 + \frac{1}{5}x^5$.

3: Use the Power Series Method to solve the DE $y'' + (x-1)y' + y = 0$. Find two linearly independent power series solutions, one satisfying the initial conditions $y(0) = 1$, $y'(0) = 0$, and the other satisfying $y(0) = 0$, $y'(0) = 1$. For each solution, state the recurrence relation for the coefficients, and find the 5th Taylor polynomial centered at 0.

Solution: We try $y = \sum_{n=0}^{\infty} a_n x^n$. Then $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$ and $y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$. Put these in the DE to get

$$\begin{aligned} 0 &= y'' + (x-1)y' + y \\ &= \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2} + \sum_{n=1}^{\infty} n a_n x^n - \sum_{n=1}^{\infty} n a_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^n \\ &= \sum_{m=0}^{\infty} (m+2)(m+1) a_{m+2} x^m + \sum_{m=1}^{\infty} m a_m x^m - \sum_{m=0}^{\infty} (m+1) a_{m+1} x^m + \sum_{m=0}^{\infty} a_m x^m \\ &= (2a_2 - a_1 + a_0)x^0 + \sum_{m=1}^{\infty} ((m+2)(m+1)a_{m+2} - (m+1)a_{m+1} + (m+1)a_m)x^m. \end{aligned}$$

All coefficients vanish, so $a_2 = \frac{a_1 - a_0}{2}$ and $a_{m+2} = \frac{(m+1)a_{m+1} - (m+1)a_m}{(m+2)(m+1)} = \frac{a_{m+1} - a_m}{m+2}$ for $m \geq 1$. If $a_0 = 1$ and $a_1 = 0$ then the recursion formulas give $a_2 = \frac{0-1}{2} = -\frac{1}{2}$, $a_3 = \frac{-\frac{1}{2}-0}{3} = -\frac{1}{6}$, $a_4 = \frac{-\frac{1}{6}+\frac{1}{2}}{4} = \frac{1}{12}$ and $a_5 = \frac{\frac{1}{12}+\frac{1}{6}}{5} = \frac{1}{20}$, so the 5th Taylor polynomial is

$$T_5(y_1) = 1 - \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{20}x^5.$$

If $a_0 = 0$ and $a_1 = 1$ then the recursion formulas give $a_2 = \frac{1-0}{2} = \frac{1}{2}$, $a_3 = \frac{\frac{1}{2}-1}{3} = -\frac{1}{6}$, $a_4 = \frac{-\frac{1}{6}-\frac{1}{2}}{4} = -\frac{1}{6}$ and $a_5 = \frac{-\frac{1}{6}+\frac{1}{6}}{5} = 0$ and so the 5th Taylor polynomial for the solution y_2 is

$$T_5(y_2) = x + \frac{1}{2}x^2 - \frac{1}{6}x^3 - \frac{1}{6}x^4.$$

4: Use Frobenius' Method to solve the DE $4xy'' + 2y' = y$. Find two linearly independent series solutions. For each solution, solve the recurrence relation to obtain an explicit formula for the n^{th} coefficient, then find a closed form formula for the solution.

Solution: We try $y = \sum_{n=0}^{\infty} a_n x^{n+r}$ so $y' = \sum_{n=0}^{\infty} (n+r)a_n x^{n+r-1}$ and $y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r-2}$. Put these in the DE to get

$$\begin{aligned}
0 &= 4xy'' + 2y' - y \\
&= \sum_{n=0}^{\infty} 4(n+r)(n+r-1)a_n x^{n+r-1} + \sum_{n=0}^{\infty} 2(n+r)a_n x^{n+r-1} - \sum_{n=0}^{\infty} a_n x^{n+r} \\
&= x^r \left(\sum_{m=-1}^{\infty} 4(m+r+1)(m+r)a_{m+1} x^m + \sum_{m=-1}^{\infty} 2(m+r+1)a_{m+1} x^m - \sum_{m=0}^{\infty} a_m x^m \right) \\
&= x^r \left(\sum_{m=-1}^{\infty} 2(m+r+1)(2m+2r+1)a_{m+1} x^m - \sum_{m=0}^{\infty} a_m x^m \right) \\
&= x^r \left(2r(2r-1)a_0 x^{-1} + \sum_{m=0}^{\infty} (2(m+r+1)(2m+2r+1)a_{m+1} - a_m)x^m \right).
\end{aligned}$$

All coefficients must vanish, so we have $r(2r-1) = 0$ and $a_{m+1} = \frac{a_m}{2(m+r+1)(2m+2r+1)}$ for $r \geq 0$. When $r = 0$, the recursion formula becomes $a_{m+1} = \frac{a_m}{2(m+1)(2m+1)} = \frac{a_m}{(2m+1)(2m+2)}$, so if $a_0 = 1$ then we get $a_1 = \frac{1}{1 \cdot 2}$, $a_2 = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4}$, $a_3 = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}$, and in general $a_n = \frac{1}{(2n)!}$. In this case the solution is

$$y_1 = x^0 \left(\sum_{n=0}^{\infty} \frac{x^n}{(2n)!} \right) = \cosh \sqrt{x}.$$

When $r = \frac{1}{2}$ the recursion formula becomes $a_{m+1} = \frac{a_m}{2(m+\frac{3}{2})(2m+2)} = \frac{a_m}{(2m+2)(2m+3)}$, so if $a_0 = 1$ then we get $a_1 = \frac{1}{2 \cdot 3}$, $a_2 = \frac{1}{2 \cdot 3 \cdot 4 \cdot 5}$ and in general $a_n = \frac{1}{(2n+1)!}$. In this case the solution is

$$y_2 = x^{1/2} \left(\sum_{n=0}^{\infty} \frac{x^n}{(2n+1)!} \right) = \sqrt{x} \cdot \frac{\sinh \sqrt{x}}{\sqrt{x}} = \sinh \sqrt{x}.$$

The general solution is $y = a \sinh \sqrt{x} + b \cosh \sqrt{x}$.

5: Use Frobenius' Method to solve the DE $3x^2y'' + x(x-1)y' + y = 0$. Find two linearly independent series solutions. For each solution, solve the recurrence relation to obtain an explicit formula for the n^{th} coefficient. Find a closed form formula for one of the two solutions.

Solution: We try $y = \sum_{n=0}^{\infty} a_n x^{n+r}$ so $y' = \sum_{n=0}^{\infty} (n+r)a_n x^{n+r-1}$ and $y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r-2}$. Put these in the DE to get

$$\begin{aligned}
0 &= 3x^2y'' + x(x-1)y' + y \\
&= \sum_{n=0}^{\infty} 3(n+r)(n+r-1)a_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)a_n x^{n+r+1} - \sum_{n=0}^{\infty} (n+r)a_n x^{n+r} + \sum_{n=0}^{\infty} a_n x^{n+r} \\
&= x^r \left(\sum_{m=0}^{\infty} 3(m+r)(m+r-1)a_m x^m + \sum_{m=1}^{\infty} (m+r-1)a_{m-1} x^m - \sum_{m=0}^{\infty} (m+r)a_m x^m + \sum_{m=0}^{\infty} a_m x^m \right) \\
&= x^r \left(\sum_{m=0}^{\infty} (3(m+r)(m+r-1) - (m+r)+1)a_m x^m + \sum_{m=1}^{\infty} (m+r-1)a_{m-1} x^m \right) \\
&= x^r \left((3r(r-1) - r + 1)a_0 x^0 + \sum_{m=1}^{\infty} ((3(m+r)(m+r-1) - (m+r)+1)a_m + (m+r-1)a_{m-1}) x^m \right).
\end{aligned}$$

All coefficients must vanish, so we have $3r(r-1) - r + 1 = 0$, that is $3r^2 - 4r + 1 = 0$ or equivalently $(3r-1)(r-1) = 0$ so $r = 1$ or $r = \frac{1}{3}$, and we have $a_m = \frac{-(m+r-1)a_{m-1}}{3(m+r)(m+r-1) - (m+r) + 1}$. When $r = 1$ the recursion formula becomes $a_m = \frac{-m a_{m-1}}{3(m+1)(m) - m} = \frac{-a_{m-1}}{3m+2}$. If we take $a_0 = 1$ then we have $a_1 = -\frac{1}{5}$, $a_2 = \frac{1}{5 \cdot 8}$, $a_3 = -\frac{1}{5 \cdot 8 \cdot 11}$, and in general $a_n = \frac{(-1)^n}{5 \cdot 8 \cdot 11 \cdots (3n+2)}$. In this case we obtain the solution

$$y_1 = x^1 \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{5 \cdot 8 \cdot 11 \cdots (3n+2)} \right) = x - \frac{1}{5}x^2 + \frac{1}{5 \cdot 8}x^3 - \frac{1}{5 \cdot 8 \cdot 11}x^4 + \cdots.$$

When $r = \frac{1}{3}$ the recursion formula becomes

$$a_m = \frac{-\left(m - \frac{2}{3}\right) a_{m-1}}{3\left(m + \frac{1}{3}\right)\left(m - \frac{2}{3}\right) - m + \frac{2}{3}} = \frac{-(3m-2)a_{m-1}}{(3m+1)(3m-2) - 3m + 2} = -\frac{a_{m-1}}{3m}.$$

If we set $a_0 = 1$ then we obtain $a_2 = -\frac{1}{3}$, $a_4 = \frac{1}{3 \cdot 6}$, $a_6 = -\frac{1}{3 \cdot 6 \cdot 9}$, and in general $a_n = \frac{(-1)^n}{3 \cdot 6 \cdot 9 \cdots (3n)} = \frac{(-1)^n}{3^n n!}$. In this case we obtain the solution

$$y_2 = x^{1/3} \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n n!} \right) = x^{1/3} e^{-x/3}.$$