

- 1:** Find the 5th Taylor polynomial centered at 0 for the solution to the initial value problem $(1 - x)y'' - 2y = 4$ with $y(0) = 1$ and $y'(0) = 3$.
- 2:** Find the 5th Taylor polynomial centered at 0 for the solution to the initial value problem $y'' + 2y' + e^x y = \sin x$ with $y(0) = 2$ and $y'(0) = 1$.
- 3:** Use the Power Series Method to solve the DE $y'' + (x - 1)y' + y = 0$. Find two linearly independent power series solutions, one satisfying the initial conditions $y(0) = 1$, $y'(0) = 0$, and the other satisfying $y(0) = 0$, $y'(0) = 1$. For each solution, state the recurrence relation for the coefficients, and find the 5th Taylor polynomial centered at 0.
- 4:** Use Frobenius' Method to solve the DE $4xy'' + 2y' = y$. Find two linearly independent series solutions. For each solution, solve the recurrence relation to obtain an explicit formula for the n^{th} coefficient, then find a closed form formula for the solution.
- 5:** Use Frobenius' Method to solve the DE $3x^2y'' + x(x - 1)y' + y = 0$. Find two linearly independent series solutions. For each solution, solve the recurrence relation to obtain an explicit formula for the n^{th} coefficient. Find a closed form formula for one of the two solutions.