

MATH 218 Differential Equations, Solutions to Assignment 6

1: An object of mass $m = 2$ kg is attached to a spring with spring-constant $k = 18$ N/m. Let $x(t)$ be the object's displacement, in meters, from the equilibrium position at time t seconds. Suppose that $x(0) = 2$ and $x'(0) = 6$. Ignoring air resistance, find the smallest positive value of t such that $x(t) = 0$.

Solution: The displacement $x(t)$ satisfies the DE $mx'' + kx = 0$, that is $2x'' + 18x = 0$ or equivalently $x'' + 9x = 0$. The characteristic equation is $r^2 + 9 = 0$ and the roots are $r = \pm 3i$. The solution to the DE is $x = A \sin(3t) + B \cos(3t)$ and then $x' = 3A \cos(3t) - 3B \sin(3t)$. To get $x(0) = 2$ we need $B = 2$, and to get $x'(0) = 6$ we need $3A = 6$ so $A = 2$. Thus the displacement is

$$x(t) = 2 \sin(3t) + 2 \cos(3t).$$

We have $x(t) = 0 \iff 2 \sin(2t) + 2 \cos(3t) = 0 \iff \sin(2t) = -\cos(3t) \iff \tan(3t) = -1 \iff 3t = -\frac{\pi}{4} + \pi k \iff t = -\frac{\pi}{12} + \frac{\pi}{3} k$ for some integer k . Thus the first positive value of t for which $x(t) = 0$ is $t = -\frac{\pi}{12} + \frac{\pi}{3} = \frac{\pi}{4}$.

2: An object of mass $m = 2$ kg is attached to a spring with spring-constant $k = 8$ N/m in a liquid where the damping-constant is $c = 10$ kg/s. Let $x(t)$ be the displacement, in meters, from the equilibrium position at time t seconds.

(a) Determine whether the system is overdamped, underdamped, or critically damped.

Solution: The displacement satisfies the DE $mx'' + cx' + kx = 0$, that is $2x'' + 10x' + 8x = 0$, or equivalently $x'' + 5x' + 4x = 0$. The characteristic equation is $r^2 + 5r + 4 = 0$, that is $(r + 1)(r + 4) = 0$. Since there are two real solutions to the characteristic equation, the system is overdamped.

(b) Given that $x(0) = 1$ and $x'(0) = 5$, find the time t at which $x(t)$ reaches its maximum.

Solution: Since the roots of the characteristic equation are $r = -1, -4$, the solution to the above DE is $x = Ae^{-t} + Be^{-4t}$, and then $x' = -Ae^{-t} - 4Be^{-4t}$. To get $x(0) = 1$ we need $A + B = 1$ (1), and to get $x'(0) = 5$ we need $-A - 4B = 5$ (2). Solve equations (1) and (2) to get $A = 3$ and $B = -2$, so the displacement is given by

$$x = 3e^{-t} - 2e^{-4t}.$$

To find the maximum value of $x(t)$, we set $x'(t) = 0$. We have $x'(t) = 0 \iff -3e^{-t} + 8e^{-4t} = 0 \iff -3 + 8e^{-3t} = 0 \iff e^{-3t} = \frac{3}{8} \iff -3t = \ln \frac{3}{8} = -\ln \frac{8}{3} \iff t = \frac{1}{3} \ln \frac{8}{3}$. It is clear from the physical nature of the problem that this value of t gives the maximum value for $x(t)$ (not the minimum), but we could verify this mathematically in several ways (for example by using the first or second derivative test).

3: An LRC series circuit consists of an inductor of inductance $L = 1$ henries, a resistor of resistance $R = 2$ ohms, and a capacitor of capacitance $C = \frac{1}{5}$ farads, and there is an impressed voltage of $E = \sin 2t$ volts. Let $q = q(t)$ coulombs be the charge on the capacitor at time t seconds.

(a) Find the asymptotic (that is limiting or eventual) amplitude and phase of $q(t)$.

Solution: The charge on the capacitor satisfies the DE $Lq'' + Rq' + \frac{1}{C}q = E$, that is $x'' + 2x' + 5x = \sin(2t)$. The characteristic equation is $r^2 + 2r + 5 = 0$, and the roots are $r = \frac{-2 \pm \sqrt{4-20}}{2} = -1 \pm 2i$, so the solution to the homogeneous DE is $q = Aq_1 + Bq_2$ where $q_1 = e^{-t} \sin(2t)$ and $q_2 = e^{-t} \cos(2t)$. To find a particular solution to the non-homogeneous DE, we try $q = q_p = a \sin(2t) + b \cos(2t)$. Then $q' = 2a \cos(2t) - 2b \sin(2t)$ and $q'' = -4a \sin(2t) - 4b \cos(2t)$. Put these in the DE to get

$$\begin{aligned} \sin(2t) &= -4a \sin(2t) - 4b \cos(2t) + 4a \cos(2t) - 4b \sin(2t) + 5a \sin(2t) + 5b \cos(2t) \\ &= (a - 4b) \sin(2t) + (4a + b) \cos(2t). \end{aligned}$$

Since $\sin(2t)$ and $\cos(2t)$ are linearly independent, we can equate coefficients to get $a - 4b = 1$ (1) and $4a + b = 0$ (2). Solve these two equations to get $a = \frac{1}{17}$ and $b = -\frac{4}{17}$. Thus we obtain the particular solution $q_p = \frac{1}{17} \sin(2t) - \frac{4}{17} \cos(2t)$, and so the general solution to the non-homogeneous DE is

$$q(t) = Ae^{-x} \sin(2x) + Be^{-x} \cos(2x) + \frac{1}{17} \sin(2t) - \frac{4}{17} \cos(2t).$$

Since $\lim_{t \rightarrow 0} Ae^{-x} \sin(2x) + Be^{-x} \cos(2x) = 0$, we see that $q(t)$ is asymptotic to the particular solution $q_p(t)$.

We have $q(t) \sim q_p = \frac{1}{17} \sin(2t) - \frac{4}{17} \cos(2t) = M \sin(2t + \phi)$ where $M = \sqrt{(\frac{1}{17})^2 + (\frac{4}{17})^2} = \frac{1}{\sqrt{17}}$, and ϕ is the angle given by $\sin \phi = \frac{-4/17}{1/\sqrt{17}} = \frac{-4}{\sqrt{17}}$ and $\cos \phi = \frac{1/17}{\sqrt{17}} = \frac{1}{\sqrt{17}}$, that is $\phi = -\tan^{-1} 4$. These quantities, $M = \frac{1}{\sqrt{17}}$ and $\phi = \tan^{-1} 4$, are the asymptotic amplitude and phase of $q(t)$.

(b) Given that $q(0) = 0$ and $q'(0) = 0$, find a formula for $q(t)$.

Solution: In part (a) we found that $q(t) = Ae^{-x} \sin(2x) + Be^{-x} \cos(2x) + \frac{1}{17} \sin(2t) - \frac{4}{17} \cos(2t)$, and so we have $q'(t) = -Ae^{-t} \sin(2t) + 2Ae^{-t} \cos(2t) - Be^{-t} \cos(2t) - 2Be^{-t} \sin(2t) + \frac{2}{17} \cos(2t) - \frac{8}{17} \sin(2t)$. To get $q(0) = 0$ we need $B - \frac{4}{17} = 0$ (1), and to get $q'(0) = 0$ we need $2A - B + \frac{2}{17} = 0$ (2). Solve equations (1) and (2) to get $A = \frac{1}{17}$ and $B = \frac{4}{17}$. Thus the charge on the capacitor is given by

$$q(t) = \frac{1}{17} e^{-t} \sin(2t) + \frac{4}{17} e^{-t} \cos(2t) + \frac{1}{17} \sin(2t) - \frac{4}{17} \cos(2t).$$

4: On a planet where the surface gravitational constant happens to be $g = 10 \text{ m/s}^2$, an object of mass $m = 1 \text{ kg}$ is thrown upwards from the ground at 20 m/s . Let $x(t)$ be its height in meters at time t seconds. Suppose the force at time t due to air resistance is $-\frac{1}{10}x'(t)$ newtons.

(a) Find the time t at which the object reaches its maximum height.

Solution: The total force acting on the object is $F = -mg - \frac{1}{10}x' = -10 - \frac{1}{10}x'$, so Newton's Second Law gives $mx'' = -10 - \frac{1}{10}x'$, that is $x'' + \frac{1}{10}x' = -10$. This is a linear DE for $v = x'$ since we can write it as $v' + \frac{1}{10}v = -10$. An integrating factor is $\lambda = e^{\int \frac{1}{10} dt} = e^{t/10}$, and the general solution is

$$v(t) = e^{-t/10} \int -10 e^{t/10} dt = e^{-t/10} (-100 e^{t/10} + c_1) = c_1 e^{-t/10} - 100.$$

Put in $v(0) = x'(0) = 20$ to get $c_1 - 100 = 20$, so $c_1 = 120$ and we have

$$v(t) = 120 e^{-t/10} - 100.$$

It reaches its maximum height when $v(t) = 0$, and we have $v(t) = 0 \implies 120 e^{-t/10} - 100 = 0 \implies e^{-t/10} = \frac{100}{120} = \frac{5}{6} \implies e^{t/10} = \frac{6}{5} \implies \frac{1}{10}t = \ln\left(\frac{6}{5}\right) \implies t = 10 \ln\left(\frac{6}{5}\right)$.

(b) Find $x(t)$ and (with the help of a calculator) determine whether the object takes longer on the way up to its maximum height or on the way back down to the ground.

Solution: We have $x(t) = \int v(t) dt = \int 120 e^{-t/10} - 100 dt = -1200 e^{-t/10} - 100t + c_2$. Put in $x(0) = 0$ to get $-1200 + c_2 = 0$, so $c_2 = 1200$ and we have

$$x(t) = -1200 e^{-t/10} - 100t + 1200 = 1200(1 - e^{-t/10}) - 100t.$$

By part (a), it gets to the top at $t_1 = 10 \ln\left(\frac{6}{5}\right)$. Consider its position at $t_2 = 2t_1 = 20 \ln\left(\frac{6}{5}\right)$. If it takes longer on the way up, then it will land before $t = t_2$ and then $x(t_2) < 0$. If it takes longer on the way back down, then it will not yet have landed when $t = t_2$ and so we will have $x(t_2) > 0$. We have

$$x(t_2) = 1200\left(1 - e^{-2 \ln(6/5)}\right) - 2000 \ln\left(\frac{6}{5}\right) = 1200\left(1 - \frac{25}{36}\right) - 2000 \ln\left(\frac{6}{5}\right) = 100\left(\frac{11}{3} - 20 \ln\left(\frac{6}{5}\right)\right).$$

A calculator shows that $20 \ln\left(\frac{6}{5}\right) \cong 3.64 < \frac{11}{3}$, so $x(t_2) > 0$, and so it takes longer on the way back down.

5: An object of mass m falls towards the Earth. The force due to gravity is $F = -\frac{GMm}{x^2}$ where x is the distance from the center of the Earth to the object, G is the gravitational constant and M is the mass of the Earth.

(a) Given that $x(0) = x_0$ and $x'(0) = 0$, find a formula for the velocity x' in terms of x .

Solution: We have $F = -\frac{GMm}{x^2}$ and $F = ma = mx''$, and so $x(t)$ satisfies the DE

$$x'' = -\frac{GM}{x^2}, \text{ with } x(0) = 0 \text{ and } x'(0) = x_0.$$

The independent variable t does not occur explicitly in the DE, so we let $x' = v$ and $x'' = v' = \frac{dv}{dx}$.

The DE becomes $v v' = -\frac{GM}{x^2}$. Integrate both sides to get $\frac{1}{2}v^2 = \frac{GM}{x} + c_1$. Put $x = x_0$ and $v = 0$ to get $c_1 = -\frac{GM}{x_0}$, and so we have $\frac{1}{2}v^2 = GM\left(\frac{1}{x} - \frac{1}{x_0}\right)$, that is $v = \pm\sqrt{2GM}\sqrt{\frac{1}{x} - \frac{1}{x_0}}$. We are interested in the case that $v = x' \leq 0$, so

$$v = -\sqrt{2GM}\sqrt{\frac{1}{x} - \frac{1}{x_0}}.$$

We remark that (if you know some physics) this formula can also be obtained using conservation of energy.

(b) Find a formula for time t in terms of x , and then find the time at which $x = \frac{1}{2}x_0$.

Solution: Replace v by x' again to get $x' = -\sqrt{2GM}\sqrt{\frac{1}{x} - \frac{1}{x_0}}$. This DE is separable, so we write it as $\frac{x'}{\sqrt{\frac{1}{x} - \frac{1}{x_0}}} = -\sqrt{2GM}$ and integrate both sides to get $\int \frac{dx}{\sqrt{\frac{1}{x} - \frac{1}{x_0}}} = -\int \sqrt{2GM} dt = -\sqrt{2GM}t + c_2$. Let I be the integral on the left. Then

$$I = \int \frac{dx}{\sqrt{\frac{1}{x} - \frac{1}{x_0}}} = \int \frac{\sqrt{x} dx}{\sqrt{1 - \frac{x}{x_0}}} = \int \frac{2x_0\sqrt{x_0}u^2}{\sqrt{1-u^2}} du,$$

where $u^2 = \frac{x}{x_0}$ so $\sqrt{x} = \sqrt{x_0}u$ and $2x_0u du = dx$. Now let $\cos\theta = u$ so that $\sin\theta = \sqrt{1-u^2}$ and $-\sin\theta d\theta = dx$. Then

$$\begin{aligned} I &= -\int 2x_0\sqrt{x_0} \cos^2\theta d\theta = -x_0\sqrt{x_0}(\theta + \sin\theta\cos\theta) + c_3 = -x_0\sqrt{x_0}(\cos^{-1}u + u\sqrt{1-u^2}) + c_3 \\ &= -x_0\sqrt{x_0}\left(\cos^{-1}\sqrt{\frac{x}{x_0}} + \sqrt{\frac{x}{x_0}}\sqrt{1 - \frac{x}{x_0}}\right) + c_3. \end{aligned}$$

Since $I = -\sqrt{2GM}t + c_2$, we obtain

$$-x_0\sqrt{x_0}\left(\cos^{-1}\sqrt{\frac{x}{x_0}} + \sqrt{\frac{x}{x_0}}\sqrt{1 - \frac{x}{x_0}}\right) = -\sqrt{2GM}t + c.$$

Put in $t = 0$ and $x = x_0$ to get $c = 0$, and so we have

$$t = \frac{x_0\sqrt{x_0}}{\sqrt{2GM}}\left(\cos^{-1}\sqrt{\frac{x}{x_0}} + \sqrt{\frac{x}{x_0} - \left(\frac{x}{x_0}\right)^2}\right).$$

Finally, when $x = \frac{1}{2}x_0$ we have $t = \frac{x_0\sqrt{x_0}}{\sqrt{2GM}}\left(\frac{\pi}{4} + \frac{1}{2}\right) = \frac{x_0\sqrt{x_0}(\pi + 2)}{4\sqrt{2GM}}$.