

1: The substitution $u(x) = y'(x)$ and $u'(x) = y''(x)$ transforms a second order DE of the form $y'' = F(y', x)$ for $y = y(x)$ to the first order DE $u' = F(u, x)$ for $u = u(x)$. Use this substitution to solve the following IVPs.

(a) $xy'' + y' = 1$ with $y(1) = 2$ and $y'(1) = 3$.
 (b) $y'' + x(y')^2 = 0$ with $y(0) = 2$ and $y'(0) = \frac{1}{2}$.

2: The substitution $u(y(x)) = y'(x)$ and $u'(y(x))y'(x) = y''(x)$ transforms a second order DE of the form $y'' = F(y', y)$ for $y = y(x)$ to the first order DE $u' = F(u, y)$ for $u = u(y)$. Use this substitution to solve the following IVPs.

(a) $yy'' + (y')^2 = 0$ with $y(1) = 2$ and $y'(1) = 3$.
 (b) $y'' + (y')^2 = 2e^{-y}$ with $y(0) = 0$ and $y'(0) = 2$.

3: Given one solution $y = y_1(x)$ to the linear homogeneous DE $y'' + p(x)y' + q(x)y = 0$, we can often find a second independent solution by trying $y_2(x) = y_1(x)u(x)$ for some function $u = u(x)$. Use this method, known as **reduction of order**, to solve each of the following.

(a) Solve the DE $x^3y'' + xy' - y = 0$, given that $y = x$ is one solution.
 (b) Solve the IVP $x^2y'' + 3xy' + y = 0$ with $y(1) = 2$ and $y'(1) = 3$ given that $y = \frac{1}{x}$ is one solution to the DE.

4: Given two independent solutions $y = y_1(x)$ and $y = y_2(x)$ to the linear homogeneous DE

$$y'' + p(x)y' + q(x)y = 0$$

we can often find a particular solution $y = y_p(x)$ to the associated non-homogeneous DE

$$y'' + p(x)y' + q(x)y = r(x)$$

by trying $y_p = y_1(x)u_1(x) + y_2(x)u_2(x)$ for some functions $u_1(x)$ and $u_2(x)$ satisfying the condition $y_1u_1' + y_2u_2' = 0$ (1). Putting $y = y_1u_1 + y_2u_2$ into the non-homogeneous DE, and using condition (1) along with the fact that y_1 and y_2 are solutions to the homogeneous DE, gives $y_1'u_1' + y_2'u_2' = r$ (2). Solving the two equations (1) and (2) allows us to find the unknown functions u_1 and u_2 , and hence the particular solution $y_p = y_1u_1 + y_2u_2$. Use this method, known as **variation of parameters**, to solve each of the following.

(a) Solve the DE $x^2y'' - x(x+2)y' + (x+2)y = 2x^3$ given that $y = x$ and $y = xe^x$ are solutions to the associated homogeneous DE.
 (b) Solve the DE $xy'' - (1+x)y' + y = x^2e^{2x}$ given that $y = 1+x$ and $y = e^x$ are solutions to the associated homogeneous DE.

5: Consider the IVP $y'' = yy'$ with $y(0) = 1$ and $y'(0) = 1$.

(a) Find the exact solution $y = f(x)$ to the given IVP.
 (b) Use Euler's method with step size $\Delta x = 0.2$ to approximate $f(1)$.