

MATH 218 Differential Equations, Solutions to Assignment 3

1: (a) The amount $A(t)$ of a radioactive substance satisfies the DE $A'(t) = kA(t)$ for some constant $k < 0$. The substance has a half-life of 10 seconds, which means that $A(10) = \frac{1}{2}A(0)$. If $A(5) = 100$ then find the exact time t at which $A(t) = 20$.

Solution: This DE is linear, since we can write it in the form $A' - kA = 0$. An integrating factor is $\lambda = e^{\int -k dt} = e^{-kt}$ and the general solution is $A(t) = e^{kt} \int 0 dt = c e^{kt}$. Note that $A(0) = c$, so c is the initial amount. Since the half-life is 10, we have

$$A(10) = \frac{1}{2}c \implies c e^{10k} = \frac{1}{2}c \implies e^{10k} = \frac{1}{2} \implies 10k = \ln \frac{1}{2} = -\ln 2 \implies k = -\frac{1}{10} \ln 2.$$

and so $A(t) = c e^{-(t/10) \ln 2} = c 2^{-t/10}$. Also, we have $A(5) = 100 \implies c 2^{-5/10} = 100 \implies c = 100\sqrt{2}$, and so $A(t) = (100\sqrt{2}) 2^{-t/10}$. Finally, we have

$$\begin{aligned} A(t) = 20 &\iff (100\sqrt{2}) 2^{-t/10} = 20 \\ &\iff 2^{t/10} = \frac{100\sqrt{2}}{20} = 5\sqrt{2} = \sqrt{50} \\ &\iff \frac{t}{10} = \log_2 \sqrt{50} = \frac{1}{2} \log_2 50 \\ &\iff t = 5 \log_2 50. \end{aligned}$$

(b) A murder victim is found in a room of constant temperature 25° C. At the time of murder, we assume that the victim's body temperature was 37° C. At 2:00 pm, the body temperature is measured to be 31° C and at 5:00 pm, it is measured to be 29° C. Determine the time of death, assuming that the temperature $T = T(t)$ of the body at time t satisfies Newton's Law of Cooling, so that $T' = -k(T - 25)$ for some constant $k > 0$.

Solution: Let t hours be the time elapsed since 2:00 pm (so $t = 0$ at 2:00). The DE $T' = -k(T - 25)$ is linear since we can write it as $T' + kT = 25k$. An integrating factor is $\lambda = e^{\int k dt} = e^{kt}$ and the solution is

$$T = e^{-kt} \int 25k e^{kt} dt = e^{-kt} (25 e^{kt} + c) = 25 + c e^{-kt}.$$

To get $T(0) = 31$ we need $25 + c = 31$ so $c = 6$, and so we have

$$T(t) = 25 + 6 e^{-kt}.$$

Also we have $T(3) = 29 \implies 25 + 6 e^{-3k} = 29 \implies 6 e^{-3k} = 4 \implies -3k = \frac{2}{3} \implies k = -\frac{1}{3} \ln \frac{2}{3} = \frac{1}{3} \ln \frac{3}{2}$. Finally, $T(t) = 37 \iff 25 + 6 e^{-kt} = 37 \iff 6 e^{-kt} = 12 \iff e^{-kt} = 2 \iff -kt = \ln 2$ so $t = -\frac{\ln 2}{k} = -\frac{3 \ln 2}{\ln \frac{3}{2}} \cong -5.13$. Thus the victim died about 5 hours before 2:00, that is at about 9:00 am.

2: A tank initially contains 12 L of brine (salt-water) with a salt-concentration of 6 g/L. Brine with a salt-concentration of 1 g/L enters the tank at a rate of 2 L/min. The tank is kept well-mixed, and brine drains from the tank at a rate of $\frac{1}{2}$ L/min. Determine the time at which the salt-concentration in the tank reaches 3 g/L.

Solution: Let $V(t)$ L be the volume of brine in the tank at time t min, and let $S(t)$ g be the amount of salt in the tank at time t min. Also, write $V_0 = 12$, $c_0 = 6$, $r_{\text{in}} = 1$, $r_{\text{in}} = 2$ and $r_{\text{out}} = \frac{1}{2}$. Since the initial volume is $V_0 = 12$, and the volume is changing at the rate $V' = r_{\text{in}} - r_{\text{out}} = 2 - \frac{1}{2} = \frac{3}{2}$, we have

$$V(t) = \frac{3}{2}t + 12,$$

and so $S(t)$ satisfies the IVP $S' = r_{\text{in}}c_{\text{in}} - r_{\text{out}} \frac{S}{V} = 1 \cdot 2 - \frac{1}{2} \cdot \frac{S}{\frac{3}{2}t + 12} = 2 - \frac{S}{3(t+8)}$ with $S(0) = c_0V_0 = 6 \cdot 12 = 72$. This DE is linear since we can write it as

$$S' + \frac{1}{3(t+8)}S = 2.$$

An integrating factor is $I = e^{\int \frac{1}{3(t+8)} dt} = e^{\frac{1}{3} \ln(t+8)} = (t+8)^{1/3}$, and the solution is

$$S = (t+8)^{-1/3} \int 2(t+8)^{1/3} dt = (t+8)^{-1/3} \left(\frac{3}{2}(t+8)^{4/3} + c \right) = \frac{3}{2}(t+8) + c(t+8)^{-1/3}.$$

We have $S(0) = 72 \implies 12 + \frac{1}{2}c = 72 \implies c = 120$, and so

$$S(t) = \frac{3}{2}(t+8) + 120(t+8)^{-1/3}.$$

The concentration $C(t)$ g/L of salt in the tank is given by

$$C(t) = \frac{S(t)}{V(t)} = \frac{\frac{3}{2}(t+8) + 120(t+8)^{-1/3}}{\frac{3}{2}(t+8)} = 1 + 80(t+8)^{-4/3},$$

and we have $C(t) = 3 \iff 1 + 80(t+8)^{-4/3} = 3 \iff 80(t+8)^{-4/3} = 2 \iff (t+8)^{-4/3} = \frac{1}{40} \iff (t+8) = 40^{3/4} \iff t = 40^{3/4} - 8 \approx 7.9$. Thus the concentration reaches 3 g/L after about 7.9 minutes.

3: A tank, in the shape of a lower-hemisphere of radius 1 m, is initially filled with water. Water drains through a circular hole of diameter 5 cm at the bottom of the tank. When the depth of water in the tank is equal to y m, the water flows through the hole at a speed of $4\sqrt{y}$ m/s. Determine the time it takes for the depth of the water in the tank to reach 25 cm.

Solution: The front view of the tank is shaped like the bottom half of the circle $x^2 + (y - 1)^2 = 1$, and the right half of this circle is given by $x = \sqrt{1 - (y - 1)^2} = \sqrt{2y - y^2}$. The horizontal cross-section of the tank at height y is a circle of radius $r = x = \sqrt{2y - y^2}$, and so a slice of thickness Δy has volume $\Delta V \cong \pi(2y - y^2)\Delta y$. Thus for a small time interval Δt we have $\frac{\Delta V}{\Delta t} \cong \pi(2y - y^2)\frac{\Delta y}{\Delta t}$. As $\Delta t \rightarrow 0$ we get

$$V' = \pi(2y - y^2) y'.$$

On the other hand, since the water flows through a hole of area $a = \pi(.025)^2 = \pi(\frac{1}{40})^2 = \frac{\pi}{1600}$ m² at a speed $v = 4\sqrt{y}$ m/s, we also have

$$V' = -av = -\frac{\pi}{400}\sqrt{y}.$$

Equating these two expressions for V' we obtain

$$\pi(2y - y^2) y' = -\frac{\pi}{400}\sqrt{y}.$$

This DE is separable as we can write it as $(2y^{1/2} - y^{3/2})y' = -\frac{1}{400}$. Integrate both sides, using the substitution $y = y(t)$ on the left, to get $\int 2y^{1/2} - y^{3/2} dy = \int -\frac{1}{400} dt$ which gives

$$\frac{4}{3}y^{3/2} - \frac{2}{5}y^{5/2} = -\frac{1}{400}t + c.$$

To get $y(0) = 1$ we need $\frac{4}{3} - \frac{2}{5} = c$ so $c = \frac{14}{15}$ and so we have $\frac{4}{3}y^{3/2} - \frac{2}{5}y^{5/2} = -\frac{1}{400}t + \frac{14}{15}$. Thus we have $y(t) = \frac{1}{4} \iff \frac{1}{400}t = \frac{14}{15} - \frac{4}{3} \cdot \frac{1}{8} + \frac{2}{5} \cdot \frac{1}{32} = \frac{14}{15} - \frac{1}{6} + \frac{1}{80} \iff t = \frac{1120}{3} - \frac{200}{3} + 5 = \frac{935}{3}$.

4: In a chemical reaction, 2 g of substance A reacts with 1 g of substance B to produce 3 g of substance C . Suppose that 4 g of substance A and 3 g of substance B are combined at time $t = 0$ min. Let $a(t)$, $b(t)$ and $c(t)$ be the amounts, in grams, of the three substances, and suppose that

$$c'(t) = 3a(t)b(t).$$

Find a formula for $c(t)$, and find the time at which 3 g of substance C has been produced.

Solution: To produce c g of substance C we must use up $\frac{2}{3}c$ g of substance A and $\frac{1}{3}c$ g of substance B , and so $a(t) = 4 - \frac{2}{3}c(t)$ and $b(t) = 3 - \frac{1}{3}c(t)$. Thus $c' = 3ab = 3(4 - \frac{2}{3}c)(3 - \frac{1}{3}c) = (12 - 2c)(3 - \frac{1}{3}c)$ so

$$3c' = 2(6 - c)(9 - c).$$

This DE is separable since we can write it as $\frac{3}{(6 - c)(9 - c)} c' = 2$. Integrate both sides to get

$$\int \frac{3dc}{(6 - c)(9 - c)} = \int 2dt = 2t + d.$$

We have $\int \frac{3dc}{(6 - c)(9 - c)} = \int \frac{1}{6 - c} - \frac{1}{9 - c} dc = -\ln(6 - c) + \ln(9 - c) + \text{const} = \ln \frac{9 - c}{6 - c} + \text{const}$, and so

we have $\ln \frac{9 - c}{6 - c} = 2t + d$. To get $c(0) = 0$ we need $\ln \frac{3}{2} = d$ and so

$$\ln \frac{9 - c}{6 - c} = 2t + \ln \frac{3}{2} \quad (1)$$

Thus $\frac{9 - c}{6 - c} = e^{2t + \ln \frac{3}{2}} = \frac{3}{2}e^{2t} \implies 18 - 2c = 18e^{2t} - 3ce^{2t} \implies c(3e^{2t} - 2) = 18e^{2t} - 18 \implies c = \frac{18(e^{2t} - 1)}{3e^{2t} - 2}$

Finally, put $c = 3$ into equation (1) to get $\ln 2 = 2t + \ln \frac{3}{2} \implies 2t = \ln 2 - \ln \frac{3}{2} = \ln \frac{4}{3} \implies t = \frac{1}{2} \ln \frac{4}{3}$.

5: A tank, in the shape of an inverted pyramid (square at the top with a sharp point at the bottom) with top square side length a meters and height b meters, is initially empty. Water flows in at a rate of r m³/s. Water evaporates from the surface of the water in the tank at a rate of kA m³/s where A m² is the area of the surface. Let $y = y(t)$ be the depth (in meters) of the water in the tank at time t (in seconds).

(a) Show that $y = y(t)$ satisfies the IVP $a^2y^2 y' = rb^2 - ka^2y^2$ with $y(0) = 0$.

Solution: The horizontal cross-section of the water in the tank at position y is a square with sides of length x with $\frac{x}{y} = \frac{a}{b}$ (by similar triangles) so $x = \frac{a}{b}y$, and so the area of the cross-section at y is $A(y) = x^2 = \frac{a^2y^2}{b^2}$. A horizontal slice of water at position y and thickness Δy has volume $\Delta V = A(y)\Delta y = \frac{a^2y^2}{b^2}\Delta y$, and so we have $\frac{\Delta V}{\Delta t} = \frac{a^2y^2}{b^2}\frac{\Delta y}{\Delta t}$. Letting $\Delta t \rightarrow 0$, we obtain

$$V' = \frac{a^2y^2}{b^2} y'.$$

On the other hand, water enters the tank at the rate r and leaves the tank at the rate $kA(y) = k\frac{a^2y^2}{b^2}$ and so we have

$$V' = r - \frac{ka^2y^2}{b^2}.$$

Equating the above two expressions for V' gives us the DE $\frac{a^2y^2}{b^2} y' = r - \frac{ka^2y^2}{b^2}$. Multiplying by b^2 gives

$$a^2y^2 y' = rb^2 - ka^2y^2.$$

(b) Find a formula for the equilibrium (steady-state) depth, and find conditions on a , b , r and k in order that the tank never overflows.

Solution: The equilibrium depth occurs when $y' = 0$. Putting $y' = 0$ into the DE from part (a) gives $rb^2 = ka^2y^2$ so $y^2 = \frac{rb^2}{ka^2}$. Thus the equilibrium depth is

$$y = \frac{\sqrt{r}b}{\sqrt{k}a}.$$

The tank will overflow eventually when $\frac{\sqrt{r}b}{\sqrt{k}a} > b$, that is when $\sqrt{r} > \sqrt{k}a$, or equivalently when $r > ka^2$.

(c) Find a formula for the time t when the depth y reaches half of the equilibrium depth.

Solution: We shall need a formula for $\int \frac{y^2 dy}{A^2 - B^2y^2}$. We find this by partial fractions. We have

$$\int \frac{y^2 dy}{A^2 - B^2y^2} = \int -\frac{1}{B^2} + \frac{\frac{A^2}{B^2}}{A^2 - B^2y^2} dy = \int -\frac{1}{B^2} + \frac{\frac{A}{2B^2}}{A + By} + \frac{\frac{A}{2B^2}}{A - By} dy = -\frac{1}{B} y + \frac{A}{2B^3} \ln \left| \frac{A + By}{A - By} \right| + c.$$

Now we solve the DE from part (a). It is linear since we can write it as $\frac{a^2y^2}{rb^2 - ka^2} y' = 1$. Integrate both sides, using the above formula with $A = \sqrt{r}b$ and $B = \sqrt{k}a$, to get

$$\begin{aligned} \int \frac{a^2y^2 dy}{rb^2 - ka^2y^2} &= \int 1 dt \\ -\frac{1}{k} y + \frac{\sqrt{r}b}{2k\sqrt{k}a} \ln \left| \frac{\sqrt{r}b + \sqrt{k}ay}{\sqrt{r}b - \sqrt{k}ay} \right| &= t + c. \end{aligned}$$

To get $y(0) = 0$ we need $0 = c$, so we have $t = -\frac{1}{k} y + \frac{\sqrt{r}b}{2k\sqrt{k}a} \ln \left| \frac{\sqrt{r}b + \sqrt{k}ay}{\sqrt{r}b - \sqrt{k}ay} \right|$. The water reaches half the equilibrium depth when $y = \frac{\sqrt{r}b}{2\sqrt{k}a}$, that is when

$$t = -\frac{\sqrt{r}b}{2k\sqrt{k}a} + \frac{\sqrt{r}b}{2k\sqrt{k}a} \ln \left(\frac{\sqrt{r}b + \frac{\sqrt{r}b}{2}}{\sqrt{r}b - \frac{\sqrt{r}b}{2}} \right) = \frac{\sqrt{r}b}{2k\sqrt{k}a} (\ln 3 - 1).$$