MATH 218 Differential Equations, Solutionss to Assignment 1

: Find each of the following integrals.
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Solution: Make the substitution © = cosx so du = —sinx dx. Then
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Solution: Make the substitution v = x + 1 so x = v — 1 and dx = du. Then
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Solution: Integrate by parts using u = 3z + 1, du = 3dx, v = 2sin(x/2) and dv = cos(z/2) dx to get
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Solution: Let I = /621 cosz dx. Integrate by parts twice, first using u; = €2*, du; = 2e2* dx, v; = sinx

and dv; = cosx dz, and then using us = 2e2*, duy = 4e>* dx, vo = —cosx and dv, = sinx dz to get
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and so 5] = 62$(sinx+2cosx) + ¢, that is [ = %62$(sinx+2cosx) + d. Thus

_ 1 _ 7 _
=:ze

(SN

/2 /2
/ e?* cosx dr = [% eQx(sinx + 2(:053:)}
0 0



2: Find each of the following integrals.
(a) V3 42 dx
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Solution: Make the substitution 2sinf = x, 2cosf = v4 — 22, 2cosf df = dx to get

V32 /3 fain2 g . /3 /3
/ M: Asin”0 - 2cos 0 df :/ 4sin29d9=/ 2 — 2cos 20 db
0o V4—zx2 0 2cost 0 0
/3
= [20 —si 29} S S/
[ sin . 3 S

°° dx
b o A
( )/0 (22 + 22 + 4)3/2

Solution: Make the substitution v/3tan = z + 1, V3secl = V12 + 2z + 4, V3sec?0df = dx to get
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Solution: We use long division to obtain
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This shows that AR I x 1+M. Note that 23 +42?+3z = z(z+1)(x+3). In order to
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forallz. Putinz =0toget 3A=6s0 A=2,putinz = —1toget —2B =4s0 B = -2, and put in z = —3
to get 6C =6 so C' = 1. Thus
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Solution: To begin with, we find /ﬁ7 which we need later. Let tanf = x so that secf = Va2 + 1
x
and sec? § df = dx. Then
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Note that 2% + 223 + 2 = x(2? + 1)2. In order to get . + ;23_—::1 + (xf—:_l)Z = x(gaccQ::——l)Q we need

A(z?+ 1)+ (Bx + O)(z)(22 + 1) + (Dx + F)(2? + 1) = 2® + 2. Equate coefficients to get the 5 equations

A4+B=0,C=1,2A4+B+D=0,C+FE =0and A =2. Solve these to get A =2, B=-2,C =1,

D =-2and F = -1, and so
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: (a) Verify that y = xsinz is a solution of the DE y (y” + y) = x sin 2.
Solution: We have ¢y’ = sinx + x cosx and y” = cosx + cosx — xsinz = 2cosx — xsinx and so
y(y"' +vy) = (zsinz)(2cosz — zsinx + xsinz)
= (zsinx)(2cosx)
= z(2sinz cosx)

= xsin2x.

(b) Find all the solutions of the form y = ax? + bz + ¢ to the DE (y’(x))2 +4z = 3y(x) + 2% + 1.

Solution: For y = ax? + bx + ¢ we have y' = 2ax + b, so

(y’(a:))2 +dx =3y(z) +2* +1 <= (y’(m))2 +4x —3y(z) — 2> —1=0
— (2ax +b)> +4x —3(az®> +br+¢c)—2>—1=0
< (4a* —3a —1)2? + (dab+4 —3b)x + (b* —=3c—1) =0
— 4a>—-3a—1=0, dab+4=3b, and > =3c+1

From 4a®> —3a — 1 = 0 we get (4a+ 1)(a—1) = 0 and so @ = —1 or a = 1. When = —1, the equation
4ab+4 = 3b gives —1 +4 = 3b so b = 1, and then the equation b?> = 3¢+ 1 gives 1 = 3c+ 1 so ¢ = 0. When
a=1,4ab+4 =3bgives 4b+4 = 3bso b = —4 and then > = 3¢+ 1 gives 16 = 3¢+ 1 so ¢ = 5. Thus there

are two solutions, and they are y = —ixQ +zand y =22 — 4z +5.



4: Consider the IVP 3y = 2 — y? with y(0) = 0.
(a) Sketch the direction field for the given DE for —2 < 2 < 3 and —2 <y < 2.
(b) On the same grid, sketch the solution curve to the given IVP.

Solution: The isocline (curve of constant slope) 3’ = m is the sideways parabola m = x — 42, or z = % + m.
The isoclines are shown in yellow, the slope field is shown in green, and the solution curve with y(0) = 0 is
shown in blue.

(c) Using a calculator, apply Euler’s method with step size Az = 0.5 to approximate the value of f(3) where
y = f(x) is the solution to the given IVP.

Solution: We let 2o = 0 and yo = 0, then for k > 0 we set zx11 = zx + Az and yr11 = yr + F(xk, yr) Az,
where F(x,y) =  — 2. We make a table listing the values of x, yp and F(zr,yx).

k xg Yk F(ag,yr) = xr — yi?
0 0 0 0

1 0.5 0 0.5

2 1.0 0.25 0.9375

3 1.5 0.71875 0.9833984375

4 2.0 1.210449219 0.534812688

5 2.5 1.477855563 0.315942935

6 3.0 1.635827030

Thus we have f(3) & yg = 1.8.



5: Consider the IVP ' = sin (7(z + y)) with y(—1) = 1.
(a) Sketch the direction field for the given DE for —2 < 2 <2 and —2 <y < 2.

(b) On the same grid, sketch the solution curves which pass through each of the points (—1,1), (0,0) and
(0,—1).

Solution: We have y’ = 0 when sin (m(z + y)) = 0, that is when m(z + y) = kn for some integer k, or
equivalently when x + y = k for some integer k. Similarly, we have y' =1 when z +vy =k + %, and 3y = —1
whenz+y=k—1,andy =1 whenz+y = k—i—% or k—i—g, andy’ = —% whenz+y =k — % or k—%. The
isoclines 3’ = 0, j:%, 41 are shown in yellow, the direction field is shown in green, and the solution curves
are shown in blue.

(c) Using a calculator, apply Euler’s method with step size Az = 0.2 to approximate the value of f(0) where
y = f(x) is the solution to the given IVP.

Solution: We let g = —1 and yo = 1, then for & > 0 we set 41 = zx + Az and yr1 = yi + Fak, yr) Az,
where F(z,y) = sin (7(z + 4+y)). We make a table listing the values of zy, yj, and F(z, yx).

ko xp Yk F(xg,yp) = o — Y
0 -1 1 0

1 —-0.8 1 0.5877852524

2 —0.6 1.1117557050 0.9984792328

3 —0.4 1.317252897 0.2570396643

4 —0.2 1.368660830 —0.5054156715

5 0 1.267577696

Thus we have f(0) & y5 = 1.3.



