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Chapter 1: Sets, Fields and Orders

1.1 Definition: For sets A and B, we use the following notation. We write x ∈ A when
x is an element of the set A. We denote the empty set, that is the set with no elements,
by ∅. We write A = B when the sets A and B are equal, that is when A and B have the
same elements. We write A ⊆ B (some books write A ⊂ B) when A is a subset of B,
that is when every element of A is also an element of B. We write A ⊂ B, or for emphasis
A ⊂6= B, when A is a proper subset of B, they is when A ⊆ B but A 6= B. We denote the

union of A and B by A∪B, the intersection of A and B by A∩B, the set A remove B
by A \B and the product of A and B by A×B, that is

A ∪B =
{
x
∣∣x ∈ A or x ∈ B

}
,

A ∩B =
{
x
∣∣x ∈ A and x ∈ B

}
,

A \B =
{
x
∣∣x ∈ A∣∣x /∈ B}, and

A×B =
{

(a, b)
∣∣x ∈ A and b ∈ B

}
.

We say that A and B are disjoint when A ∩B = ∅.

1.2 Theorem: (Properties of Sets) Let A,B,C ⊆ X. Then

(1) (Idempotence) A ∪A = A, A ∩A = A,
(2) (Identity) A ∪ ∅ = A, A ∩ ∅ = ∅, A ∪X = X, A ∩X = A,
(3) (Associativity) (A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C) = A ∩ (B ∩ C),
(4) (Commutativity) A ∪B = B ∪A and A ∩B = B ∩A,
(5) (Distributivity) A∩ (B ∪C) = (A∩B)∪ (A∩C) and A∪ (B ∩C) = (A∪B)∩ (A∪C),
(6) (De Morgan’s Laws) X \(A∪B) = (X \A)∩(X \B) and X \(A∩B) = (X \A)∪(X \B).

Proof: The proof is left as an exercise.

1.3 Definition: We write N = {0, 1, 2, · · ·} for the set of natural numbers (which we
take to include the number 0), Z = {0,±1,±2, · · ·} for the set of integers, Q for the set of
rational numbers and we write R for the set of real numbers. We assume familiarity
with the algebraic operations + , − , · , ÷ and with the order relations < , ≤ , > , ≥ on
these sets. Some of the fundamental properties of these operations and order relations are
discussed in this chapter.

1.4 Definition: For a, b ∈ R with a ≤ b we write

(a, b) =
{
x ∈ R

∣∣a < x < b
}
, [a, b] =

{
x ∈ R

∣∣a ≤ x ≤ b} ,
(a, b] =

{
x ∈ R

∣∣a < x ≤ b
}
, [a, b) =

{
x ∈ R

∣∣a ≤ x < b
}
,

(a,∞) =
{
x ∈ R

∣∣a < x
}
, [a,∞) =

{
x ∈ R

∣∣a ≤ x} ,
(−∞, b) =

{
x ∈ R

∣∣x ≤ b} , (−∞, b] =
{
x ∈ R

∣∣x ≤ b} ,
(−∞,∞) = R .

An interval in R is any set of one of the above forms. In the case that a = b we have
(a, b) = [a, b) = (a, b] = ∅ and [a, b] = {a}, and these intervals are called degenerate
intervals. The intervals ∅, (a, b), (a,∞), (−∞, b) and (−∞,∞) are called open intervals.
The intervals ∅, [a, b], [a,∞), (−∞, b] and (−∞,∞) are called closed intervals.
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1.5 Definition: Let A and B be sets. A relation on A×B is a subset r ⊆ A×B. When
r is a relation on A × B and a ∈ A and b ∈ B, we say that a and b are related under r
and we write arb when (a, b) ∈ r. The domain and range of the relation r are the sets
Domain(r) =

{
x ∈ A

∣∣xry for some y ∈ B
}

and Range(r) =
{
y ∈ B

∣∣xry for some x ∈ A
}

.

1.6 Definition: Let A and B be sets. A function from A to B is a relation f on A×B
with the property that for every x ∈ A there exists a unique element y ∈ B such that xfy.
When f is a function from A to B, we write f : A→ B. When f : A→ B and x ∈ A we
denote the unique element y ∈ B for which xfy by f(x). Note that Domain(f) = A and
Range(f) ⊆ B. A binary operation on A is a function f : A×A→ A

1.7 Definition: A field is a set F with two distinct elements 0, 1 ∈ F and two binary
operations + and · such that

(1) (Additive Associativity) for all x, y, z ∈ F we have (x+ y) + z = x+ (y + z),
(2) (Additive Commutativity) for all x, y ∈ F we have x+ y = y + x,
(3) (Additive Identity) for all x ∈ F we have 0 + x = x,
(4) (Additive Inverse) for all x ∈ F there exists a unique y ∈ F such that x+ y = 0,
(5) (Multiplicative Associativity) for all x, y, z ∈ F we have (x · y) · z = x · (y · z),
(6) (Multiplicative Commutativity) for all x, y ∈ F we have x · y = y · x,
(7) (Multiplicative Identity) for all x ∈ F we have 1 · x = x,
(8) (Multiplicative Inverse) for all 0 6= x ∈ F there exists a unique y ∈ F such that x·y = 1.
(9) (Distributivity) for all x, y, z ∈ F we have x · (y + z) = (x · y) + (x · z).

1.8 Theorem: Q and R are fields.

Proof: We omit the proof, but we remark that Z is not a field because it does not satisfy
Property (8).

1.9 Notation: Let F be a field and let a, b ∈ F . We denote the unique additive inverse of
a by −a and we write a−b = a+(−b). We usually write a·b simply as ab, and, when a 6= 0,
we denote the unique multiplicative inverse of a by a−1 and we write b÷ a = b

a = b a−1.

1.10 Theorem: Let F be a field. Then for all x, y, z ∈ F we have

(1) (Additive Cancellation) if x+ y = x+ z then y = z,
(2) (Uniqueness of Additive Identity) if x+ y = x then y = 0,
(3) (Multiplicative Cancellation) if xy = xz then either x = 0 or y = z,
(4) (Uniqueness of Multiplicative Identity) if xy = x then y = 1,
(5) (No Zero Divisors) if xy = 0 then x = 0 or y = 0.

Proof: The proof is left as an exercise.

1.11 Theorem: (Properties of Fields) Let F be a field. Then for all x, y ∈ F we have
0 · x = 0, −(−x) = x, −(x+ y) = −x− y, (−1)x = −x, (−x) y = −(xy), (−x)(−y) = xy,
(a−1)−1 = a, (ab)−1 = a−1b−1 and (−a)−1 = −a−1.

Proof: The proof is left as an exercise.
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1.12 Definition: An order on a set X is a binary relation ≤ on X such that

(1) (Totality) for all x, y ∈ X, either x ≤ y or y ≤ x,
(2) (Antisymmetry) for all x, y ∈ X, if x ≤ y and y ≤ x then x = y, and
(3) (Transitivity) for all x, y, z ∈ X, if x < y and y < z then x < z.

An ordered set is a set X with on order ≤.

1.13 Theorem: Each of N, Z, Q and R is an ordered set using its standard order ≤.
Under the inclusions N ⊆ Z ⊆ Q ⊆ R the orders coincide (so that for example when
a, b ∈ N we have a ≤ b in N if and only if a ≤ b in R).

Proof: We omit the proof.

1.14 Notation: When ≤ is an order on X, we write x < y when x ≤ y and x 6= y, we
write x ≥ y when y ≤ x and we write x > y when y < x.

1.15 Definition: An ordered field is a field F with an order≤ such that for all x, y, z ∈ F
(1) if x ≤ y then x+ z ≤ y + z, and
(2) if 0 ≤ x and 0 ≤ y then 0 ≤ xy.

When F is an ordered field and x ∈ F we say that x is positive when x > 0, we say x is
negative when x < 0, we say x is nonpositive when x ≤ 0, and we say x is nonnegative
when x ≥ 0.

1.16 Theorem: Q and R are ordered fields.

Proof: We omit the proof.

1.17 Theorem: (Properties of Ordered Fields) Let F be an ordered field. Then for all
x, y, z ∈ F
(1) if x > 0 then −x < 0, and if x < 0 then −x > 0,
(2) if x > 0 and y < z then xy < xz,
(3) if x < 0 and y < z then xy > xz,
(4) if x 6= 0 then x2 > 0, and in particular 1 > 0, and
(5) if 0 < x < y then 0 < 1

y <
1
x .

Proof: The proof is left as an exercise.

1.18 Definition: Let F be an ordered field. For a ∈ F we define the absolute value of
a to be

|a| =

{
a if a ≥ 0,

−a if a ≤ 0.

1.19 Theorem: (Properties of Absolute Value) Let F be an ordered field. For all x, y ∈ F
(1) (Positive Definiteness) |x| ≥ 0 with |x| = 0 ⇐⇒ x = 0,
(2) (Symmetry) |x− y| = |y − x|,
(3) (Multiplicativeness) |xy| = |x| |y|
(4) (Triangle Inequality)

∣∣|x| − |y|∣∣ ≤ |x+ y| ≤ |x|+ |y|, and
(5) (Approximation) for a, b ∈ F with b ≥ 0 we have |x− a| ≤ b ⇐⇒ a− b ≤ x ≤ a+ b.

Proof: The proof is left as an exercise.
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1.20 Theorem: (Induction Principle) Let m ∈ Z. Let F (n) be a statement about n.
Suppose that

(1) F (m) is true, and
(2) for all k ∈ Z with k ≥ m, if F (k) is true then F (k + 1) is true.

Then F (n) is true for all n ∈ Z with n ≥ m.

Proof: We omit the proof.

1.21 Theorem: (Basic Order Properties in Z)

(1) for n ∈ Z we have n ∈ N if and only if n ≥ 0,
(2) for all k, n ∈ Z we have k ≤ n if and only if k < n+ 1.

Proof: We omit the proof.

1.22 Theorem: (Strong Induction Principle) Let m ∈ Z. Let F (n) be a statement about
n. Suppose that for all n ∈ Z with n ≥ m, if F (k) is true for all k ∈ Z with m ≤ k < n
then F (n) is true. Then F (n) is true for all n ∈ Z with n ≥ m.

Proof: Let G(n) be the statement “F (k) is true for all m ≤ k < n”. Note that G(m) is
true vacuously since there are no elements k with m ≤ k < m. Let n ∈ Z with n ≥ m and
suppose, inductively, that G(n) is true, in other words that F (k) is true for all m ≤ k < n.
It follows from the hypothesis of the theorem that F (n) is true, and so we have F (k) true
for all k ∈ Z with m ≤ k ≤ n. By the Basic Order Property (2), it follows that F (k)
is true for all k ∈ Z with m ≤ k < n + 1, or equivalently that G(n + 1) is true. By the
Induction Principle, it follows that G(n) is true for all n ∈ Z with n ≥ m. Let n ∈ Z with
n ≥ m. Since G(n) is true, we know that F (k) is true for all k ∈ Z with m ≤ k < n. By
the hypothesis of the theorem, it follows that F (n) is true. Thus F (n) is true for all n ∈ Z
with n ≥ m.

1.23 Example: Let a0 = 0 and a1 = 1 and for n ≥ 2 let an = an−1 + 6an−2. Show that
an = 1

5

(
3n − (−2)n

)
for all n ≥ 0.

Solution: We claim that an = 1
5

(
3n − (−2)n

)
for all n ≥ 0. When n = 0 we have

an = a0 = 0 and 1
5

(
3n − (−2)n

)
= 1

5

(
30 − (−2)0

)
= 0 , so the claim is true when n = 0.

When n = 1 we have an = a1 = 1 and 1
5

(
3n − (−2)n

)
= 1

5

(
3− (−2)

)
= 1, so the claim is

true when n = 1. Let n ≥ 2 and suppose the claim is true for all k < n. In particular we
suppose the claim is true for n−1 and n−2, that is we suppose an−1 = 1

5

(
3n−1−(−2)n−1

)
and an−2 = 1

5

(
3n−2 − (−2)n−2

)
. Then

an = an−1 + 6an−2

= 1
5

(
3n−1 − (−2)n−1

)
+ 6

5

(
3n−2 − (−2)n−2

)
=
(
1
5 · 3

n−1 + 6
5 · 3

n−2)− ( 15 (−2)n−1 + 6
5 (−2)n−2

)
=
(
3
5 · 3

n−2 + 6
5 · 3

n−2)− (− 2
5 (−2)n−2 + 6

5 (−2)n−2
)

= 9
5 · 3

n−2 − 4
5 (−2)n−2 = 1

5 · 3
n − 1

5 (−2)n

= 1
5

(
3n − (−2)n

)
= 1

5

(
3n − (−2)n

)
.

By Strong Induction, we have an = 1
5

(
3n − (−2)n

)
for all n ≥ 0.
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1.24 Definition: Let X be an ordered set and let A ⊆ X. We say that A is bounded
above (in X) when there exists an element b ∈ X such that x ≤ b for all x ∈ A, and in
this case we say that b is an upper bound for A (in X).

We say that A is bounded below (in X) when there exists an element a ∈ X such
that a ≤ x for all x ∈ A, and in this case we say that a is a lower bound for A (in X).
We say that A is bounded (in X) when A is bounded above and bounded below.

1.25 Definition: LetX be an ordered set and let A ⊆ X. We say that A has a supremum
(or a least upper bound) (in X) when there exists an element b ∈ X such that b is an
upper bound for A with b ≤ c for every upper bound c ∈ X for A, and in this case we
say that b is the supremum (or the least upper bound) of A (in X) (note that if the
supremum exists then it is unique by antisymmetry) and we write b = supA. When the
supremum b = supA exists and we have b ∈ A, then we also say that b is the maximum
element of A and we write b = maxA.

We say that A has an infimum (or a greatest lower bound) (in X) when there
exists an element a ∈ X such that a is a lower bound for A with c ≤ a for every lower
bound c for A, and in this case we say that a is the infimum (or the greatest lower
bound) of A (in X) and we write a = inf A. When a = inf A ∈ A we also say that a is
the minimum element of A and we write a = minA.

1.26 Example: Let A = (0,∞) and B = [1,
√

2). The set A is bounded below but
not bounded above. The numbers −1 and 0 are both lower bounds for A and we have
inf A = 0. The set A has no minimum element and no maximum element. The set B is
bounded above and bellow. The numbers 0 and 1 are both lower bounds for B and the
numbers

√
2 and 3 are both upper bounds for B. We have inf B = 1 and supB =

√
2.

The set B has a minimum element, namely minB = inf B = 1, but B has no maximum
element.

1.27 Theorem: (Completeness Properties of R)

(1) Every nonempty subset of R which is bounded above in R has a supremum in R.
(2) Every nonempty subset of R which is bounded below in R has an infimum in R.

Proof: We omit the proof.

1.28 Theorem: (Approximation Property of Supremum and Infimum) Let ∅ 6= A ⊆ R.

(1) If b = supA then for all 0 < ε ∈ R there exists x ∈ A with b− ε < x ≤ b, and
(2) if a = inf A then for all 0 < ε ∈ R there exists x ∈ A with a ≤ x < a+ ε.

Proof: Let b = supA. Let ε > 0. Suppose, for a contradiction, that there is no element
x ∈ A with b− ε < x, or equivalently that for all x ∈ A we have b− ε ≥ x. Let c = b− ε.
Note that c is an upper bound for A since x ≤ b− ε = c for all x ∈ A. Since b = supA and
c is an upper bound for A we have b ≤ c. But since ε > 0 we have b > b− ε = c giving the
desired contradiction. This proves that there exists x ∈ A with b− ε < x. Choose such an
element x ∈ A. Since b = supA we know that b is an upper bound for A and hence b ≥ x.
Thus we have b− ε < x ≤ b, as required.
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1.29 Theorem: (Well-Ordering Properties of Z in R)

(1) Every nonempty subset of Z which is bounded above in R has a maximum element.
(2) Every nonempty subset of Z which is bounded below in R has a minimum element, in
particular every nonempty subset of N has a minimum element.

Proof: We prove Part (1). Let A be a nonempty subset of Z which is bounded in R.
By Completeness, A has a supremum in R. Let n = supA. We must show that n ∈ A.
Suppose, for a contradiction, that n /∈ A. By the Approximation Property (using ε = 1),
we can choose a ∈ A with n − 1 < a ≤ n. Note that a 6= n since a ∈ A and n /∈ A and
so we have a < n. By the Approximation Property again (using ε = n− a) we can choose
b ∈ A with a < b ≤ n. Since a < b we have b− a > 0. Since n− 1 < a and b ≤ n we have
1 = n− (n− 1) > b− a. But then we have b− a ∈ Z with 0 < b− a < 1 which contradicts
the Basic Order Properties of Z (since b − a < 1 → b − a ≤ 0). Thus n ∈ A so A has a
maximum element.

1.30 Theorem: (Floor and Ceiling Properties of Z in R)

(1) (Floor Property) For every x ∈ R there exists a unique n ∈ Z with x− 1 < n ≤ x.
(2) (Ceiling Property) For every x ∈ R there exists a unique m ∈ Z with x ≤ m < x+ 1.

Proof: We prove Part (1). First we prove uniqueness. Let x ∈ R and suppose that
n,m ∈ Z with x − 1 < n ≤ x and x − 1 < m ≤ x. Since x − 1 < n we have x < n + 1.
Since m ≤ x and x < n + 1 we have m < n + 1 hence m ≤ n. Similarly, we have n ≤ m.
Since n ≤ m and m ≤ n, we have n = m. This proves uniqueness.

Next we prove existence. Let x ∈ R. First let us consider the case that x ≥ 0.
Let A = {k ∈ Z k ≤ x}. Note that A 6= ∅ because 0 ∈ A and A is bounded above in
R by x. By The Well-Ordering Property of Z in R, A has a maximum element. Let
n = maxA. Since n ∈ A we have n ∈ Z and n ≤ x. Also note that x − 1 < n since
x − 1 ≥ n → x ≥ n + 1 → n + 1 ∈ A → n 6= maxA. Thus for n = maxA we have n ∈ Z
with x− 1 < n ≤ x, as required.

Next consider the case that x < 0. If x ∈ Z we can take n = x. Suppose that
x /∈ Z. We have −x > 0 so, by the previous paragraph, we can choose m ∈ Z with
−x − 1 < m ≤ −x. Since m ∈ Z but x /∈ Z we have m 6= −x so that −x − 1 < m < −x
and hence x < −m < x + 1. Thus we can take n = −m − 1 to get x − 1 < n < x. This
completes the proof of Part (1).

1.31 Definition: Given x ∈ R we define the floor of x to be the unique n ∈ Z with
x − 1 < n ≤ x and we denote the floor of x by bxc. The function f : R → Z given by
f(x) = bxc is called the floor function.

1.32 Theorem: (Archimedean Properties of Z in R)

(1) For every x ∈ R there exists n ∈ Z with n > x.
(2) For every x ∈ R there exists m ∈ Z with m < x.

Proof: Let x ∈ R. Let n = bxc + 1 and m = bxc − 1. Since x − 1 < bxc we have
x < bxc+ 1 = n and since bxc ≤ x we have m = bxc − 1 ≤ x− 1 < x.

1.33 Theorem: (Density of Q in R) For all a, b ∈ R with a < b there exists q ∈ Q with
a < q < b.

Proof: Let a, b ∈ R with a < b. By the Archimidean Property, we can choose n ∈ Z with
n > 1

b−a > 0. Then n(b − a) > 1 and so nb > na + 1. Let k = bna + 1c. Then we have

na < k ≤ na+ 1 < nb hence a < k
n < b. Thus we can take q = k

n to get a < q < b.
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Chapter 2: Injective and Surjective Functions and Cardinality

2.1 Definition: Let X and Y be sets and let f : X → Y . Recall that the domain of f
and the range of f are the sets

Domain(f) = X , Range(f) = f(X) =
{
f(x)

∣∣x ∈ X} .
For A ⊆ X, the image of A under f is the set

f(A) =
{
f(x)

∣∣x ∈ A}.
For B ⊆ Y , the inverse image of B under f is the set

f−1(B) =
{
x ∈ X

∣∣f(x) ∈ B
}
.

2.2 Definition: Let X, Y and Z be sets, let f : X → Y and let g : Y → Z. We define
the composite function g ◦ f : X → Z by (g ◦ f)(x) = g

(
f(x)

)
for all x ∈ X.

2.3 Definition: We say that f is injective (or one-to-one, written as 1 : 1) when for
every y ∈ Y there exists at most one x ∈ X such that f(x) = y. Equivalently, f is
injective when for all x1, x2 ∈ X, if f(x1) = f(x2) then x1 = x2. We say that f is
surjective (or onto) when for every y ∈ Y there exists at least one x ∈ X such that
f(x) = y. Equivalently, f is surjective when Range(f) = Y . We say that f is bijective
(or invertible) when f is both injective and surjective, that is when for every y ∈ Y there
exists exactly one x ∈ X such that f(x) = y. When f is bijective, we define the inverse
of f to be the function f−1 : Y → X such that for all y ∈ Y , f−1(y) is equal to the unique
element x ∈ X such that f(x) = y. Note that when f is bijective so is f−1, and in this
case we have (f−1)−1 = f .

2.4 Theorem: Let f : X → Y and let g : Y → Z. Then

(1) if f and g are both injective then so is g ◦ f ,

(2) if f and g are both surjective then so is g ◦ f , and

(3) if f and g are both invertible then so is g ◦ f , and in this case (g ◦ f)−1 = f−1 ◦ g−1.

Proof: To prove Part (1), suppose that f and g are both injective. Let x1, x2 ∈ X. If
g(f(x1)) = g(f(x2)) then since g is injective we have f(x1) = f(x2), and then since f is
injective we have x1 = x2. Thus g ◦ f is injective.

To prove Part (2), suppose that f and g are surjective. Given z ∈ Z, since g is
surjective we can choose y ∈ Y so that g(y) = z, then since f is surjective we can choose
x ∈ X so that f(x) = y, and then we have g(f(x)) = g(y) = z. Thus g ◦ f is surjective.

Finally, note that Part (3) follows from Parts (1) and (2).

2.5 Definition: For a set X, we define the identity function on X to be the function
IX : X → X given by IX(x) = x for all x ∈ X. Note that for f : X → Y we have
f ◦ IX = f and IY ◦ f = f .

2.6 Definition: Let X and Y be sets and let f : X → Y . A left inverse of f is a function
g : Y → X such that g ◦ f = IX . Equivalently, a function g : Y → X is a left inverse of f
when g

(
f(x)

)
= x for all x ∈ X. A right inverse of f is a function h : Y → X such that

f ◦ h = IY . Equivalently, a function h : Y → X is a right inverse of f when f
(
h(y)

)
= y

for all y ∈ Y .
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2.7 Theorem: Let X and Y be nonempty sets and let f : X → Y . Then

(1) f is injective if and only if f has a left inverse,
(2) f is surjective if and only if f has a right inverse, and
(3) f is bijective if and only if f has a left inverse g and a right inverse h, and in this case
we have g = h = f−1.

Proof: To prove Part (1), suppose first that f is injective. Since X 6= ∅ we can choose
a ∈ X and then define g : Y → X as follows: if y ∈ Range(f) then (using the fact that f is
1:1) we define g(y) to be the unique element xy ∈ X with f(xy) = y, and if y /∈ Range(f)
then we define g(y) = a. Then for every x ∈ X we have y = f(x) ∈ Range(f), so
g(y) = xy = x, that is g

(
f(x)

)
= x. Conversely, if f has a left inverse, say g, then f is 1:1

since for all x1, x2 ∈ X, if f(x1) = f(x2) then x1 = g
(
f(x1)

)
= g
(
f(x2)

)
= x2.

To prove Part (2), suppose first that f is onto. For each y ∈ Y , choose xy ∈ X
with f(xy) = y, then define g : X → Y by g(y) = xy (we need the Axiom of Choice for
this). Then g is a right inverse of f since for every y ∈ Y we have f

(
g(y)

)
= f(xy) = y.

Conversely, if f has a right inverse, say g, then f is onto since given any y ∈ Y we can
choose x = g(y) and then we have f(x) = f

(
g(y)

)
= y.

To prove Part (3), suppose first that f is bijective. The inverse function f−1 : Y → X
is a left inverse for f because given x ∈ X we can let y = f(x) and then f−1(y) = x so
that f−1

(
f(x)

)
= f−1(y) = x. Similarly, f−1 is a right inverse for f because given y ∈ Y

we can let x be the unique element in X with y = f(x) and then we have x = f−1(y) so
that f

(
f−1(y)

)
= f(x) = y. Conversely, suppose that g is a left inverse for f and h is a

right inverse for f . Since f has a left inverse, it is injective by Part (1). Since f has a right
inverse, it is surjective by Part (2). Since f is injective and surjective, it is bijective. As
shown above, the inverse function f−1 is both a left inverse and a right inverse. Finally,
note that g = f−1 = h because for all y ∈ Y we have

g(y) = g
(
f
(
f−1(y)

))
= f−1(y) = f−1

(
f
(
h(y)

))
= h(y) .

2.8 Corollary: Let X and Y be sets. Then there exists an injective map f : X → Y if
and only if there exists a surjective map g : Y → X.

Proof: Suppose f : X → Y is an injective map. Then f has a left inverse. Let g be a left
inverse of f . Since g ◦ f = IX , we see that f is a right inverse of g. Since g has a right
inverse, g is surjective. Thus there is a surjective map g : Y → X. Similarly, if g : Y → X
is surjective, then it has a right inverse f : X → Y which is injective.

2.9 Definition: Let A and B be sets. We say that A and B have the same cardinality,
and we write |A| = |B|, when there exists a bijective map f : A→ B (or equivalently when
there exists a bijective map g : Y → X). We say that the cardinality of A is less than
or equal to the cardinality of B, and we write |A| ≤ |B|, when there exists an injective
map f : A → B (or equivalently when there exists a surjective map g : Y → X). We say
that the cardinality of A is less than the cardinality of B, and we write |A| < |B|, when
|A| ≤ |B| and |A| 6= |B|, (that is when there exists an injective map f : A→ B but there
does not exist a bijective map g : A → B). We also write |A| ≥ |B| when |B| ≤ |A| and
|A| > |B| when |B| < |A|.
2.10 Example: The map f : N → 2N given by f(k) = 2k is bijective, so |2N| = |N |.
The map g : N→ Z given by g(2k) = k and g(2k + 1) = −k − 1 for k ∈ N is bijective, so
we have |Z| = |N|. The map h : N×N→ N given by h(k, l) = 2k(2l+ 1)− 1 is bijective,
so we have |N×N| = |N|.
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2.11 Theorem: For all sets A, B and C,

(1) |A| = |A|,
(2) if |A| = |B| then |B| = |A|,
(3) if |A| = |B| and |B| = |C| then |A| = |C|,
(4) |A| ≤ |B| if and only if (|A| = |B| or |A| < |B|), and
(5) if |A| ≤ |B| and |B| ≤ |C| then |A| ≤ |C|.

Proof: Part (1) holds because the identity function IA : A → A is bijective. Part (2)
holds because if f : A → B is bijective then so is f−1 : B → A. Part (3) holds because if
f : A → B and g : B → C are bijective then so is the composite g ◦ f : A → C. The rest
of the proof is left as an exercise.

2.12 Definition: Let A be a set. For each n ∈ N, let Sn = {0, 1, 2, · · · , n−1}. For n ∈ N,
we say that the cardinality of A is equal to n, or that A has n elements, and we write
|A| = n, when |A| = |Sn|. We say that A is finite when |A| = n for some n ∈ N. We say
that A is infinite when A is not finite. We say that A is countable when |A| = |N|.

2.13 Note: When a set A is finite with |A| = n, and when f : A → Sn is a bijection, if
we let ak = f−1(k) for each k ∈ Sn then we have A = {a0, a1, · · · , ak−1} with the elements
ak distinct. Conversely, if A = {a0, a1, · · · , ak−1} with the elements ak all distinct, then
we define a bijection f : A→ Sn by f(ak) = k. Thus we see that A is finite with |A| = n
if and only if A is of the form A = {a0, a1, · · · , an−1} with the elements ak all distinct.
Similarly, a set A is countable if and only if A is of the form A = {a0, a1, a2, · · ·} with the
elements ak all distinct.

2.14 Note: For n ∈ N, if A is a finite set with |A| = n+ 1 and a ∈ A then |A \ {a}| = n.
Indeed, if A = {a0, a1, · · · , an} with the elements ai distinct, and if a = ak so that we have
A \ {a} = {a0, a1, · · · , ak−1, ak+1, · · · , an}, then we can define a bijection f : Sn → A \ {a}
by f(i) = ai for 0 ≤ i < k and f(i) = ai+1 for k ≤ i < n.

2.15 Theorem: Let A be a set. Then the following are equivalent.

(1) A is infinite.
(2) A contains a countable subset.
(3) |N| ≤ |A|
(4) There exists a map f : A→ A which is injective but not surjective.

Proof: To prove that (1) implies (2), suppose that A is infinite. Since A 6= ∅ we can
choose an element a0 ∈ A. Since A 6= {a0} we can choose an element a1 ∈ A \ {a0}.
Since A 6= {a0, a1} we can choose a3 ∈ A \ {a0, a1}. Continue this procedure: having
chosen distinct elements a0, a1, · · · , an−1 ∈ A, since A 6= {a0, a1, · · · , an−1} we can choose
an ∈ A \ {a0, a1, · · · , an−1}. In this way, we obtain a countable set {a0, a1, a2, · · ·} ⊆ A.

Next we show that (2) is equivalent to (3). Suppose that A contains a countable
subset, say {a0, a1, a2, · · ·} ⊆ A with the element ai distinct. Since the ai are distinct, the
map f : N → A given by f(k) = ak is injective, and so we have |N| ≤ |A|. Conversely,
suppose that |N| ≤ |A|, and chose an injective map f : N→ A. Considered as a map from
N to f(N), f is bijective, so we have |N| = |f(N)| hence f(N) is a countable subset of A.

Next, let us show that (2) implies (4). Suppose that A has a countable subset, say
{a0, a1, a2, · · ·} ⊆ A with the element ai distinct. Define f : A → A by f(ak) = ak+1 for
all k ∈ N and by f(b) = b for all b ∈ A \ {a0, a1, a2, · · ·}. Then f is injective but not
surjective (the element a0 is not in the range of f).
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Finally, to prove that (4) implies (1) we shall prove that if A is finite then every
injective map f : A→ A is surjective. We prove this by induction on the cardinality of A.
The only set A with |A| = 0 is the set A = ∅, and then the only function f : A→ A is the
empty function, which is surjective. Since that base case may appear too trivial, let us
consider the next case. Let n = 1 and let A be a set with |A| = 1, say A = {a}. The only
function f : A → A is the function given by f(a) = a, which is surjective. Let n ≥ 1 and
suppose, inductively, that for every set A with |A| = n, every injective map f : A → A is
surjective. Let B be a set with |B| = n+ 1 and let g : B → B be injective. Suppose, for a
contradiction, that g is not surjective. Choose an element b ∈ B which is not in the range
of g so that we have g : B → B \ {b}. Let A = B \ {b} and let f : A → A be given by
f(x) = g(x) for all x ∈ A. Since g : B → A is injective and f(x) = g(x) for all x ∈ A, f is
also injective. Again since g is injective, there is no element x ∈ B \ {b} with g(x) = g(b),
so there is no element x ∈ A with f(x) = g(b), and so f is not surjective. Since |A| = n
(by the above note), this contradicts the induction hypothesis. Thus f must be surjective.
By the Principle of Induction, for every n ∈ N and for every set A with |A| = n, every
injective function f : A→ A is surjective.

2.16 Corollary: Let A and B be sets.

(1) If A is countable then A is infinite.
(2) When |A| ≤ |B|, if B is finite then so is A (equivalently if A is infinite then so is B).
(3) If |A| = n and |B| = m then |A| = |B| if and only if n = m.
(4) If |A| = n and |B| = m then |A| ≤ |B| if and only if n ≤ m.
(5) When one of the two sets A and B is finite, if |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

Proof: Part (1) is immediate: if A is countable then |N| = |A|, hence |N| ≤ |A|, and so A
is infinite, by Theorem 2.15..

To prove Part (2), suppose that |A| ≤ |B and that |A| is infinite. Since A is infinite,
we have |N| ≤ |A| (by Theorem 2.15). Since |N| ≤ |A| and |A| ≤ |B| we have |N| ≤ |B|
(by Theorem 2.11). Since |N| ≤ |B|, B is infinite (by Theorem 2.15 again).

To Prove Part (3), suppose that |A| = n and |B| = m. If n = m then we have
Sn = Sm and so |A| = |Sn| = |Sm| = |B|. Conversely, suppose that |A| = |B|. Suppose,
for a contradiction, that n 6= m, say n > m, and note that Sm ⊂6= Sn. Since |A| = |B| we

have |Sn| = |A| = |B| = |Sm| so we can choose a bijection f : Sn → Sm. Since Sm ⊂6= Sn,

we can consider f as a function f : Sn → Sn which is injective but not surjective. This
contradicts Theorem 2.16, and so we must have n = m. This proves Part (3).

To prove Part (4), we again suppose that |A| = n and |B| = m. If n ≤ m then Sn ⊆ Sm
so the inclusion map I : Sn → Sm is injective and we have |A| = |Sn| ≤ |Sm| = |B|.
Conversely, suppose that |A| ≤ |B| and suppose, for a contradiction, that n > m. Since
|A| ≤ |B| we have |Sn| = |A| ≤ |B| = |Sm| so we can choose an injective map f : Sn → Sm.
Since n > m we have Sm ⊂6= Sn so we can consider f as a map f : Sn → Sn, and this map

is injective but not surjective. This contradicts Theorem 2.16, and so n ≤ m.
Finally, to prove Part (5) we suppose that one of the two sets A and B is finite, and

that |A| ≤ |B| and |B| ≤ |A|. If A is finite then, since |B| ≤ |A|, Part (2) implies that B is
finite. If B is finite then, since |A| ≤ |B|, Part (2) implies that A is finite. Thus, in either
case, we see that A and B are both finite. Since A and B are both finite with |A| ≤ |B|
and |B| ≤ |A|, we must have |A| = |B| by Parts (3) and (4).
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2.17 Theorem: Let A be a set. Then |A| ≤ |N| if and only if A is finite or countable.

Proof: First we claim that every subset of N is either finite or countable. Let A ⊆ N and
suppose that A is not finite. Since A 6= ∅, we can set a0 = minA (using the Well-Ordering
Property of N). Note that {0, 1, · · · , a0} ∩A = {a0}. Since A 6= {a0} (so the set A \ {a0}
is nonempty) we can set a1 = minA \ {a0}. Then we have a0 < a1 and {0, 1, 2, · · · , a1} ∩
A = {a0, a1}. Since A 6= {a0, a1} we can set a2 = minA \ {a0, a1}. Then we have
a0 < a1 < a2 and {0, 1, 2, · · · , a3} ∩ A = {a0, a1, a2}. We continue the procedure: having
chosen a0, a1, · · · , an−1 ∈ A with a0 < a1 < · · · < an−1 such that A ∩ {0, 1, · · · , an−1} =
{a0, a1, · · · , an−1}, since A 6= {a0, a1, · · · , an−1} we can set an = minA\{a0, a1, · · · , an−1},
and then we have a0 < a1 < · · · < an−1 < an and A{0, 1, 2, · · · , an}∩A = {a0, a1, · · · , an}.
In this way, we obtain a countable set {a0, a1, a2, · · ·} ⊆ A with a0 < a1 < a2 < · · ·
with the property that for all m ∈ N, {0, 1, 2, · · · , am} ∩ A = {a0, a1, · · · , am}. Since
0 ≤ a0 < a1 < a2 < · · ·, it follows (by induction) that ak ≥ k for all k ∈ N. It follows in
turn that A ⊆ {a0, a1, a2 · · ·} because given m ∈ A, since m ≤ am we have

m ∈ {0, 1, 2, · · · ,m} ∩A ⊆ {0, 1, 2, · · · , am} ∩A = {a0, a1, · · · , am}.

Thus A = {a0, a1, a2, · · ·} and the elements ai are distinct, so A is countable. This proves
our claim that every subset of N is either finite or countable.

Now suppose that |A| ≤ |N | and choose an injective map f : A → N. Since f is
injective, when we consider it as a map f : A→ f(A), it is bijective, and so |A| = |f(A)|.
Since f(A) ⊆ N, the previous paragraph shows that f(A) is either finite or countable. If
f(A) is finite with |f(A)| = n then |A| = |f(A)| = |Sn|, and if f(A) is countable then we
have |A| = |f(A)| = |N|. Thus A is finite or countable.

2.18 Theorem: Let A be a set. Then

(1) |A| < |N| if and only if A is finite,
(2) |N| < |A| if and only if A is neither finite nor countable, and
(3) if |A| ≤ |N| and |N| ≤ |A| the |A| = |N|.

Proof: Part (1) follows from Theorem 2.15 because

|A| < |N| ⇐⇒ (|A| ≤ |N| and |A| 6= |N|)
⇐⇒ (A is finite or countable and A is not countable)

⇐⇒ A is finite

and Part (2) follows from Theorem 2.17 because

|N| < |A| ⇐⇒ (|N| ≤ |A| and |N| 6= |A|)
⇐⇒ (A is not finite and A is not countable.)

To prove Part (3), suppose that |A| ≤ |N| and |N| ≤ |A|. Since |A| ≤ |N|, we know
that A is finite or countable by Theorem 2.17. Since |N| ≤ |A|, we know that that A is
infinite by Theorem 2.15. Since A is finite or countable and A is not finite, it follows that
A is countable. Thus |A| = |N|.

2.19 Definition: Let A be a set. When A is countable we write |A| = ℵ0. When A is
finite we write |A| < ℵ0. When A is infinite we write |A| ≥ ℵ0. When A is either finite or
countable we write |A| ≤ ℵ0 and we say that A is at most countable. when A is neither
finite nor countable we write |A| > ℵ0 and we say that A is uncountable.
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2.20 Theorem:

(1) If A and B are countable sets, then so is A×B.
(2) If A and B are countable sets, then so is A ∪B.
(3) If A0, A1, A2, · · · are countable sets, then so is

⋃∞
k=0Ak.

(4) Q is countable.

Proof: To prove Parts (1) and (2), let A = {a0, a1, a2, · · ·} with the ai distinct and let
B = {b0, b1, b2, · · ·} with the bi distinct. Since every positive integer can be written uniquely
in the form 2k(2l+1) with k, l ∈ N, the map f : A×B → N given by f(ak, bl) = 2k(2l+1)−1
is bijective, and so |A × B| = |N|. This proves Part (1). Since the map g : N → A ∪ B
given by g(k) = ak is injective, we have |N| ≤ |A∪B|. Since the map h : N→ A∪B given
by h(2k) = ak and h(2k+1) = bk is surjective, we have |A∪B| ≤ |N |. Since |N| ≤ |A∪B|
and |A ∪B| ≤ |N|, we have |A ∪B| = |N| by Part (3) of Theorem 2.18. This proves (2).

To prove Part (3), for each k ∈ N, let Ak = {ak0, ak1, ak2, · · ·} with the aki distinct.
Since the map f : N →

⋃∞
k=0Ak given by f(k) = a0,k is injective, |N| ≤

∣∣⋃∞
k=0Ak

∣∣.
Since N×N is countable by Part (1), and since the map g : N×N→

⋃∞
k=0Ak given by

g(k, l) = ak,l is surjective, we have
∣∣⋃∞

k=0Ak
∣∣ ≤ |N×N| = |N|. By Part (3) of Theorem

2.18, we have
∣∣⋃∞

k=0Ak
∣∣ = |N|, as required.

Finally, we prove Part (4). Since the map f : N → Q given by f(k) = k is injective,
we have |N| ≤ |Q|. Since the map g : Q → Z × Z, given by g

(
a
b

)
= (a, b) for all

a, b ∈ Z with b > 0 and gcd(a, b) = 1, is injective, and since Z × Z is countable, we have
|Q| ≤ |Z× Z| = |N|. Since |N| ≤ |Q| and |Q| ≤ |N|, we have |Q| = |N|, as required.

2.21 Definition: For a set A, let P(A) denote the power set of A, that is the set of all
subsets of A, and let 2A denote the set of all functions from A to S2 = {0, 1}.

2.22 Theorem:

(1) For every set A,
∣∣P(A)

∣∣ =
∣∣2A∣∣.

(2) For every set A, |A| <
∣∣P(A)

∣∣.
(3) R is uncountable.

Proof: Let A be any set.Define a map g : P(A)→ 2A as follows. Given S ∈ P(A), that is
given S ⊆ A, we define g(S) ∈ 2A to be the map g(S) : A→ {0, 1} given by

g(S)(a) =

{
1 if a ∈ S,
0 if a /∈ S.

Define a map h : 2A → P(A) as follows. Given f ∈ 2A, that is given a map f : A→ {0, 1},
we define h(f) ∈ P(A) to be the subset

h(f) =
{
a ∈ A

∣∣f(a) = 1
}
⊆ A.

The maps g and h are the inverses of each other because for every S ⊆ A and every
f : A→ {0, 1} we have

f = g(S) ⇐⇒ ∀a ∈ A f(a) = g(S)(a) ⇐⇒ ∀a ∈ A f(a) =

{
1 if a ∈ S,

0 if a /∈ S,
⇐⇒ ∀a ∈ A

(
f(a) = 1 ⇐⇒ a ∈ S

)
⇐⇒

{
a ∈ A

∣∣f(a) = 1
}

= S ⇐⇒ h(f) = S.

This completes the proof of Part (1).
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Let us prove Part (2). Again we let A be any set. Since the the map f : A → P(A)
given by f(a) = {a} is injective, we have |A| ≤

∣∣P(A)
∣∣. We need to show that |A| 6=

∣∣P(A)
∣∣.

Let g : A→ P(A) be any map. Let S =
{
a ∈ A

∣∣a /∈ g(a)
}

. Note that S cannot be in the
range of g because if we could choose a ∈ A so that g(a) = S then, by the definition of S,
we would have a ∈ S ⇐⇒ a /∈ g(a) ⇐⇒ a /∈ S which is not possible. Since S is not in
the range of g, the map g is not surjective. Since g was an arbitrary map from A to P(A),
it follows that there is no surjective map from A to P(A). Thus there is no bijective map
from A to P(A) and so we have |A| 6=

∣∣P(A)
∣∣, as desired.

Finally, we shall prove that R is uncountable using the fact (which we did not prove)
that every real number has a unique decimal expansion which does not end with an infinite
string of 9’s. We define a map g : 2N → R as follows. Given f ∈ 2N, that is given a map
f : N → {0, 1}, we define g(f) to be the real number g(f) ∈ [0, 1) with the decimal
expansion g(f) = .f(0)f(1)f(2)f(3) · · · (for those who have seen infinite series, this is the
number g(f) =

∑∞
k=0f(k)10−k−1). By the uniqueness of decimal expansions, the map

g is injective, so we have
∣∣2N∣∣ ≤ |R|. Thus |N| <

∣∣P(N)
∣∣ =

∣∣2N∣∣ ≤ |R|, and so R is
uncountable, by Part (2) of Theorem 2.18.

2.23 Theorem: (Cantor - Schroeder - Bernstein) Let A and B be sets. Suppose that
|A| ≤ |B| and |B| ≤ |A|. Then |A| = |B|

Proof: We sketch a proof. Choose injective functions f : A → B and g : B → A. Since
the functions f : A → f(A), g : B → g(B) and f : g(B) → f

(
g(B)

)
are bijective we have

|A| = |f(A)| and |B| = |g(B)| =
∣∣f(g(B))

∣∣. Also note that f
(
g(B)

)
⊆ f(A) ⊆ B. Let

X = f
(
g(B)

)
, Y = f(A) and Z = B. Then we have X ⊆ Y ⊆ Z and we have |X| = |Z|

and we need to show that |Y | = |Z|. The composite h = f ◦ g : Z → X is a bijection.
Define sets Zn and Yn for n ∈ N recursively by

Z0 = Z, Zn = h(Zn−1) and Y0 = Y , Yn = h(Yn−1).

Since Y0 = Y , Z0 = Z, Z1 = h(Z0) = h(Z) = X and X ⊆ Y ⊆ Z, we have

Z1 ⊆ Y0 ⊆ Z0.

Also note that for 1 ≤ n ∈ N,

Zn ⊆ Yn−1 ⊆ Zn−1 → h(Zn) ⊆ h(Yn−1) ⊆ h(Zn−1)→ Zn+1 ⊆ Yn ⊆ Zn.

By the Induction Principle, it follows that Zn ⊆ Yn−1 ⊆ Zn−1 for all n ≥ 1, so we have

Z0 ⊇ Y0 ⊇ Z1 ⊇ Y1 ⊇ Z2 ⊇ Y2 ⊇ · · ·

Let Un = Zn \ Yn, U =
∞⋃
n=1

Un and V = Z \ U . Define H : Z → Y by

H(x) =

{
h(x) if x ∈ U,
x if x ∈ V.

Verify that H is bijective.
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2.24 Exercise: Show that |R| =
∣∣2N∣∣.

Solution: g : 2N → R as follows: for f ∈ 2N we let g(f) be the real number g(f) ∈ [0, 1)
with decimal expansion g(f) = 0.f(0)f(1)f(2) · · · .. Then g is injective so

∣∣sN∣∣ ≤ |R|.
Define h : 2N → [0, 1) as follows: for f ∈ 2N let h(f) be the real number h(f) ∈ [0, 1] with
binary expansion h(f) = 0.f(0)f(1)f(2) · · ·. Then h is surjective so we have

∣∣[0, 1]
∣∣ ≤ ∣∣2N∣∣.

The map k : R→ [0, 1] given by k(x) = 1
2 + 1

π tan−1 x is injective so we have |R| ≤
∣∣[0, 1]

∣∣.
Since |R| ≤

∣∣[0, 1]
∣∣ ≤ ∣∣2N∣∣ and

∣∣2N∣∣ ≤ |R|, we have |R| =
∣∣2N∣∣ by the Cantor-Schroeder-

Bernstein Theorem.
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Chapter 3: Sequences

3.1 Definition: For p ∈ Z, let Z≥p = {k ∈ Z|k ≥ p}. A sequence in a set A is a function
of the form x : Z≥p → A for some p ∈ Z. Given a sequence x : Z≥p → A, the kth term of
the sequence is the element xk = x(k) ∈ A, and we denote the sequence x by

〈xk〉k≥p = 〈xk|k ≥ p〉 = 〈xp, xp+1, xp+2, · · ·〉.

Note that the range of the sequence 〈xk〉k≥p is the set {xk}k≥p = {xk|k ≥ p}.

3.2 Definition: Let F be an ordered field and let 〈xk〉k≥p be a sequence in F . For a ∈ F
we say that the sequence 〈xk〉k≥p converges to a (or that the limit of 〈xk〉k≥p is equal
to a), and we write xk → a (as k →∞), or we write lim

k→∞
xk = a, when

∀ 0 < ε ∈ F ∃m ∈ Z ∀k ∈ Z≥p
(
k ≥ m→ |xk − a| ≤ ε

)
.

We say that the sequence 〈xk〉k≥p converges (in F ) when there exists a ∈ F such that
〈xk〉k≥p converges to a. We say that the sequence 〈xk〉k≥p diverges (in F ) when it does
not converge (to any a ∈ F ). We say that 〈xk〉k≥p diverges to infinity, or that the
limit of 〈xk〉k≥p is equal to infinity, and we write xk → ∞ (as k → ∞), or we write
lim
k→∞

xk =∞, when

∀r ∈ F ∃m ∈ Z ∀k ∈ Z≥p
(
k ≥ m→ xk ≥ r

)
.

Similarly we say that 〈xk〉k≥p diverges to −∞, or that the limit of 〈xk〉k≥p is equal to
negative infinity, and we write xk → −∞ (as k →∞), or we write lim

k→∞
xk = −∞ when

∀r ∈ R ∃m ∈ Z ∀k ∈ Z≥p
(
k ≥ m→ xk ≤ r

)
.

3.3 Example: Let 〈xk〉k≥0 be the sequence in R given by xk = (−2)k
k! for k ≥ 0. Show

that lim
k→∞

xk = 0.

Solution: Note that for k ≥ 2 we have

|xk| = 2k

k! =
(
2
1

) (
2
2

) (
2
3

)
· · ·
(

2
k−1

) (
2
k

)
≤ 2

1 ·
2
n = 4

n .

Given ε ∈ R with ε > 0, we can choose m ∈ Z≥2 with m ≥ 4
ε and then for all k ≥ m we

have |xk − 0| = |xk| ≤ 4
k ≤

4
m ≤ ε. Thus lim

k→∞
xk = 0, by the definition of the limit.

3.4 Example: Let 〈ak〉k≥0 be the Fibonacci sequence in R, which is defined recursively
by a0 = 0, a1 = 1 and by ak = ak−1 + ak−2 for k ≥ 2. Show that lim

k→∞
ak =∞.

Solution: We have a0 = 0, a1 = 1, a2 = 1 and a3 = 2. Note that ak ≥ k − 1 when
k ∈ {0, 1, 2, 3}. Let n ≥ 4 and suppose, inductively, that ak ≥ k − 1 for all k ∈ Z with
0 ≤ k < n. Then an = an−1 +an−2 ≥ (n−2) + (n−3) = n+n−5 ≥ n+ 4−5 = n−1. By
the Strong Principle of Induction, we have an ≥ n− 1 for all n ≥ 0. Given r ∈ R we can
choose m ∈ Z≥0 with m ≥ r+ 1, and then for all k ≥ m we have ak ≥ k − 1 ≥ m− 1 ≥ r.
Thus lim

k→∞
ak =∞ by the definition of the limit.

3.5 Example: Let xk = (−1)k for k ≥ 0. Show that 〈xk〉k≥0 diverges.
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Solution: Suppose, for a contradiction, that 〈xk〉k≥0 converges and let a = lim
k→∞

xk. By

taking ε = 1
2 in the definition of the limit, we can choose m ∈ Z so the for all k ∈ N,

if k ≥ m then |xk − a| ≤ 1
2 . Choose k ∈ N with 2k ≥ m. Since |x2k − a| ≤ 1

2 and
x2k = (−1)2k = 1, we have |1 − a| ≤ 1

2 so that 1
2 ≤ a ≤ 3

2 . Since |x2k+1 − a| ≤ 1
2 and

x2k+1 = (−1)2k+1 = −1, we also have | − 1 − a| ≤ 1
2 which implies that − 3

2 ≤ a ≤ − 1
2 .

But then we have a ≤ − 1
2 and a ≥ 1

2 , which is not possible.

3.6 Theorem: (Independence of the Limit on the Initial Terms) Let 〈xk〉k≥p be a sequence
in an ordered field F .

(1) If q ≥ p and yk = xk for all k ≥ q, then 〈xk〉k≥p converges if and only if 〈yk〉k≥q
converges, and in this case lim

k→∞
xk = lim

k→∞
yk.

(2) If l ≥ 0 and yk = xk+l for all k ≥ p, then 〈xk〉k≥p converges if and only if 〈yk〉k≥p
converges, and in this case lim

k→∞
xk = lim

k→∞
yk.

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. Let q ≥ p and let
yk = xk for k ≥ q. Suppose 〈xk〉k≥p converges and let a = lim

k→∞
xk. Let ε > 0. Choose

m ∈ Z so that for all k ∈ Z≥p, if k ≥ m then |xk − a| ≤ ε. Let k ∈ Z≥q with k ≥ m.
Since q ≥ p we also have k ∈ Z≥p and so |yk − a| = |xk − a| ≤ ε. Thus 〈yk〉k≥q converges
with lim

k→∞
yk = a. Conversely, suppose that 〈yk〉k≥q converges and let a = lim

k→∞
yk. Let

ε > 0. Choose m1 ∈ Z so that for all k ∈ Z≥q, if k ≥ m1 then |yk − a| ≤ ε. Choose
m = max{m1, q}. Let k ∈ Z≥p with k ≥ m. Since k ≥ m, we have k ≥ q and k ≥ m1 and
so |xk − a| = |yk − a| ≤ ε. Thus 〈xk〉k≥p converges with lim

k→∞
xk = a.

3.7 Remark: Because of the above theorem, we often denote the sequence 〈xk〉k≥p simply
as 〈xk〉 (omitting the initial index p from our notation).

3.8 Theorem: (Uniqueness of the Limit) Let 〈xk〉 be a sequence in an ordered field F .
If 〈xk〉 has a limit (finite or infinite) then the limit is unique.

Proof: Suppose, for a contradiction, that xk → ∞ and xk → −∞. Since xk → ∞ we can
choose m1 ∈ Z so that k ≥ m1 → xk ≥ 1. Since xk → −∞ we can choose m2 ∈ Z so that
k ≥ m2 → xk ≤ −1. Choose any k ∈ Z≥p with k ≥ m1 and k ≥ m2. Then xk ≥ 1 and
xk ≤ −1, which is not possible.

Suppose, for a contradiction, that xk → ∞ and xk → a ∈ F . Since xk → a we can
choose m1 ∈ Z so that k ≥ m1 → |xk − a| ≤ 1. Since xk → ∞ we can choose m2 ∈ Z so
that k ≥ m2 → xk ≥ a+ 2. Choose any k ∈ Z≥p with k ≥ m1 and k ≥ m2. Then we have
|xk − a| ≤ 1 so that x ≤ a+ 1 and we have xk ≥ a+ 2, which is not possible. Similarly, it
is not possible to have xk → −∞ and xk → a ∈ F .

Finally suppose, for a contradiction, that xk → a and xk → b where a, b ∈ F with

a 6= b. Since xk → a we can choose m1 ∈ Z so that k ≥ m1 → |xk − a| ≤ |a−b|
3 . Since

xk → b we can choose m2 ∈ Z so that k ≥ m2 → |xk − b| ≤ |a−b|3 . Choose any k ∈ Z≥p
with k ≥ m1 and k ≥ m2. Then we have |xk − a| ≤ b−a

3 and |xk − b| ≤ b−a
3 and so, using

the Triangle Inequality, we have

|a− b| = |a− xk + xk − b| ≤ |xk − a|+ |xk − b| ≤ |a−b|3 + |a−b|
3 < |a− b|,

which is not possible.
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3.9 Theorem: (Basic Limits) In any ordered field F , for a ∈ F we have

lim
k→∞

a = a , lim
k→∞

k =∞ and lim
k→∞

1

k
= 0.

Proof: The proof is left as an exercise.

3.10 Theorem: (Operations on Limits) Let 〈xk〉 and 〈yk〉 be sequences in an ordered
field F and let c ∈ F . Suppose that 〈xk〉 and 〈yk〉 both converge with xk → a and yk → b.
Then

(1) 〈c xk〉 converges with c xk → ca,
(2) 〈xk + yk〉 converges with (xk + yk)→ a+ b,
(3) 〈xk − yk〉 converges with (xk − yk)→ a− b,
(4) 〈xkyk〉 converges with xkyk → ab, and
(5) if b 6= 0 then 〈xk/yk〉 converges with xk/yk → a/b.

Proof: We prove Parts (4) and (5) leaving the proofs of the other parts as an exercise.
First we prove Part (4). Note that for all k we have

|xkyk−ab| = |xkyk−xkb+xkb−ab| ≤ |xkyk−xkb|+ |xkb−ab| = |xk| |yk− b|+ |b||xk−a|.

Since xk → a we can choose m1 ∈ Z so that k ≥ m1 → |xk − a| ≤ 1 and we can choose
m2 ∈ Z so that k ≥ m2 → |xk − a| ≤ ε

2(1+|b|) . Since yk → b we can choose m3 ∈ Z so

that k ≥ m3 → |yk − b| ≤ ε
2(1+|a|) . Let m = max{m1,m2,m3} and let k ≥ m. Then we

have |xk − a| ≤ 1, |xk − a| ≤ ε
2(1+|b|) and |xk − b| ≤ ε

2(1+|a|) . Since |xk − a| ≤ 1, we have

|xk| = |xk − a+ a| ≤ |xk − a|+ |a| ≤ 1 + |a|. By our above calculation (where we found a
bound for |xkyk − ab|) we have

|xkyk − ab| ≤ |xk||yk − b|+ |b||xk − a| ≤ (1 + |a|)|yk − b|+ (1 + |b|)|xk − a|
≤ (1 + |a|) ε

2(1+|a|) + (1 + |b|) ε
2(1+|b|) = ε.

Thus we have xkyk → ab, by the definition of the limit.
To prove Part (5), suppose that b 6= 0. Since yk → b 6= 0, we can choose m1 ∈ Z so

that that k ≥ m1 → |yk − b| ≤ |b|2 . Then for k ≥ m1 we have

|b| = |b− yk + yk| ≤ |b− yk|+ |yk| ≤ |b|2 + |yk|

so that
|yk| ≥ |b| − |b|2 = |b|

2 > 0.

In particular, we remark that when k ≥ m1 we have yk 6= 0 so that 1
yk

is defined. Note
that for all k ≥ m1 we have∣∣∣∣ 1

yk
− 1

b

∣∣∣∣ =
|b− yk|
|yk| |b|

≤ |b− yk||b|
2 · |b|

=
2

|b|2
· |yk − b|.

Let ε > 0. Choose m2 ∈ Z so that k ≥ m2 → |yk − b| ≤ |b|
2ε
2 . Let m = max{m1,m2}. For

k ≥ m we have k ≥ m1 and k ≥ m2 and so |yk| ≥ |b|
2

2 and |yk − b| ≤ |b|
2ε
2 and so∣∣∣∣ 1

yk
− 1

b

∣∣∣∣ ≤ 2
|b|2 · |yk − b| ≤

2
|b|2 ·

|b|2ε
2 = ε.

This proves that lim
k→∞

1
yk

= 1
b . Using Part (4), we have lim

k→∞
xk
yk

= lim
k→∞

(
xk · 1yk

)
= a· 1b = a

b .
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3.11 Example: Let xk = k2+1
2k2+k+3 for k ≥ 0. Find lim

k→∞
xk.

Solution: We have xk = k2+1
2k2+k+2 =

1+( 1
k )

2

2+ 1
k+3·( 1

k )
2 −→ 1+02

2+0+3·02 = 1
2 where we used the Basic

Limits 1→ 1, 2→ 2 and 1
k → 0 together with Operations on Limits.

3.12 Definition: The above theorem can be extended to include many situations involving
infinite limits. To deal with these cases, given an ordered field F , we define the extended
ordered field F̂ to be the set

F̂ = F ∪ {−∞,∞}.

We extend the order relation < on F to an order relation on F̂ by defining −∞ <∞ and
−∞ < a and a < ∞ for all a ∈ F . We partially extend the operations + and · to F̂ ; for
a ∈ F we define

∞+∞ =∞ , ∞+ a =∞ , (−∞) + (−∞) = −∞ , (−∞) + a ,

∞ ·∞ =∞ , (∞)(−∞) = −∞ , (−∞)(−∞) =∞ ,

∞ · a =

{
∞ if a > 0

−∞ if a < 0
and (−∞)(a) =

{
−∞ if a > 0,

∞ if a < 0,

but other values, including ∞ + (−∞), ∞ · 0 and −∞ · 0 are left undefined in F̂ . In a
similar way, we partially extend the inverse operations − and ÷ to F̂ . For example, for
a ∈ F we define

∞−(−∞) =∞ ,−∞−∞ = −∞ , ∞−a =∞ ,−∞−a = −∞ , a−∞ = −∞ , a−(−∞) =∞ ,

a

∞
= 0 ,

∞
a

=

{
∞ if a > 0

−∞ if a < 0
and

−∞
a

=

{
−∞ if a > 0

∞ if a < 0

with other values, including ∞−∞, ∞∞ and ∞0 , left undefined. The expressions which are

left undefined in F̂ , including

∞−∞ , ∞ · 0 , ∞
∞

,
∞
0
,
a

0

are known as indeterminate forms.

3.13 Theorem: (Extended Operations on Limits) Let 〈xk〉 and 〈yk〉 be sequences in F .
Suppose that lim

k→∞
xk = u and lim

k→∞
yk = v where u, v ∈ F̂ .

(1) if u+ v is defined in F̂ then lim
k→∞

(xk + yk) = u+ v,

(2) if u− v is defined in F̂ then lim
k→∞

(xk − yk) = u− v,

(3) if u · v is defined in F̂ then lim
k→∞

(xk · yk) = u · v, and

(4) if u/v is defined in F̂ then lim
k→∞

(xk/yk) = u/v.

Proof: The proof is left as an exercise.
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3.14 Theorem: (Monotonic Surjective Functions) Let I and J be intervals in an ordered
field F . Suppose f : I → J is increasing and surjective. Let 〈xk〉 be a sequence in I. Then

(1) If xk → a ∈ I then f(xk)→ f(a) ∈ J ,
(2) if xk → u where u ∈ F ∪ {∞} is the right endpoint of I, then f(xk) → v where
v ∈ F ∪ {∞} is the right endpoint of J , and
(3) if xk → u where u ∈ F ∪ {−∞} is the left endpoint of I then f(xk) → v where
v ∈ F ∪ {−∞} is the left endpoint of J .

Analogous results hold when f : I → J is decreasing and surjective.

Proof: We prove Part (1). Let a ∈ I, suppose xk → a, and let b = f(a) ∈ J . Note
that since f is surjective, it has a right inverse. Let g : J → I be a right inverse of f .
Let ε > 0. We consider several cases, depending on whether or not b is an endpoint of
J . Suppose first that b is not an endpoint of J . Choose ε0 with 0 < ε0 ≤ ε so that
[b − ε0, b + ε0] ⊆ J . Note that since f is increasing we have g(b − ε0) < a < g(b + ε0)
(since g(b − ε0) ≥ a → b − ε = f

(
g(b − ε0)

)
≤ f(a) = b which is impossible, and a ≥

g(b + ε0) → b = f(a) ≥ f
(
g(b + ε0)

)
= b + ε0 which is impossible). Since xk → a we can

choose m ∈ Z so that k ≥ m → g(b − ε0) ≤ xk ≤ g(b + ε0). Then for k ≥ m we have
b− ε0 = f

(
g(b− ε0)

)
≤ f(xk) ≤ f

(
g(b+ ε0)

)
= g + ε0. Thus f(xk)→ b = f(a).

Next consider the case that b is equal to one (but not both) of the endpoints of J , say
b is the right endpoint of J , and say the left endpoint of J is smaller than b. In this case,
we choose ε0 with 0 < ε0 ≤ ε so that [b − ε0, b] ⊆ J . Note that since f is increasing we
have g(b− ε0) < a. Choose m ∈ Z so that k ≥ m→ g(b− ε0) ≤ xk. Then for k ≥ m, since
f is increasing we have b − ε0 ≤ f(xk). Since b is the right endpoint of J , it follows that
b− ε0 ≤ f(xk) ≤ b for all k ≥ m, and so f(xk)→ b = f(a).

Finally, note that if b is equal to both the left and right endpoints of J , then we have
J = {b} and so f(xk) = b for all k, and hence f(xk)→ b.

3.15 Corollary: (Basic Elementary Functions Acting on Limits) Let 〈xk〉 be a sequence
in R and let b ∈ R. Then

(1) if xk → a > 0 then xk
b → ab,

if xk →∞ then lim
k→∞

xk
b =

{
∞ if b > 0

0 if b < 0,

(2) if xk → a and b > 0 then bxk → ba,

if xk →∞ and b > 0 then lim
k→∞

bxk =

{
∞ if b > 1

0 if 0 < b < 1,

(3) if xk → a > 0 and b > 0 then logb xk → logb a,

if xk →∞ and b > 0 then lim
k→∞

xk =

{
∞ if b > 1

−∞ if 0 < b < 1

(4) if xk → a then sinxk → sin a and cosxk → cos a
if xk → a, where a 6= π

2 + 2π t with t ∈ Z, then tanxk → tan a

(5) if xk → a ∈ [−1, 1] then sin−1 xk → sin−1 a and cos−1 xk → cos−1 a
if xk → a then tan−1 xk → tan−1 a
if xk →∞ then tan−1 xk → π

2 ,
if xk → −∞ then tan−1 xk → −π2 .

Proof: All of these follow immediately from the previous theorem, except for the first
statement in Part (4) (some care is needed when sin a = ±1 or cos a = ±1).
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3.16 Example: Let xk =
√
3k2+1
k+2 for k ≥ 0. Find lim

k→∞
xk.

Solution: We have xk =
√
3k2+1
k+2 =

√
3+ 1

k2

1+2· 1k
−→

√
3+0

1+2·0 =
√

3 where we used Basic Limits,

Operations on Limits, and Functions Acting on Limits (specifically, we used Part (1) of
Corollary 3.15 with b = 1

2 ).

3.17 Example: Let xk = 1+3k
3√2+k−k2 for k ≥ 0. Find lim

k→∞
xk.

Solution: We have xk = 1+3k
3√2+k−k2 =

1
k+3

3
√

2
k2

+ 1
k−1
· k1/3 −→ 0+3

3
√
0+0−1 · ∞ = −1 · ∞ = −∞

where we used Basic Limits, Extended Operations, and Functions Acting on Limits.

3.18 Example: Let xk = sin−1
(
k −
√
k2 + k

)
for k ≥ 0. Find lim

k→∞
xk.

Solution: Note that k −
√
k2 + k = k2−(k2+k)

k+
√
k2+k

= −k
k+
√
k2+k

= −1
1+
√

1+ 1
k

−→ −1
1+
√
1+0

= − 1
2 ,

and so xk = sin−1
(
k −
√
k2 − k

)
−→ sin−1

(
− 1

2

)
= −π6 .

3.19 Theorem: (Comparison) Let 〈xk〉 and 〈yk〉 be sequences in an ordered field F .
Suppose that xk ≤ yk for all k. Then

(1) if xk → a and yk → b then a ≤ b,
(2) if xk →∞ then yk →∞, and
(3) if yk → −∞ then xk → −∞.

Proof: We prove Part (1). Suppose that xk → a and yk → b. Suppose, for a contradiction,
that a > b. Choose m1 ∈ Z so that k ≥ m1 → |xk − a| ≤ a−b

3 . Choose m2 ∈ Z so that

k ≥ m2 → |yk − b| ≤ a−b
3 . Let k = max{m1,m2}. Since |xk − a| ≤ a−b

3 < a−b
2 , we have

xk > a − a−b
2 = a+b

2 . Since |yk − b| ≤ a−b
3 < a−b

2 , we have yk < b + a−b
2 = a+b

2 . This is
not possible since xk ≤ yk.

3.20 Example: Let xk = ( 3
2 + sin k) ln k for k ≥ 1. Find lim

k→∞
xk.

Solution: For all k ≥ 1 we have sin k ≥ −1 so ( 3
2 + sin k) ≥ 1

2 and hence xk ≥ 1
2 ln k.

Since xk ≥ 1
2 ln k for all k ≥ 1 and 1

2 ln k −→ 1
2 · ∞ = ∞, it follows that xk → ∞ by the

Comparison Theorem.

3.21 Theorem: (Squeeze) Let 〈xk〉, 〈yk〉 and 〈zk〉 be sequences in an ordered field F .

(1) If xk ≤ yk ≤ zk for all k and xk → a and zk → a then yk → a.
(2) If |xk| ≤ yk for all k and yk → 0 then xk → 0.

Proof: We prove Part (1). Suppose that xk ≤ yk ≤ zk for all k, and suppose that xk → a
and zk → a. Let ε > 0. Choose m1 ∈ Z so that k ≥ m1 → |xk − a| ≤ ε, choose m2 ∈ Z
so that k ≥ m2 → |zk − a| ≤ ε and let m = max{m1,m2}. Then for k ≥ m we have
a− ε ≤ xk ≤ yk ≤ zk ≤ a+ ε and so |yk − a| ≤ ε. Thus yk → a, as required.

3.22 Example: Let xk = k+tan−1 k
2k+sin k for k ≥ 1. Find lim

k→∞
xk.

Solution: For all k ≥ 1 we have −π2 < tan−1 k < π
2 and −1 ≤ sin k ≤ 1 and so

k − π
2

2k + 1
≤ k + tan−1 k

2k + sin k
≤

k + π
2

2k − 1
.

As in previous examples, we have
k−π2
2k+1 →

1
2 and

k+π
2

2k−1 →
1
2 , and so xk = k+tan−1 k

2k+sin k →
1
2

by the Squeeze Theorem.
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3.23 Definition: Let 〈xk〉 be a sequence in an ordered set X. We say that the sequence
〈xk〉 is bounded above by b ∈ X when xk ≤ b for all k. We say that the sequence 〈xk〉 is
bounded below by b ∈ X when b ≤ xk for all k. We say 〈xk〉 is bounded above when
it is bounded above by some element b ∈ X, we say that 〈xk〉 is bounded below when it
is bounded below by some b ∈ X, and we say that 〈xk〉 is bounded when it is bounded
above and bounded below.

3.24 Definition: Let 〈xk〉 be a sequence in an ordered field F . We say that 〈xk〉 is
increasing (for k ≥ p) when for all k, l ∈ Z≥p, if k ≤ l then xk ≤ xl. We say that 〈xk〉 is
strictly increasing (for k ≥ p) when for all k, l ∈ Z≥p, if k < l then xk < xl. Similarly,
we say that 〈xk〉 is decreasing when for all k, l ∈ Z≥p, if k ≤ l the xk ≥ xl and we say
that 〈xk〉 is strictly decreasing when for all k, l ∈ Z≥p, if k < l the xk > xl. We say
that 〈xk〉 is monotonic when it is either increasing or decreasing.

3.25 Theorem: (Monotonic Convergence) Let 〈xk〉 be a sequence in R.

(1) Suppose 〈xk〉 is increasing. If 〈xk〉 is bounded above then xk → sup{xk}, and if 〈xk〉
is not bounded above then xk →∞.
(2) Suppose 〈xk〉 is decreasing. If 〈xk〉 is bounded below then xk → inf{xk}, and if 〈xk〉 is
not bounded below then xk → −∞.

Proof: We prove Part (1) in the case that 〈xk〉k≥p is increasing and bounded above, say
by b ∈ R. Let A = {xk|k ≥ p} (so A is the range of the sequence 〈xk〉). Note that A is
nonempty and bounded above (indeed b is an upper bound for A). By the Completeness
Property of R, A has a supremum in R. Let a = sup{xk|k ≥ p}. Note that a ≥ xk for all
k ≥ p and a ≤ b, by the definition of the supremum. Let ε > 0. By the Approximation
Property of the supremum, we can choose an index m ≥ p so that the element xm ∈ A
satisfies a − ε < xm ≤ a. Since 〈xk〉 is increasing, for all k ≥ m we have xk ≥ xm, so we
have a− ε ≤ xm ≤ xk ≤ a and hence |xk − a| < ε. Thus lim

k→∞
xk = a ≤ b.

3.26 Example: Let x1 = 4
3 and let xk+1 = 5 − 4

xn
for k ≥ 1. Determine whether 〈xk〉

converges, and if so then find the limit.

Solution: Suppose, for now, that 〈xk〉 does converge, say xk → a. By Independence of
Converge on Initial Terms, we also have xk+1 → a. Using Operations on Limits, we have
a = lim

k→∞
xk+1 = lim

k→∞

(
5− 4

xk

)
= 5− 4

a . Since a = 5− 4
a , we have a2 = 5a−4 or equivalently

(a− 1)(a− 4) = 0. We have proven that if the sequence converges then its limit must be
equal to 1 or 4.

The first few terms of the sequence are x1 = 4
3 , x2 = 2 and x3 = 3. Since the terms

appear to be increasing, we shall try to prove that 1 ≤ xn ≤ xn+1 ≤ 4 for all n ≥ 1. This
is true when n = 1. Suppose it is true when n = k. Then we have

1 ≤ xk ≤xk+1 ≤ 4→ 1 ≥ 1
xk
≥ 1

xk+1
≥ 1

4 → −4 ≤ − 4
xk
≤ − 4

xk+1
≤ −1

→ 1 ≤ 5− 4
xk
≤ 5− 4

xk+1
≤ 4→ 1 ≤ xk+1 ≤ xk+2 ≤ 4.

Thus, by the Principle of Induction, we have 1 ≤ xn ≤ xn+1 ≤ 4 for all n ≥ 1.
Since xn ≤ xn+1 for all n ≥ 1, the sequence is increasing, and since xn ≤ 4 for all

n ≥ 1, the sequence is bounded above by 4. By the Monotone Convergence Theorem, the
sequence does converge. By the first paragraph, we know the limit must be either 1 or 4,
and since the sequence starts at x1 = 2 and increases, the limit must be 4.
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3.27 Theorem: (The Nested Interval Theorem) Let I0, I1, I2, · · · be nonempty, closed

bounded intervals in R. Suppose that I0 ⊇ I1 ⊃ I2 ⊃ · · ·. Then
∞⋂
k=0

Ik 6= ∅.

Proof: For each k ≥ 1, let Ik = [ak, bk] with ak < bk. For each k, since Ik ⊆ Ik+1 we have
ak+1 ≤ ak < bk ≤ bk+1. Since ak ≥ ak+1 for all k, the sequence 〈ak〉 is increasing. Since
ak < bk ≤ bk−1 ≤ · · · ≤ b1 for all k, the sequence 〈ak〉 is bounded above by b1. Since 〈ak〉
is increasing and bounded above, it converges. Let a = sup{ak} = lim

k→∞
ak. Similarly, 〈bk〉

is decreasing and bounded below by a1, and so it converges. Let b = inf{bk} = lim
k→∞

bk.

Fix m ≥ 1. For all k ≥ m we have am < bm ≤ bm+1 ≤ · · · ≤ bk. Since ak ≤ bk for all k,
by the Comparison Theorem we have a ≤ b, and so the interval [a, b] is not empty. Since
〈ak〉 is increasing with ak → a, it follows (we leave the proof as an exercise) that ak ≤ a
for all k ≥ 1. Similarly, we have bk ≥ b for all k ≥ 1 and so [a, b] ⊆ [ak, bk] = Ik. Thus

[a, b] ⊆
∞⋂
k=1

Ik, and so
∞⋂
k=1

Ik 6= ∅.

3.28 Definition: Let 〈xk〉k≥p be a sequence in a set X Given a strictly increasing function
f : Z≥q → Z≥p, write kl = f(l) and let yl = xkl for all l ≥ q. Then the sequence 〈yl〉l≥q is
called a subsequence of the sequence 〈xk〉k≥p. In other words, a subsequence of 〈xk〉k≥p
is a sequence of the form〈

xkq , xkq+1 , xkq+2 , · · ·
〉

with p ≤ kq < kq+1 < kq+2 < · · · .

Given a bijective function f : Z≥q → Z≥p, write kl = f(l) and let yl = xkl for l ≥ 1. Then
the sequence 〈yl〉l≥q is called a rearrangement of the sequence 〈xk〉.

3.29 Theorem: Let 〈xk〉 be a sequence in an ordered field F . Suppose that xk → a.
Then

(1) every subsequence of 〈xk〉 converges to a, and
(2) every rearrangement of 〈xk〉 converges to a.

Proof: We shall prove Parts (1) and (2) simultaneously. Let f : Z≥q → Z≥p be an
injective map. Write kl = f(l) and let yl = xkl for k ≥ l. Let ε > 0. Choose m1 ∈ Z so
that k ≥ m1 → |xk−a| ≤ ε. Since f is injective, there are only finitely many indices l with
p ≤ f(l) < m1. Choose m ∈ Z with m larger than every such index l. Then for l ≥ m we
have kl = f(l) ≥ m1 and so |yl − a| = |xkl − a| ≤ ε.

3.30 Theorem: (Bolzano-Weirstrass) Every bounded sequence in R has a convergent
subsequence.

Proof: Let 〈xk〉 be a bounded sequence in R. Choose a, b ∈ R with a ≤ xk for all k and
xk ≤ b for all k. Then we have xk ∈ [a, b] for all k. We define a sequence of nonempty closed
intervals recursively as follows. Let I0 = [a0, b0] = [a, b]. Note that I0 =

[
a, a+b2

]
∪
[
a+b
2 , b

]
.

Let I1 = [a1, b1] be equal to one of the two intervals
[
a, a+b2

]
and

[
a+b
2 , b

]
, chosen in such a

way that there are infinitely many indices k with xk ∈ I1. Suppose we have chosen intervals
Ij = [aj , bj ] with bj − aj = 1

2j (b − a) for 1 ≤ j ≤ n, such that I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ In
and such that for each index j, there are infinitely many indices k with xk ∈ Ij . Note that
In = [an, bn] =

[
an,

an+bn
2

]
∪
[
an+bn

2 , bn
]
. Let In+1 be equal to one of the two intervals[

an,
an+bn

2

]
and

[
an+bn

2 , bn
]
, chosen in such a way that there are infinitely many indices k

with xk ∈ In+1. In this way, we obtain a sequence 〈Ij〉j≥0 of nonempty closed intervals.
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By the Nested Interval Theorem,
∞⋂
j=0

Ij is not empty. Choose a point c with c ∈ In for

every n ≥ 0.
We shall now construct a subsequence of 〈xk〉 which converges to c. Since for each

j ≥ 0 there exist infinitely many indices k with xk ∈ Ij , we can construct a subsequence
of 〈xk〉 as follows. Choose k0 so that xk0 ∈ I0, then choose k1 > k0 so that xk1 ∈ I1, then
choose k2 > k1 with xk2 ∈ I2, and so on. In this way, we obtain a subsequence 〈xkj 〉j≥0
of 〈xk〉 with xkj ∈ Ij for all j ≥ 0. We claim that xkj → c as j → ∞. Let ε > 0 Choose
m ∈ Z so that 1

2m (b − a) ≤ ε. For j ≥ m, since c ∈ [a, b] ⊆ [aj , bj ] and xkj ∈ [aj , bj ], it
follows that

|xkj − c| = max{xkj , c} −min{xkj , c} ≤ bj − aj = 1
2j (b− a) ≤ 1

2m (b− a) ≤ ε.

Thus xkj → c as j →∞, as claimed.

3.31 Definition: Let 〈xk〉k≥p be a sequence in an ordered field F . We say that 〈xk〉 is
Cauchy when

∀ε > 0 ∃m ∈ Z ∀k, l ∈ Z≥p
(
k, l ≥ m→ |xk − xl| ≤ ε

)
.

3.32 Theorem: (Cauchy Criterion for Convergence)

(1) For a sequence 〈xk〉 in an ordered field F , if 〈xk〉 converges then it is Cauchy.
(2) For a sequence 〈xk〉 in R, if 〈xk〉 is Cauchy then it converges.

Proof: To prove Part (1), let 〈xk〉 be a sequence in an ordered field F and suppose that
xk → a. Let ε > 0 and choose m ∈ Z so that k ≥ m→ |xk − a| ≤ ε

2 . Then for k, l ≥ m we
h ave

|xk − xl| = |xk − a+ a− xl| ≤ |xk − a|+ |a− xl| ≤ ε
2 + ε

2 = ε.

Thus 〈xk〉 is Cauchy.
To prove Part (2), let 〈xk〉k≥p be a sequence in R and suppose that 〈xk〉 is Cauchy.

We claim that 〈xk〉 is bounded. Since 〈xk〉 is Caucy, we can choose m ∈ Z so that
k, l ≥ m → |xk − xl| ≤ 1. In particular, for all k ≥ m we have |xk − xm| ≤ 1 and so
|xk| = |xk − xm + xm| ≤ |xk − xm|+ |xm| ≤ 1 + |xm|. It follows that 〈xk〉 is bounded by
b = max

{
|xp|, |xp+1|, · · · , |xm−1| , 1 + |xm|

}
.

Because 〈xk〉 is bounded, it has a convergent subsequence, by the Bolzano Weierstrass
Theorem. Let 〈xkj 〉 be a convergent subsequence of 〈xk〉 and let a = lim

j→∞
xkj . We claim

that xk → a. Let ε > 0. Since 〈xk〉 is Cauchy, we can choose m ∈ Z so that k, l ≥ m →
|xk − xl| ≤ ε

2 . Since xkj → a we can choose m0 ∈ Z so that j ≥ m0 → |xkj − a| ≤ ε
2 .

Choose an index j ≥ m0 so that kj ≥ m. Then for all k ≥ m we have

|xk − a| = |xk − xkj + xkj − a| ≤ |xk − xkj |+ |xkj − a| ≤ ε
2 + ε

2 = ε.

Thus xk → a, as claimed.
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Chapter 4: Limits of Functions

4.1 Definition: Let F be a subfield of R, let A ⊆ F , and let f : A → F . For a ∈ F , we
say that a is a limit point of A when

∀δ>0 ∃x∈A 0 < |x− a| ≤ δ.

When a is a limit point of A, we make the following definitions.

(1) For b ∈ F , we say that the limit of f(x) as x tends to a is equal to b, and we write
lim
x→a

f(x) = b or we write f(x)→ b as x→ a, when

∀ε>0 ∃δ>0 ∀x∈A
(
0 < |x− a| ≤ δ → |f(x)− b| ≤ ε

)
.

(2) We say the limit of f(x) as x tends to a is equal to infinity, and we write lim
x→a

f(x) =∞,

or we write f(x)→∞ as x→ a, when

∀r∈F ∃δ>0 ∀x∈A
(
0 < |x− a| ≤ δ → f(x) ≥ r

)
.

(3) We say that the limit of f(x) as x tends to a is equal to negative infinity, and we
write lim

x→a
f(x) = −∞, or we write f(x)→ −∞ as x→ a, when

∀r∈F ∃δ>0 ∀x∈A
(
0 < |x− a| ≤ δ → f(x) ≤ r

)
.

For a ∈ F , we say that a is a limit point of A from below when

∀δ > 0 ∃x ∈ A a− δ ≤ x < a .

When a is a limit point of A from below and b ∈ F , we make the following definitions.

(4) lim
x→a−

f(x) = b ⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(
a− δ ≤ x < a→ |f(x)− b| ≤ ε

)
.

(5) lim
x→a−

f(x) =∞ ⇐⇒ ∀r∈F ∃δ>0 ∀x∈A
(
a− δ ≤ x < a→ f(x) ≥ r

)
.

(6) lim
x→a−

f(x) = −∞ ⇐⇒ ∀r∈F ∃δ>0 ∀x∈A
(
a− δ ≤ x < a→ f(x) ≤ r

)
.

For a ∈ F , we say that a is a limit point of A from above when

∀δ > 0 ∃x ∈ A a < x ≤ a+ δ .

When a is a limit point of A from above and b ∈ F , we make the following definitions.

(7) lim
x→a+

f(x) = b ⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(
a < x ≤ a+ δ → |f(x)− b| ≤ ε

)
.

(8) lim
x→a+

f(x) =∞ ⇐⇒ ∀r∈F ∃δ>0 ∀x∈A
(
a < x ≤ a+ δ → f(x) ≥ r

)
.

(9) lim
x→a+

f(x) = −∞ ⇐⇒ ∀r∈F ∃δ>0 ∀x∈A
(
a < x ≤ a+ δ → f(x) ≤ r

)
.
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We say that infinity is a limit point of A (from below) when A is not bounded above, that
is when ∀m∈F ∃x∈A x ≥ m. When A is not bounded above and b ∈ F , we make the
following definitions.

(10) lim
x→∞

f(x) = b ⇐⇒ ∀ε>0 ∃m∈F ∀x∈A
(
x ≥ m→ |f(x)− b| ≤ ε

)
.

(11) lim
x→∞

f(x) =∞ ⇐⇒ ∀r∈F ∃m∈F ∀x∈A
(
x ≥ m→ f(x) ≥ r

)
.

(12) lim
x→∞

f(x) = −∞ ⇐⇒ ∀r∈F ∃m∈F ∀x∈A
(
x ≥ m→ f(x) ≤ r

)
.

We say that negative infinity is a limit point of A (from above) when A is not bounded
below, that is when ∀m∈F ∃x∈A x ≤ m. When A is not bounded below and b ∈ F , we
make the following definitions.

(13) lim
x→−∞

f(x) = b ⇐⇒ ∀ε>0 ∃m∈F ∀x∈A
(
x ≤ m→ |f(x)− b| ≤ ε

)
.

(14) lim
x→−∞

f(x) =∞ ⇐⇒ ∀r∈F ∃m∈F ∀x∈A
(
x ≤ m→ f(x) ≥ r

)
.

(15) lim
x→−∞

f(x) = −∞ ⇐⇒ ∀r∈F ∃m∈F ∀x∈A
(
x ≤ m→ f(x) ≤ r

)
.

4.2 Example: Let f(x) =
x2 + 2x− 3

x2 − 1
. Show that lim

x→1
f(x) = 2.

Solution: Note that for x 6= 1 we have

|f(x)− 2| =
∣∣∣x2+2x−3

x2−1 − 2
∣∣∣ =

∣∣∣ (x+3)(x−1)
(x+1)(x−1) − 2

∣∣∣ =
∣∣∣x+3
x+1 − 2

∣∣∣ =
∣∣∣x+3−2x−2

x+1

∣∣∣ =
∣∣∣−x+1
x+1

∣∣∣ = |x−1|
|x+1| .

Let ε > 0. Choose δ = min{1, ε}. Let 0 < |x − 1| ≤ δ. Since 0 < |x − 1| we have x 6= 1

so, as shown above, |f(x) − 2| = |x−1|
|x+1| . Since |x − 1| ≤ δ ≤ 1 we have 0 ≤ x ≤ 3 so that

1 ≤ x + 1, and hence |f(x) − 2| = |x−1|
|x+1| ≤ |x − 1|. Finally, since |x − a| ≤ δ ≤ ε we have

|f(x)− 2| ≤ |x− 1| ≤ ε. Thus lim
x→1

f(x) = 2.

4.3 Theorem: (Two Sided Limits) Let F be a subfield of R, let A ⊆ F , let f : A → F
and let a ∈ F . Suppose that a is a limit point of A both from the left and from the right.
Then for u ∈ F̂ we have lim

x→a
f(x) = a if and only if lim

x→a−
f(x) = u = lim

x→a+
f(x).

Proof: We prove the theorem in the case that u = b ∈ F . Suppose that lim
x→a

f(x) = b ∈ F .

Let ε > 0. Choose δ > 0 so that for all x ∈ A, if 0 < |x − a| ≤ δ then |f(x)− b| ≤ ε. For
x ∈ A with a− δ ≤ x < a we have 0 < |x− a| ≤ δ and so |f(x)− b| ≤ ε. This shows that
lim
x→a−

f(x) = b. For x ∈ A with a < x ≤ x+δ we have 0 < |x−a| ≤ δ and so |f(x)−b| ≤ ε.
This show that lim

x→a+
f(x) = b.

Conversely, suppose that lim
x→a−

f(x) = b = lim
x→a+

f(x). Let ε > 0. Since f(x) → b

as x → a−, we can choose δ1 > 0 so that for all x ∈ A with a − δ ≤ a < a we have
|f(x) − b| ≤ ε. Since f(x) → b as x → a+ we can choose δ2 > 0 so that for all x ∈ A
with a < x ≤ a + δ2 we have |f(x) − b| ≤ ε. Let δ = min{δ1, δ2}. Let x ∈ A with
0 < |x − a| ≤ δ. Either we have x < a or we have x > a. In the case that x < a we have
a− δ1 ≤ a− δ ≤ x < a and so |f(x)− b| ≤ ε (by the choice of δ1). In the case that x > a
we have a < x ≤ a + δ ≤ a + δ2 and so |f(x) − b| ≤ ε (by the choice of δ2. In either case
we have |f(x)− b| ≤ ε, and so lim

x→a
f(x) = b, as required.
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4.4 Remark: For the sequence 〈xk〉k≥p in F given by xk = f(k) where f : Z≥p → F ,
the definitions (10), (11) and (12) agree with our definitions for limits of sequences. Thus
limits of sequences are a special case of limits of functions. The following theorem shows
that limits of functions are determined by limits of sequences.

4.5 Theorem: (The Sequential Characterization of Limits of Functions) Let F be a
subfield of R, let A ⊆ F , let f : A→ F , and let u ∈ F̂ .

(1) When a ∈ F is a limit point of A, lim
x→a

f(x) = u if and only if for every sequence 〈xk〉
in A \ {a} with xk → a we have f(xk)→ u.

(2) When a is a limit point of A from below, lim
x→a−

f(x) = u if and only if for every sequence

〈xk〉 in {x ∈ A|x < a} with xk → a we have f(xk)→ u.

(3) When a is a limit point of A from above, lim
x→a+

f(x) = u if and only if for every sequence

〈xk〉 in {x ∈ A|x > a} with xk → a we have f(xk)→ u.

(4) When A is not bounded above, lim
x→∞

f(x) = u if and only if for every sequence 〈xk〉
in A with xk →∞ we have f(xk)→ u.

(5) When A is not bounded below, lim
x→−∞

f(x) = u if and only if for every sequence 〈xk〉
in A with xk → −∞ we have f(xk)→ u.

Proof: We prove Part (1) in the case that u = b ∈ F . Let a ∈ F be a limit point of A.
Suppose that lim

x→a
f(x) = b ∈ F . Let 〈xk〉 be a sequence in A\{a} with xk → a. Let ε > 0.

Since lim
x→a

f(x) = b, we can choose δ > 0 so that 0 < |x − a| ≤ δ → |f(x) = b| ≤ ε. Since

xk → a we can choose m ∈ Z so that k ≥ m → |xk − a| ≤ δ. Then for k ≥ m, we have
|xk − a| ≤ δ and we have xk 6= a (since the sequence 〈xk〉 is in the set A \ {a}) so that
0 < |x− a| ≤ δ and hence |f(xk)− b| ≤ ε. This shows that f(xk)→ b.

Conversely, suppose that lim
x→a

f(x) 6= b. Choose ε0 > 0 so that for all δ > 0 there

exists x ∈ A with 0 < |x − a| ≤ δ and |f(x) − b| > ε0. For each k ∈ Z+, choose xk ∈ A
with 0 < |xk − a| ≤ 1

k and |f(xk) − b| > ε0. In this way we obtain a sequence 〈xk〉k≥1 in
A \ {a} (we remark that the Axiom of Choice is required to construct this sequence 〈xk〉).
Since |xk−a| ≤ 1

k for all k ∈ Z+, it follows that xk → a (indeed, given ε > 0 we can choose
m ∈ Z with m ≥ 1

ε and then k ≥ m → |xk − a| ≤ 1
k ≤

1
m ≤ ε). Since |f(xk) − b| > ε0

for all k, it follows that f(xk) 6→ b (indeed if we had f(xk)→ b we could choose m ∈ Z so
that k ≥ m→ |f(xk)− b| ≤ ε0 and then we could choose k = m to get |f(xk)− b| ≤ ε0).

4.6 Remark: It follows from the Sequential Characterization of Limits of Functions that
all of our theorems about limits of sequences imply analogous theorems in the more general
setting of limits of functions. We list several of those theorems and give one sample proof.

4.7 Theorem: (Local Determination of Limits) Let F be a subfield of R, let A,B ⊆ F ,
let f : A→ F and let g : B → F . Suppose that a ∈ F is a limit point of both sets A and B,
and that for some δ > 0 we have C =

{
x ∈ A

∣∣0 < |x− a| ≤ δ} ⊆ {x ∈ B∣∣0 < |x− a| ≤ δ}
and that f(x) = g(x) for all x ∈ C. Then if lim

x→a
g(x) = u ∈ F̂ then lim

x→a
f(x) = u.

Similar results holds for limits x→ a± and x→ ±∞.

4.8 Theorem: (Uniqueness of Limits) Let F be a subfield of R, let A ⊆ F , let f : A→ F ,
and let a be a limit point of A. For u, v ∈ F̂ , if lim

x→a
f(x) = u and lim

x→a
f(x) = v then u = v.

Similar results hold for limits x→ a± and x→ ±∞.
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4.9 Theorem: (Extended Operations on Limits) Let F be a subfield of R, let A ⊆ F , let
f, g : A→ F and let a be a limit point of A. Let u, v ∈ F̂ and suppose that lim

x→a
f(x) = u

and lim
x→a

g(x) = v. Then

(1) if u+ v is defined in F̂ then lim
x→a

(f + g)(x) = u+ v,

(2) if u− v is defined in F̂ then lim
x→a

(f − g)(x) = u− v,

(3) if u · v is defined in F̂ then lim
x→a

(fg)(x) = u · v, and

(4) if u/v is defined in F̂ then lim
x→a

(f/g)(x) = u/v.

Similar results hold for limits x→ a± and x→ ±∞.

Proof: We prove Part (4). Suppose that u/v is defined in F̂ . Let 〈xk〉 be any sequence in
A \ {a} with xk → a. By the Sequential Characterization of Limits, since lim

x→a
f(x) = u we

have f(xk)→ u, and since lim
x→a

g(x) = v we have f(xk)→ v. By Extended Operations on

Limits of Sequences (Theorem 3.13), since f(xk) → u and g(xk) → v and u/v is defined

in F̂ , we have (f/g)(xk) = f(xk)
g(xk)

→ u/v. Thus (f/g)(xk) → u/v for every sequence 〈xk〉
in A \ {a} with xk → a. By the Sequential Characterization of Limits, it follows that
lim
x→a

(f/g)(x) = u/v.

4.10 Theorem: (Basic Limits) Let F be a subfield of R, and let A ⊆ F . For the constant
function f : A→ F given by f(x) = b for all x ∈ A, we have

lim
x→a

f(x) = b , lim
x→a+

f(x) = b , lim
x→a−

f(x) = b , lim
x→∞

f(x) = b and lim
x→−∞

f(x) = b,

and for the identity function f : A→ F given by f(x) = x for all x ∈ A we have

lim
x→a

f(x) = a , lim
x→a+

f(x) = a , lim
x→a−

f(x) = a , lim
x→∞

f(x) =∞ and lim
x→−∞

f(x) = −∞

whenever the limits are defined.

4.11 Theorem: (Basic Elementary Functions Acting on Limits) For f : A ⊆ R→ R and
for a, b, c ∈ R with a a limit point of A, we have the following.

(1) If lim
x→a

f(x) = b > 0 then lim
x→a

f(x)c = bc,

if lim
x→a

f(x) =∞ then lim
x→a

f(x)c =


∞ if c > 0

1 if c = 0

0 if c < 0,

if f(x) > 0 for all x ∈ A and lim
x→a

f(x) = 0 then lim
x→a

f(x)c =


0 if c > 0

1 if c = 0

∞ if c < 0.

(2) If lim
x→a

f(x) = b and c > 0 then lim
x→a

cf(x) = cb,

if lim
x→a

f(x) =∞ and c > 0 then lim
x→∞

cf(x) =


∞ if c > 1

1 if c = 1

0 if 0 < c < 1,

if lim
x→a

f(x) = −∞ and c > 0 then lim
x→a

cf(x) =


0 if c > 1

1 if c = 1

0 if 0 < c < 1.

27



(3) If lim
x→a

f(x) = b > 0 and c > 0 then lim
x→a

logc f(x) = logc b,

if lim
x→a

f(x) =∞ and c > 0 then lim
x→a

logc f(x) =

{
∞ if c > 1

−∞ if 0 < c < 1,

if f(x) > 0 for all x ∈ A, lim
x→a

f(x) = 0 and c > 0 then lim
x→a

logc f(x) =

{
−∞ if c > 1

∞ if 0 < c < 1.

(4) If lim
x→a

f(x) = b then lim
x→a

sin f(x) = sin b and lim
x→a

cos f(x) = cos b,

the limits lim
x→±∞

sinx, lim
±∞

cosx and lim
x→±∞

tanx do not exist.

(5) If f(x) ∈ [−1, 1] for all x ∈ A and lim
x→a

f(x) = b then lim
x→a

sin−1 f(x) = sin−1 b,

if lim
x→a

f(x) = b ∈ R then lim
x→a

tan−1 f(x) = tan−1 b,

if lim
x→a

f(x) =∞ then lim
x→a

tan−1 f(x) = π
2 , and

if lim
x→a

f(x) = −∞ then lim
x→a

tan−1 f(x) = −π2 .

Similar results hold for limits x→ a± and x→ ±∞.

4.12 Example: Evaluate each of the following limits, if they exist.

(a) lim
x→3

√
x+ 1− 2

3− x
(b) lim

x→1
sin−1

( 2

x− 1
− x+ 3

x2 − 1

)
(c) lim

x→0
e−1/x

2

(d) lim
x→∞

(3x+ 1)
√
x√

4x3 − 2x+ 1

(e) lim
x→1−

√
x3 − 2x2 + x

x2 + 2x− 3

(f) lim
x→−1+

x2 − 2x− 3

x3 + 4x2 + 5x+ 2

Solution: I may include solutions later.

4.13 Theorem: (The Comparison Theorem) Let F be a subfield of R, let A ⊆ F , let f
and g be two functions f, g : A → F and let a ∈ F be a limit point of A. Suppose that
f(x) ≤ g(x) for all x ∈ A. Then

(1) if lim
x→a

f(x) = u and lim
x→a

f(x) = v with u, v ∈ F̂ , then u ≤ v,

(2) if lim
x→a

f(x) =∞ then lim
x→a

g(x) =∞, and

(3) if lim
x→a

g(x) = −∞ then lim
x→a

g(x) = −∞.

Similar results hold for limits x→ a± and x→ ±∞.

4.14 Theorem: (The Squeeze Theorem) Let F be a subfield of R, let A ⊆ F , let
f, g, h : A→ F , and let a be a limit point of A.

(1) If f(x) ≤ g(x) ≤ h(x) for all x ∈ A and lim
x→a

f(x) = b = lim
x→a

h(x), then lim
x→a

g(x) = b.

(2) If |f(x)| ≤ g(x) for all x ∈ A and lim
x→a

g(x) = 0 then lim
x→a

f(x) = 0.

Similar results hold for limits x→ a± and x→ ±∞.
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4.15 Definition: Let F be a subfield of R, let A ⊆ F , and let f : A→ F . For a ∈ A, we
say that f is continuous at a when

∀ε > 0 ∃δ > 0 ∀x ∈ A
(
|x− a| ≤ δ → |f(x)− f(a)| ≤ ε

)
.

We say that f is continuous (in A) when f is continuous at every point a ∈ A.

4.16 Theorem: Let F be a subfield of R, let A ⊆ F , let f : A→ F and let a ∈ A. Then

(1) if a is not a limit point of A then f is continuous at a, and
(2) if a is a limit point of A then f is continuous at a if and only if lim

x→a
f(x) = f(a).

Proof: The proof is left as an exercise.

4.17 Theorem: (The Sequential Characterization of Continuity) Let F be a subfield of
R, let A ⊆ F , let f : A → F and let a ∈ A. Then f is continuos at a if and only if for
every sequence 〈xk〉 in A with xk → a we have f(xk)→ f(a).

Proof: Suppose that f is continuous at a. Let 〈xk〉 be a sequence in A with xk → a. Let
ε > 0. Choose δ > 0 so that for all x ∈ A we have |x− a| ≤ δ → |f(x)− f(a)| ≤ ε. Choose
m ∈ Z so that for all indices k we have k ≥ m→ |xk − a| ≤ δ. Then when k ≥ m we have
|xk − a| ≤ δ and hence |f(xk)− f(a)| ≤ ε. Thus we have f(xk)→ f(a).

Conversely, suppose that f is not continuous at a. Choose ε0 > 0 so that for all δ > 0
there exists x ∈ A with |x−a| ≤ δ and |f(x)−f(a)| > ε0. For each k ∈ Z+, choose xk ∈ A
with |xk − a| ≤ 1

k and |f(xk) − f(a)| > ε0. Consider the sequence 〈xk〉 in A (we remark
that the Axiom of Choice is being used here). Since |xk − a| ≤ 1

k for all k ∈ Z+, it follows
that xk → a. Since |f(xk)− f(a)| > ε0 for all k ∈ Z+, it follows that f(xk) 6→ f(a).

4.18 Theorem: (Operations on Continuous Functions) Let F be a subfield of R, let
A ⊆ F , let f, g : A→ F , let a ∈ A and let c ∈ F . Suppose that f and g are continuous at
a. Then the functions cf , f + g, f − g and fg are all continuous at a, and if g(a) 6= 0 then
the function f/g is continuous at a.

Proof: The proof is left as an exercise.

4.19 Theorem: (Composition of Continuous Functions) Let F be a subfield of R, let
A,B ⊆ R, let f : A→ R and g : B → R, let h = g ◦ f : C → R where C = A ∩ f−1(B).

(1) If f is continuous at a ∈ C and g is continuous at f(a), then h is continuous at a.
(2) If f is continuous (in A) and g is continuous (in B) then h is continuous (in C).

Proof: Note that Part (2) follows immediately from Part (1), so it suffices to prove Part
(1). Suppose that f is continuous at a ∈ A and g is continuous at b = f(a) ∈ B. Let 〈xk〉
be a sequence in C with xk → a. Since f is continuous at a, we have f(xk) → f(a) = b
by the Sequential Characterization of Continuity. Since

〈
f(xk)

〉
is a sequence in B with

f(xk) → b and since g is continuous at b, we have g(f(xk)) → g(b) by the Sequential
Characterization of Continuity. Thus we have h(xk) = g

(
f(xk)

)
→ g(b) = g

(
f(a)

)
= h(a).

We have shown that for every sequence 〈xk〉 in C with xk → a we have h(xk) → h(a).
Thus h is continuous at a by the Sequential Characterization of Continuity.

4.20 Corollary: Every elementary function is continuous (in its domain).

Proof: The basic elementary functions are all continuous in their domains by the Basic
Elementary Functions Acting on Limits Theorem. If follows that every elementary function
is continuous by Theorems 4.18 and 4.19.
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4.21 Theorem: (Functions Acting on Limits) Let F be a subfield of R, let A,B ⊆ F ,
let f : A → F , let g : B → F and let h = g ◦ f : C → F where C = A ∩ f−1(B). Let
a be a limit point of C (hence also of A) and let b be a limit point of B. Suppose that
lim
x→a

f(x) = a and lim
y→b

g(y) = c. Suppose either that f(x) 6= b for all x ∈ C \ {a} or that g

is continuous at b ∈ B. Then lim
x→a

h(x) = c.

Analogous results hold, dealing with limits x→ a±, x→ ±∞, y → b± and y → ±∞.

Proof: The proof is similar to the proof of the Composition of Continuous Functions
Theorem.

4.22 Theorem: (Intermediate Value Theorem) Let I be an interval in R and let f : I → R
be continuous. Let a, b ∈ I with a ≤ b and let y ∈ R. Suppose that either f(a) ≤ y ≤ f(b)
or f(b) ≤ y ≤ f(a). Then there exists x ∈ [a, b] with f(x) = y.

Proof: We prove the theorem in the case that f(a) ≤ y ≤ f(b). If y = f(a) then we can
take x = a and if y = f(b) then we can take x = b. Suppose that f(a) < y < f(b). Let
A =

{
t ∈ [a, b]

∣∣f(t) ≤ y
}

. Note that A 6= ∅ (since a ∈ A) and A is bounded above (by
b) and so A has a supremum in R. Let x = supA. Since a ∈ A and x = supA we have
x ≥ a. Since b is an upper bound for A and x = supA we have x ≤ b. Thus x ∈ [a, b].

We claim that f(x) = y. Suppose, for a contradiction, that f(x) > y. Since x 6= a
(because f(a) < y but f(x) > y) we can choose δ1 > 0 so that [x − δ1, x] ⊆ [a, b]. Since
f is continuous at x with f(x) > y, we can choose δ2 so that for all t ∈ [a, b] we have
|t − x| ≤ δ2 → f(t) > y. Let δ = min{δ1, δ2}. Since x = supA, by the Approximation
Property we can choose t ∈ A with x− δ ≤ t ≤ x. Since t ∈ A we have f(t) ≤ y, but since
t ∈ [x−δ, x] we have f(t) > y, so we have obtained the desired contradiction. Now suppose,
for a contradiction, that f(x) < y. Since x 6= b (because f(b) > y but f(x) < y) we can
choose δ1 > 0 so that [x, x+ δ1] ⊆ [a, b]. Since f is continuous at x with f(x) < y we can
choose δ2 > 0 so that for all t ∈ [a, b] we have |t−x| ≤ δ2 → f(t) < y. Let δ = min{δ1, δ2}
so that [x, x+ δ] ⊆ [a, b] and for all t ∈ [x, x+ δ] we have f(t) < y. But then x+ δ ∈ A so
we cannot have x = supA, and we have obtained the desired contradiction.

4.23 Example: Define f : Q→ Q be f(x) = x2. For a = 0 and b = 2 and y = 2 we have
f(a) < y < f(b) but there is no point x in the rational interval [a, b] = {t ∈ Q|a ≤ t ≤ b}
for which f(x) = y. So the conclusion of the Intermediate Value Theorem does not hold
in this case.

4.24 Definition: Let F be a subfield of R, let A ⊆ F , and let f : A → F . For a ∈ A,
if f(a) ≥ f(x) for every x ∈ A, then we say that f(a) is the maximum value of f and
that f attains its maximum value at a. Similarly for b ∈ A, if f(b) ≤ f(x) for every x ∈ A
then we say that f(b) is the minimum value of f (in A) and that f attains its minimum
value at b. We say that f attains its extreme values in A when f attains its maximum
value at some point a ∈ A and f attains its minimum value at some point b ∈ A.
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4.25 Theorem: (Extreme Value Theorem) Let a, b ∈ R with a < b, and let f : [a, b]→ R
be continuous. Then f attains its extreme values in [a, b].

Proof: We prove that f attains its maximum. First we claim that f is bounded above.
Suppose, for a contradiction, that it is not. For each k ∈ Z+, choose xk ∈ [a, b] such that
f(xk) ≥ k. By the Bolzano Weierstrass Theorem, we can choose a convergent subsequence
〈xkj 〉. Let p = lim

j→∞
xkj . Note that p ∈ [a, b] by Comparison (since xkj ≥ a for all j we

have p ≥ a, and since xkj ≤ b for all j we have p ≤ b). Since f(xkj ) ≥ kj and kj →∞ we
must have f(xkj )→∞ as j →∞. But by the Sequential Characterization of Continuity,
we should have f(xkj ) → f(p) ∈ R, so we have obtained the desired contradiction. Thus
f is bounded above, as claimed.

Since the range f([a, b]) is nonempty and bounded above, it has a supremum. Let
m = sup f([a, b]). By the Approximation Property of the supremum, for each k ∈ Z+

we can choose yk ∈ [a, b] such that m − 1
k ≤ f(yk) ≤ m. By the Bolzano Weierstrass

Theorem, we can choose a convergent subsequence 〈ykj 〉. Let c = lim
j→∞

ykj . Since we have

m − 1
kj
≤ f(ykj ) ≤ m and 1

kj
→ 0, we have f(ykj ) → m as j → ∞ by the Squeeze

Theorem. Since f is continuous at c, by the Sequential Characterization of Continuity
we have f(ykj ) → f(c), and so by the Uniqueness of Limits, we have f(c) = m. Thus f
attains its maximum value at c.

4.26 Example: For the function f : [−1, 1] ⊆ R → R given by f(x) = x3 − x, you
can check using high school calculus that f attains its maximum and minimum values at
a = − 1√

3
and b = 1√

3
. The function f : [−1, 1] ⊆ Q → Q is continuous in the closed

rational interval [−1, 1] = {t ∈ Q| − 1 ≤ t ≤ 1}, but it does not attain its maximum and
minimum values in this interval, so the conclusion of the Extreme Value Theorem does not
hold for this function.

4.27 Definition: Let F be a subfield of R, let A ⊆ F , and let f : A→ F . We say that f
is uniformly continuous in A when

∀ε>0 ∃δ>0 ∀a∈A ∀x∈A
(
|x− a| ≤ δ → |f(x)− f(a)| ≤ ε

)
.

4.28 Example: Define f : (0,∞) → (0,∞) by f(x) = 1
x . Let ε = 1. Let δ > 0. If δ ≥ 1

then for x = 1
3 and a = 1 we have |x− a| = 2

3 ≤ δ but |f(x)− f(a)| = 2 > ε. If 0 < δ < 1

then for x = δ
3 and a = δ we have |x − a| = 2

3δ ≤ δ but |f(x) − f(a)| = 2
δ ≥ 2 > ε. This

proves that f is not uniformly continuous (but f is continuous because it is elementary).

4.29 Theorem: (Closed Bounded Intervals and Uniform Continuity) Let a, b ∈ R with
a < b and let f : [a, b]→ R. If f is continuous then f is uniformly continuous (on [a, b]).

Proof: Suppose, for a contradiction, that f : [a, b] → R is continuous but not uniformly
continuous on [a, b]. Choose ε > 0 so that for all δ > 0 there exist x, y ∈ [a, b] such
that |x − y| ≤ δ but |f(x) − f(y)| > ε. For each k ∈ Z+ choose xk and yk in [a, b] with
|xk−yk| ≤ 1

k and |f(xk)−f(yk)| > ε. By the Bolzano Weierstrass Theorem, we can choose
a convergent subsequence 〈ykj 〉 of 〈yk〉. Let c = lim

j→∞
ykj . For all j we have |xkj −ykj | ≤ 1

kj

hence ykj− 1
kj
≤ xkj ≤ ykj + 1

kj
. Since ykj → c and 1

kj
→ 0 we have ykj± 1

kj
→ c and hence

xkj → c by the Squeeze Theorem. Since f is continuous at c and xkj → c and ykj → c, we
have f(xkj ) → f(c) and f(ykj ) → f(c) by the Sequential Characterization of Continuity.
Since f(xkj ) → c and f(ykj ) → c we have f(xkj ) − f(ykj ) → 0. But this implies that we
can choose j so that |f(xkj )− f(ykj )| ≤ ε, giving the desired contradiction.
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Chapter 5: Differentiation

5.1 Definition: Let F be a subfield of R, let A ⊆ F , let f : A → F and let a ∈ A be a
limit point of A. We say that f is differentiable at a when the limit

lim
x→a

f(x)− f(a)

x− a
exists in F . In this case we call the limit the derivative of f at a, and we denote to by
f ′(a), so we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

When a ∈ A is a limit point of A from the right, we say that f is differentiable from
the right at a and that f ′+(a) is the derivative from the right of f at a, when

f ′+(a) = lim
x→a+

f(x)− f(a)

x− a
.

Similarly, when a ∈ A is a limit point of A from the left, we say that f is differentiable
from the left at a and that f ′−(a) is the derivative from the left of f at a when

f ′−(a) = lim
x→a−

f(x)− f(a)

x− a
.

5.2 Definition: We say that f is differentiable (in A) when f is differentiable at every
point a ∈ A. In this case, the derivative of f is the function f ′ : A→ F defined by

f ′(x) = lim
u→x

f(u)− f(x)

u− x
.

When f ′ is differentiable at a, denote the derivative of f ′ at a by f ′′(a), and we call
f ′′(a) the second derivative of f at a. When f ′′(a) exists for every a ∈ A, we say that
f is twice differentiable (in A), and the function f ′′ : A → F is called the second
derivative of f . Similarly, f ′′′(a) is the derivative of f ′′ at a and so on. More generally,
for any function f : A → F , we define its derivative to be the function f ′ : B → F
where B =

{
a ∈ A

∣∣f is differentiable at a
}

, and we define its second derivative to be

the function f ′′ : C → F where C =
{
a ∈ B

∣∣f ′ is differentiable at a
}

and so on.

5.3 Remark: Note that

lim
x→a

f(x)− f(a)

x− a
= lim
h→0

f(a+ h)− f(a)

h
.

To be precise, the limit on the left exists in F if and only if the limit on the right exists in
F , and in this case the two limits are equal.
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5.4 Theorem: Let F be a subfield of R, let A ⊆ F , let f : A → F , and let a ∈ A be a
limit point of A. Then f is differentiable at a with derivative f ′(a) if and only if

∀ε>0 ∃δ>0 ∀x∈A
(
|x− a| ≤ δ →

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ ≤ ε)

Proof: We have

f is differentiable at a with derivative f ′(a) ⇐⇒ lim
x→a

f(x)− f(a)

x− a
= f ′(a)

⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(

0 < |x− a| ≤ δ →
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ ≤ ε)
⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A

(
0 < |x− a| ≤ δ →

∣∣∣∣f(x)− f(a)− f ′(a)(x− a)

x− a

∣∣∣∣ ≤ ε)
⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A

(
0 < |x− a| ≤ δ →

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ ≤ ε|x− a|)

⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(
|x− a| ≤ δ →

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ ≤ ε|x− a|)

where on the last line, we can remove the condition that 0 < |x− a| because when x = a
we have

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ = 0.

5.5 Definition: When f : A→ F is differentiable at a with dervative f ′(a), the function

l(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a. Note that the graph y = l(x) of the linearization is
the line through the point (a, f(a)) with slope f ′(a). This line is called the tangent line
to the graph y = f(x) at the point (a, f(a)).

5.6 Theorem: (Differentiability Implies Continuity) Let F be a subfield of R, let A ⊆ F ,
let f : A → F and let a ∈ A be a limit point of A. Suppose that f is differentiable at a.
Then f is continuous at a.

Proof: We have

f(x)− f(a) =
f(x)− f(a)

x− a
· (x− a) −→ f ′(a) · 0 = 0 as x→ a

and so
f(x) =

(
f(x)− f(a)

)
+ f(a) −→ 0 + f(a) = f(a) as x→ a.

This proves that f is continuous at a.

5.7 Theorem: (Local Determination of the Derivative) Let F be a subfield of R, let
A,B ⊆ F , let f : A→ F and g : B → F , and let a ∈ A∩B be a limit point of both A and
B. Suppose that for some δ > 0 we have

{
x ∈ A

∣∣|x− a| ≤ δ} ⊂ {x ∈ B∣∣|x− a| ≤ δ}. If g
is differentiable at a then so is f and we have f ′(a) = g′(a).

Proof: The proof is left as an exercise.
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5.8 Theorem: (Operations on Derivatives) Let F be a subfield of R, let A ⊆ F , let
f, g : A → F , let a ∈ A be a limit point of A, and let c ∈ F . Suppose that f and g are
differentiable at a. Then

(1) (Linearity) the functions cf , f + g and f − g are differentiable at a with

(cf)′(a) = c f ′(a) , (f + g)′(a) = f ′(a) + g′(a) , (f − g)′(a)− f ′(a)− g′(a),

(2) (Product Rule) the function fg is differentiable at a with

(fg)′(a) = f ′(a)g(a) + f(a)g′(a),

(3) (Reciprocal Rule) if g(a) 6= 0 then the function 1/g is differentiable at a with(1

g

)′
(a) = − g

′(a)

g(a)2
,

(4) (Quotient Rule) if g(a) 6= 0 then the function f/g is differentiable at a with(f
g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g(a)2
.

Proof: We prove Parts (2), (3) and (4). For x ∈ A with x 6= a, we have

(fg)(x)− (fg)(a)

x− a
=
f(x)g(x)− f(a)g(a)

x− a

=
f(x)g(x)− f(x)g(a) + f(x)g(a)− f(a)g(a)

x− a

= f(x) · g(x)− g(a)

x− a
+ g(a) · f(x)− f(a)

x− a
−→ f(a) · g′(a) + g(a) · f ′(a) as x→ a.

Note that f(x)→ f(a) as x→ a because f is continuous at a since differentiability implies
continuity. This proves the Product Rule.

Suppose that g(a) 6= 0. Since g is continuous at a (because differentiability implies

continuity) we can choose δ > 0 so that |x− a| ≤ δ → |g(x)− g(a)| ≤ |g(a)|2 and then when

|x− a| ≤ δ we have |g(x)| ≥ |g(a)|2 so that g(x) 6= 0. For x ∈ A with |x− a| ≤ δ we have(
1
g

)
(x)−

(
1
g

)
(a)

x−−a
=

1
g(x) −

1
g(a)

x− a
=

−1

g(x)g(a)
· g(x)− g(a)

x− a
−→ −1

g(a)2
· g′(a)

as x→ a. This Proves the Reciprocal Rule.
Finally, note that Part (4) follows from Parts (2) and (3). Indeed when g(a) 6= 0, we

have (f
g

)′
(a) =

(
f · 1

g

)′
(a) = f ′(a) ·

(1

g

)
(a) + f(a) ·

(1

g

)′
(a)

= f ′(a) · 1

g(a)
+ f(a) · −g

′(a)

g(a)2
=
f ′(a)g(a)− f(a)g′(a)

g(a)2
.
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5.9 Theorem: (Chain Rule) Let F be a subfield of R, let A,B ⊆ F , let f : A → F , let
g : B → F and let h = g ◦ f : C → F where C = A ∩ f−1(B). Let a ∈ C be a limit
point of C (hence also of A) and let b = f(a) ∈ B be a limit point of B. Suppose that f
is differentiable at a and g is differentiable at b. Then h is differentiable at a with

h′(a) = g′
(
f(a)

)
f ′(a).

Proof: We shall use the ε-δ formulation of the derivative from Theorem 5.3. Note first
that for x ∈ C and y = f(x) ∈ B we have∣∣h(x)− h(a)− g′(f(a))f ′(a)(x− a)

∣∣
=
∣∣g(f(x))− g(f(a))− g′(f(a))f ′(a)(x− a)

∣∣
=
∣∣g(y)− g(b)− g′(b)f ′(a)(x− a)

∣∣
=
∣∣g(y)− g(b)− g′(b)(y − b) + g′(b)(y − b)− g′(b)f ′(a)(x− a)

∣∣
≤
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣+ |g′(b)| |y − b− f ′(a)(x− a)|
=
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣+ |g′(b)|
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣
and also

|y − b| =
∣∣f(x)− f(a)

∣∣ =
∣∣f(x)− f(a)− f ′(a)(x− a) + f ′(a)(x− a)

∣∣
≤
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣+ |f ′(a)| |x− a|.
Let ε > 0. Since g is differentiable at b, we can choose δ0 > 0 so that

|y − b| ≤ δ0 →
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣ ≤ ε
2(1+|f ′(a)|) |y − b|.

Since f is continuous at a, we can choose δ1 so that

|x− a| ≤ δ1 → |f(x)− f(a)| ≤ δ0 → |y − b| ≤ δ0.

Since f is differentiable at a we can choose δ2 > 0 and δ3 > 0 so that

|x− a| ≤ δ2 →
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣ ≤ |x− a| and

|x− a| ≤ δ3 →
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣ ≤ ε
2(1+g′(b)|) .

Let δ = min{δ1, δ2, δ3}. Let x ∈ C and let y = f(x) ∈ B. Then when |x− a| ≤ δ we have∣∣h(x)− h(a)− g′(f(a))f ′(a)(x− a)
∣∣

≤
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣+ |g′(b)|
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣
≤ ε

2(1+|f ′(a)|) |y − b|+ (1 + |g′(b)|) · ε
2(1+|g′(b)|) |x− a|

≤ ε
2(1+|f ′(a)|)

(∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣+ |f ′(a)| |x− a|

)
+ ε

2 |x− a|

≤ ε
2(1+|f ′(a)|)

(
|x− a|+ |f ′(a)| |x− a|

)
+ ε

2 |x− a|

= ε
2 |x− a|+

ε
2 |x− a| = ε|x− a|.

Thus h is differentiable at a with h′(a) = g′(f(a))f ′(a), as required.

5.10 Theorem: Let F be a subfield of R, let A ⊆ F and let f : A → F . Then f is
monotonic if and only if f has the property that for all a, b, c ∈ A, if b lies between a and
c then f(b) lies between f(a) and f(c).

Proof: The proof is left as an exercise.
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5.11 Theorem: (The Inverse Function Theorem) Let I be an interval in R, let f : I → R
and let J = f(I).

(1) If f is continuous then its range J = f(I) is an interval in R.
(2) If f is injective and continuous then f is strictly monotonic.
(3) If f : I → J is strictly monotonic, then so is its inverse g : J → I.
(4) If f is bijective and continuous then its inverse g is continuous.

(5) If f is bijective and continuous, and f is differentiable at a with f ′(a) 6= 0, then its
inverse g is differentiable at b = f(a) with g′(b) = 1

f ′(a) .

Proof: Suppose that f : I → R is continuous. If f is the empty function or if f is constant,
then J is a degenerate interval. Suppose that J contains at least two points. Let u, v ∈ J
and let y ∈ R with u < y < v. Since J = f(I) we can choose a, b ∈ I with f(a) = u and
f(b) = v. Since f(a) = u 6= v = f(b) we have a 6= b. Since y lies between f(a) = u and
f(b) = v, and since f is continuous, it follows from the Intermediate Value Theorem that
we can choose x between a and b with f(x) = y. Since I is an interval in R, it has the
intermediate value property, and so we have x ∈ I. Since x ∈ I and y = f(x) we have
y ∈ f(I) = J . This proves that J has the intermediate value property, and so J is an
interval, as required. This proves Part (1).

Suppose that f is injective and continuous. Let a, b, c ∈ I with a < b < c. Since f
is injective and a 6= c, we have f(a) 6= f(c). We claim that f(b) lies between f(a) and
f(c). Consider the case that f(a) < f(c) (the case that f(a) > f(c) is similar). Suppose,
for a contradiction, that f(b) ≥ f(c). Note that since f is injective and b 6= c we have
f(b) 6= f(c) and so f(b) > f(c). Choose y with f(c) < y < f(b). Since f is continuous
on [a, b] and on [b, c], by the Intermediate Value Theorem, we can choose x1 ∈ [a, b] and
x2 ∈ [b, c] with f(x1) = y = f(x2). Since y 6= f(b) we cannot have x1 = b or x2 ∈ b so
we have x1 < b < x2 with f(x1) = f(x2), which contradicts the fact that f is injective.
Thus we cannot have f(b) ≥ f(c) and so we have f(b) < f(c). A similar argument by
contradiction shows that we cannot have f(b) ≤ f(a) and so we have f(a) < f(b) < f(c),
and so f(b) lies between f(a) and f(c) as claimed. We have proven that for all a, b, c ∈ I
with a < b < c, f(b) lies between f(a) and f(c). It follows from the above theorem that f
is monotonic (hence strictly monotonic since it is injective). This proves Part (2).

To prove Part (3), suppose that f : I → J is strictly monotonic and let g : J → I be
the inverse of f . Suppose that f is strictly increasing. Let u, v ∈ J = f(I) with u < v. Let
a = g(u) and b = g(v) so we have u = f(a) and v = f(b). Since f is strictly increasing, we
must have a < b (since a = b→ f(a) = f(b)→ u = v and a > b→ f(a) > f(b)→ u > v).
Thus g(u) = a < b = g(v) and so g is strictly increasing. A similar argument shows that
if f is strictly decreasing then so is g.

Part (4) follows from Part (3) by the Monotone Surjective Functions Theorem.
To prove Part (5), suppose that f is bijective and continuous and that f is differen-

tiable at a with f ′(a) 6= 0. By Part (4), we know that g is continuous at b = f(a), and so
as y → b in J we have g(y)→ g(b) in I, and so for x = g(y) we have

g(y)− g(b)

y − b
=

x− a
f(x)− f(a)

=
1

f(x)−f(a)
x−a

−→ 1

f ′(a)
as y → b.

36



5.12 Theorem: (Derivatives of the Basic Elementary Functions) The basic elementary
functions have the following derivatives.

(1) (xa)′ = a xa−1 where a ∈ R and x ∈ R is such that xa−1 is defined,

(2) (ax)′ = ln a · ax where a > 0 and x ∈ R and

(loga x)′ = 1
ln a ·

1
x where 0 < a 6= 1 and x > 0, and in particular

(ex)′ = ex for all x ∈ R and (lnx)′ = 1
x for all x > 0,

(3) (sinx)′ = cosx and (cosx)′ = − sinx for all x ∈ R, and

(tanx)′ = sec2 x and (secx)′ = secx tanx for all x ∈ R with x 6= π
2 + kπ, k ∈ Z,

(cotx)′ = − csc2 x and (cscx)′ = − cotx cscx for all x ∈ R with x 6= π + kπ, k ∈ Z,

(4) (sin−1 x)′ = 1√
1−x2

and (cos−1 x)′ = −1√
1−x2

for |x| < 1,

(sec−1 x)′ = 1
x
√
x2−1 and (csc−1 x)′ = −1

x
√
x2−1 for |x| > 1, and

(tan−1 x)′ = 1
1+x2 and (cot−1 x)′ = −1

1+x2 for all x ∈ R.

Proof: First we prove Part (1) in the case that a ∈ Q. When n ∈ Z+ and f(x) = xn we
have

f(u)− f(x)

u− x
=
un − xn

u− x
=

(u− x)(un−1 + un−2x+ un−3x2 + · · ·+ xn−1)

u− x
= un−1 + un−2x+ un−3x2 + · · ·+ xn−1 −→ nxn−1 as u→ x.

This shows that (xn)′ = nxn−1 for all x ∈ R when n ∈ Z+. By the Reciprocal Rule, for
x 6= 0 we have

(x−n)′ =
( 1

xn

)′
= − (xn)′

(xn)2
= −nx

n−1

x2n
= −nx−n−1.

The function g(x) = x1/n is the inverse of the function f(x) = xn (when n is odd, x1/n

is defined for all x ∈ R, and when n is even, x1/n is defined only for x ≥ 0). Since
f ′(x) = (xn)′ = nxn−1 we have f ′(x) = 0 when x = 0. By the Inverse Function Theorem,
when x 6= 0 we have

(x1.n)′ = g′(x) =
1

f ′(g(x))
=

1

n g(x)n−1
=

1

n(x1/n)n−1
=

1

nx1−
1
n

= 1
n x

1
n−1.

Finally, when n ∈ Z+ and k ∈ Z with gcd(k, n) = 1, by the Chain Rule we have

(xk/n)′ =
(
(x1/n)k

)′
= k(x1/n)k−1(x1/n)′ = k x

k−1
n · 1n x

1−n
n = k

n x
k
n−1.

We have proven Part (1) in the case that a ∈ Q.

Next we shall prove Part (2). For f(x) = ax where a > 0, we have

f(x+ h)− f(x)

h
=
ax+h − ax

h
=
axah − ax

h
= ax · a

h − 1

h

and so we have f ′(x) = ax
(

lim
h→0

ah−1
h

)
provided that the limit exists and is finite. For

g(x) = loga x, where 0 < a 6= 1 and x > 0, we have

g(x+ h)− g(x)

h
=

loga(x+ h)− loga x

h
=

loga
(
x+h
x

)
h

=
loga

(
1 + h

x

)
x · hx

= 1
x ·loga

(
1+ h

x

)x/h
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and so we have g′(x) = 1
x · loga

(
lim
h→0

(
1 + h

x

)x/h)
provided the limit exists and is finite.

By letting u = h
x we see that

lim
h→0+

(
1 + h

x

)x/h
= lim
u→∞

(
1 + 1

u

)u
= e

as you showed in Assignment 5. By letting u = −hx , a similar argument shows that

lim
h→0−

(
1 + h

x

)x/h
= lim
u→∞

(
1− 1

u

)−u
= e.

Thus the derivative g′(x) does exist and we have

(loga x)′ = g′(x) = 1
x loga

(
lim
h→0

(
1 + h

x

)x/h)
= 1

x loga e = 1
x ·

ln e
ln a = 1

x ln a .

Since g(x) = loga x is differentiable with g′(x) 6= 0 it follows from the Inverse Function
Theorem that f(x) = ax is differentiable with derivative

(ax)′ = f ′(x) =
1

g′(f(x))
=

1
1

f(x) ln a

= ln a · f(x) = ln a · ax.

Now we return to the proof of Part (1), in the case that a /∈ Q. When a > 0 we have
ax = ex ln a for all x > 0 and so by the Chain Rule

(xa)′ =
(
ea ln x

)′
= ea ln x(a lnx)′ = xa · ax = a xa−1,

I may finish the proof later.

5.13 Definition: Let F be a subfield of R, let A ⊆ F , let f : A→ F and let a ∈ A. We
say that f has a local maximum value at a when

∃δ>0 ∀x∈A
(
|x− a| ≤ δ → f(x) ≤ f(a)

)
.

Similarly, we say that f has a local minimum value at a when

∃δ>0 ∀x∈A
(
|x− a| ≤ δ → f(x) ≥ f(a)

)
.

5.14 Theorem: (Fermat’s Theorem) Let F be a subfield of R, let A ⊆ F , let f : A→ F .
Suppose that a ∈ A is a limit point of A, both from above and from below. Suppose that
f is differentiable at a and that f has a local maximum or minimum value at a. Then
f ′(a) = 0.

Proof: We suppose that f has a local maximum value at a (the case that f has a local
minimum value at a is similar). Choose δ > 0 so that |x − a| ≤ δ → f(x) ≤ f(a). For

x ∈ A with a < x < a+ δ, since x > a and f(x) ≥ f(a) we have f(x)−f(a)
x−a ≥ 0, and so

f ′(a) = lim
x→a+

f(x)− f(a)

x− a
≥ 0

by the Comparison Theorem. Similarly, for x ∈ A with a − δ ≤ x < a, since x < a and

f(x) ≥ f(a) we have f(x)−f(a)
x−a ≤ 0, and so

f ′(a) = lim
x→a−

f(x)− f(a)

x− a
≤ 0.
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5.15 Theorem: (Mean Value Theorems) Let a, b ∈ R with a < b.

(1) (Rolle’s Theorem) If f : [a, b] → R differentiable in (a, b) and continuous at a and b
with f(a) = 0 = f(b) then there exists a point c ∈ (a, b) such that f ′(c) = 0.

(2) (The Mean Value Theorem) If f : [a, b] → R is differentiable in (a, b) and continuous
at a and b then there exists a point c ∈ (a, b) with

f ′(c) =
f(b)− f(a)

b− a
.

(3) (Cauchy’s Mean Value Theorem) If f, g : [a, b] → R are differentiable in (a, b) and
continuous at a and b, then there exists a point c ∈ (a, b) such that

f ′(c)
(
g(b)− g(a)

)
= g′(c)

(
f(b)− f(a)

)
.

Proof: To Prove Rolle’s Theorem, let f : [a, b] → R be differentiable in (a, b) and contin-
uous at a and b with f(a) = 0 = f(b). If f is constant, then f ′(x) = 0 for all x ∈ [a, b],
so we can choose any c ∈ (a, b) and we have f ′(c) = 0. Suppose that f is not constant.
Either f(x) > 0 for some x ∈ (a, b) or f(x) < 0 for some x ∈ (a, b). Suppose that f(x) > 0
for some x ∈ (a, b) (the case that f(x) < 0 for some x ∈ (a, b) is similar). By the Extreme
Value Theorem, f attains its maximum value at some point, say c ∈ [a, b]. Since f(x) > 0
for some x ∈ (a, b), we must have f(c) > 0. Since f(a) = f(b) = 0 and f(c) > 0, we have
c ∈ (a, b). By Fermat’s Theorem, we have f ′(c) = 0. This completes the proof of Rolle’s
Theorem.

Now we use Rolle’s Theorem to prove the Mean Value Theorem. Suppose that f :
[a, b] → R is differentiable in (a, b) and continuous at a and b. Let g(x) = f(x) − f(a) −
f(b)−f(a)

b−a (x − a). Then g is differentiable in (a, b) with g′(x) = f ′(x) − f(b)−f(a)
b−a and g is

continuous at a and b with g(a) = 0 = g(b). By Rolle’s Theorem, we can choose c ∈ (a, b)

so that f ′(c) = 0, and then g′(c) = f(b)−f(a)
b−a , as required.

Finally, we use the Mean Value Theorem to Prove Cauchy’s Mean Value Theorem.
Suppose that f, g : [a, b] → R are both differentiable in (a, b) and continuous at a and
b. Let h(x) = f(x)

(
g(b) − g(a)

)
− g(x)

(
f(b) − f(a)

)
. Then h is differentiable in (a, b)

and continuous at a and b. with h(a) = f(a)g(b) − g(a)f(b) = h(b). By the Mean Value

Theorem, we can choose c ∈ (a, b) so that h′(c) = h(b)−h(a)
b−a = 0, and then we have

f(c)
(
g(b)− g(a)

)
− g(c)

(
f(b)− f(a)

)
= 0, as required.

5.16 Corollary: Let a, b ∈ R with a < b. Let f : [a, b] → R. Suppose that f is
differentiable in (a, b) and continuous at a and b.

(1) If f ′(x) ≥ 0 for all x ∈ (a, b) then f is increasing on [a, b].
(2) If f ′(x) > 0 for all x ∈ (a, b) then f is strictly increasing on [a, b].
(3) If f ′(x) ≤ 0 for all x ∈ (a, b) then f is decreasing on [a, b].
(4) If f ′(x) < 0 for all x ∈ (a, b) then f is strictly decreasing on [a, b].
(5) if f ′(x) = 0 for all x ∈ (a, b) then f is constant on [a, b].
(6) If g : [a, b]→ R is continuous at a and b and differentiable in (a, b) with g′(x) = f ′(x)
for all x ∈ (a, b), then for some c ∈ R we have g(x) = f(x) + c for all x ∈ (a, b).

Proof: We prove Part (1) (the proofs of the other parts are similar. Suppose that f ′(x) ≥ 0

for all x ∈ (a, b). Let a ≤ x < y ≤ b. Choose c ∈ (x, y) so that f ′(c) = f(y)−f(x)
y−x . Then

f(y)− f(x) = f ′(c)(y − x) ≥ 0 and so f(y) ≥ f(x). Thus f is increasing on [a, b].
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5.17 Corollary: (The Second Derivative Test) Let I be an interval in R, let f : I → R
and let a ∈ I. Suppose that f is differentiable in I with f ′(a) = 0.

(1) If f ′′(a) > 0 then f has a local minimum at a.
(2) If f ′′(a) < 0 then f has a local maximum at a.

Proof: The proof is left as an exercise.

5.18 Theorem: (l’Hôpital’s Rule) Let I be a non degenerate interval in R. Let a ∈ I, or
let a be an endpoint of I. Let f, g : I \ {a} → R. Suppose that f and g are differentiable
in I \ {a} with g′(x) 6= 0 for all x ∈ I \ {a}. Suppose either that lim

x→a
f(x) = 0 = lim

x→a
g(x)

or that lim
x→a

g(x) = ±∞. Suppose that lim
x→a

f ′(x)

g′(x)
= u ∈ R̂. Then lim

x→a

f(x)

g(x)
= u.

Similar results hold for limits x→ a+, x→ a−, x→∞ and x→ −∞.

Proof: We give the proof for x→ a+ (assuming that a is a limit point of I from the right)
and that u ∈ R. Suppose first that lim

x→a+
f(x) = 0 = lim

x→a+
g(x). Choose b ∈ I with a < b.

Extend the maps f and g to obtain maps f, g : [a, b] → R by defining f(a) = 0 = g(b).
Note that f and g are continuous at a since lim

x→a+
f(x) = 0 and lim

x→a+
g(x) = 0. Let 〈xk〉

be a sequence in (a, b] with xk → a. For each index k, by Cauchy’s Mean Value Theorem
we can choose ck ∈ (a, xk) so that f ′(ck)

(
g(xk) − g(a)

)
= g′(ck)

(
f(xk) − f(a)

)
. Since

f(a) = 0 = g(a), this simplifies to f ′(ck)g(xk) = g′(ck)f(xk) and so we have f(xk)
g(xk)

= f ′(ck)
g′(ck)

.

Since a < ck < xk and xk → a, we have ck → a by the Squeeze Theorem. Since

lim
x→a+

f ′(x)

g′(x)
= u and ck → a, we have f(xk)

g(xk)
= f ′(ck)

g′(ck)
→ u by the Sequential Characterization

of Limits. We have shown that for every sequence 〈xk〉 in (a, b] with xk → a we have

f(xk)
g(xk)

→ u, and it follows that lim
x→a+

f(x)

g(x)
= u by the Sequential Characterization of

Limits.
Now suppose that lim

x→a+
g(x) = ∞. Since lim

x→a+
g(x) = ∞ we can choose b ∈ I with

b > a so that g(x) > 0 for all x ∈ (a, b]. Let 〈xk〉 be a sequence in (a, b] with xk → a. For
each pair of indices k, l, by Cauchy’s Mean Value Theorem we can choose ckl ∈ (a, xk) so
that f ′(ckl)

(
g(xk) − g(xl)

)
= g′(ckl)

(
f(xk) − f(xl)

)
. Divide both sides by g′(ckl)g(xl) to

get
f ′(ckl)

g′(ckl)

g(xk)

g(xl)
− f ′(ckl)

g′(ckl)
=
f(xk)

g(xl)
− f(xl)

g(xl)
.

so we have
f(xl)

g(xl)
=
f ′(ckl)

g′(ckl)
+
f(xk)

g(xl)
− f ′(ckl)

g′(ckl)

g(xk)

g(xl)
.

Let ε > 0. Since lim
x→a

f ′(x)

g′(x)
= u we can choose δ > 0 so that |x− a| ≤ δ →

∣∣∣ f ′(x)g′(x) − u
∣∣∣ ≤ ε

3 .

Since xk → a we can choose m ∈ Z+ so k ≥ m→ |xk − a| ≤ δ. Note that when k, l ≥ m,

since ckl lies between xk and xl we also have |ckl−a| ≤ δ so
∣∣∣ f ′(ckl)g′(ckl)

−u
∣∣∣ ≤ min

{
1, ε3

}
. Fix

k ≥ m. Choose l large enough so that
∣∣∣ f(xk)g(xl)

∣∣∣ ≤ ε
3 and

∣∣∣ f ′(ckl)g′(ckl)
g(xk)
g(xl)

∣∣∣ ≤ ε
3 . Then we have∣∣∣f(xl)

g(xl)
− u
∣∣∣ ≤ ∣∣∣f ′(ckl)

g′(ckl)
− u
∣∣∣+
∣∣∣f(xk)

g(xl)

∣∣∣+
∣∣∣f ′(ckl)
g′(ckl)

g(xk)

g(xl)

∣∣∣ ≤ ε.
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Appendix 1. Introduction to the Foundations of Mathematics

1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs
contained paradoxes, and these paradoxes could be used to prove statements that were
known to be false. One well known paradox, outside of the realm of mathematics, is the
statement

“This statement is false”.

The above statement is true if and only if it is false. It is one form of a paradox known as
the liar’s paradox. After examining some lengthy and convoluted mathematical proofs
which contained paradoxes, Bertrand Russel came up with the following mathematical
paradox, which is somewhat similar to the liar’s paradox:

Let X be the set of all sets, and let S =
{
A ∈ X

∣∣A /∈ A
}

.
Note for example that Z /∈ Z so Z ∈ S, and X ∈ X so X /∈ S.
Then we have S ∈ S if and only if S /∈ S.

This paradox is known as Russel’s paradox. With Russel’s paradox, it was possible to
construct a proof by contradiction, which followed all the accepted rules of mathematical
proof, of any statement whatsoever. Mathematicians realized that they would need to
modify the accepted framework of mathematics in order to ensure that mathematical
paradoxes could no longer arise. They were led to consider the following three questions.

1. Exactly what is an allowable mathematical object?
2. Exactly what is an allowable mathematical statement?
3. Exactly what is an allowable mathematical proof?

Eventually, after a great deal of work by many mathematicians, a consensus was reached
as to the answers to these three questions. Roughly, the answers are as follows. Every
mathematical object is a mathematical set (this includes objects that we would not nor-
mally consider to be sets, such as the integer 1), and a mathematical set can be constructed
using certain specific rules, known as the ZFC axioms of set theory. Every mathematical
statement can be expressed as a so-called formula in a certain specific formal symbolic
language, which uses symbols rather than words from a spoken language, such as English.
Every mathematical proof is a finite list of ordered pairs (Sn, Fn) (which we think of as
proven theorems), where each Sn is a finite set of formulas (called the premises) and each
Fn is a single formula (called the conclusion), such that each pair (Sn, Fn) can be obtained
from previous pairs (Si, Fi) with i < n, using certain specific proof rules.

In the remainder of this appendix, we provide a fairly detailed answer to the first two of
the above three questions, beginning with the second question.
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A Formal Symbolic Language

1.2 Definition: We allow ourselves to use only symbols from the following symbol set

¬ not
∧ and
∨ or
→ implies
↔ if and only if
= equals
∈ is an element of
∀ for all
∃ there exists
(, ) parenthises

along with some variable symbols such as x, y, z, u, v, w, · · · or x1, x2, x3, · · ·.

1.3 Definition: A formula (in the formal symbolic language of first order set theory)
is a non-empty finite string of symbols, from the above list, which can be obtained using
finitely many applications of the following three rules.

1. If x and y are variable symbols, then each of the following strings are formulas.

x = y , x ∈ y

2. If F and G are formulas then each of the following strings are formulas.

¬F , (F ∧G) , (F ∨G) , (F → G) , (F ↔ G)

3. If x is a variable symbol and F is a formula then each of the following is a formula.

∀xF , ∃xF

1.4 Definition: Let x be a variable symbol and let F be a formula. For each occurrence
of the symbol x, which does not immediately follow a quantifier, in the formula F , we
define whether the occurrence of x is free or bound inductively as follows.

1. If F is a formula of one of the forms y = z or y ∈ z, where y and z are variable symbols
(possibly equal to x), then every occurrence of x in F is free, and no occurrence is bound.

2. If F is a formula of one of the forms ¬G, (G ∧ H), (G ∨ H), (G → H) or (G ↔ H),
where G and H are formulas, then each occurrence of the symbol x is either an occurrence
in the formula G or an occurrence in the formula H, and each free (respectively, bound)
occurrence of x in G remains free (respectivly, bound) in F , and similarly for each free (or
bound) occurrence of x in H.

3. If F is a formula of one of the forms ∀y G or ∃y G, where G is a formula and y is
a variable symbol (possibly equal to x), then if y is different than x then each free (or
bound) occurrence of x in G remains free (or bound) in the formula F , and if y is equal to
x then every free occurrence of x in G becomes bound in the formula F , and every bound
occurrence of x in G remains bound in the formula F .
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1.5 Definition: When a quantifier symbol occurs in a given formula F , and is followed
by the variable symbol x and then by the formula G, any free occurrence of x in G will
become bound in the given formula F (by an application of part 3 of the above definition),
and we shall say that that occurrence of x is bound by (that occurrence of) the quantifier
symbol, or that (that occurrence of) the quantifier symbol binds that occurrence of x.

1.6 Definition: A free variable in a formula F is any variable symbol that has at least
one free occurence in F . A formula F with no free variables is called a statement. When
the free variables in F all lie in the set {x1, x2, · · · , xn}, we shall write F as F (x1, · · · , xn)
and we shall say that F is a statement about the variables x1, x2, · · · , xn.

1.7 Example: In the following formula, determine which occurrences of the variable
symbols are free and which are bound, and for each bound occurrence, indicate which
quantifier binds it.

∀x ∃y
(
∀z(x ∈ y → ∃y y = z) ∧ ∀x(∃z z = u ∨ z ∈ x)

)
Solution: We indicate the free and bound occurrences and their binding quantifiers by
placing integral labels under the relevant symbols: the free variables are given the label 0,
each quantifier is given its own non-zero label, and each bound variable is given the same
label as its binding quantifier:

∀x∃y
(
∀z(x ∈ y → ∃y y = z) ∧ ∀x(∃z z = u ∨ z ∈ x)

)
1 2 3 1 2 4 4 3 5 6 6 0 0 5

We remark that the free variables in this formula are z and u, so we say that it is a
statement about z and u.

1.8 Example: Express that statement x =
{
y, {z}

}
as a formal symbolic formula.

Solution: We can express the given statement in each of the following ways.

x =
{
y, {z}

}
∀u
(
u ∈ x↔ u ∈

{
y, {z}

})
∀u
(
u ∈ x↔

(
u = y ∨ u = {z}

))
∀u
(
u ∈ x↔

(
u = y ∨ ∀v(v ∈ u↔ v = z)

))
The last expression is a formula.

1.9 Definition: When F (x) is a statement about x we sometimes write F (y) as a short
form for the formula ∀x

(
x = y → F (x)

)
, and we sometimes write

∃!y F (y)

which we read as “there exists a unique y such that F (y)”, as a short form for the formula

∃y
(
F (y) ∧ ∀z(F (z)→ z = y

)
which is short, in turn, for the formula

∃y
(
∀x(x = y → F (x)) ∧ ∀z

(
∀x(x = z → F (x))→ z = y

))
.
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The ZFC Axioms of Set Theory

1.10 Remark: Every mathematical set can be constructed using specific rules, which are
known as the ZFC axioms of set theory, or the Zermelo-Fraenkel axioms of set theory,
with the axiom of choice. We begin by listing the ZFC axioms, stating them informally.

Empty Set Axiom: There exists a set ∅ with no elements.

Extension Axiom: Two sets are equal if and only if they have the same elements.

Separation Axiom: If u is a set and F (x) is a statement about x,
{
x ∈ u

∣∣F (x)
}

is a set.

Pair Axiom: If u and v are sets then {u, v} is a set.

Union Axiom: If u is a set then
⋃
u =

⋃
v∈u

v is a set.

Power Set Axiom: If u is a set then P(u) =
{
v
∣∣v ⊆ u} is a set.

Axiom of Infinity: If we define the natural numbers to be the sets 0 = ∅, 1 = {0}, 2 = {0, 1},
3 = {0, 1, 2} and so on, then N = {0, 1, 2, 3, · · ·} is a set.

Replacement Axiom: If u is a set and F (x, y) is a statement about x and y with the
property that ∀x∃!y F (x, y) then

{
y
∣∣∃x ∈ u F (x, y)

}
is a set.

Axiom of Choice: Given a set u of non-empty pairwise disjoint sets, there exists a set
which contains exactly one element from each of the sets in u.

We now proceed to state each of the ZFC axioms formally (as a symbolic formula) and give
some indication as to how these axioms can be used as a rigorous framework for essentially
all of mathematics.

1.11 Definition: The Empty Set Axiom is the formula

∃u∀x ¬x ∈ u .

1.12 Definition: The Extension Axiom is the formula

∀u∀v
(
u = v ↔ ∀x(x ∈ u↔ x ∈ v)

)
.

1.13 Theorem: The empty set is unique.

Proof: Suppose that u and v are both empty. Let x be arbitrary. Since u is empty, we
have ¬x ∈ u and hence x ∈ u → x ∈ v. Similarly, since v is empty, we have ¬x ∈ v and
hence x ∈ v → x ∈ u. Since x ∈ u → x ∈ v and x ∈ v → x ∈ u, we have x ∈ u ↔ x ∈ v.
Since x was arbitrary, we have ∀x (x ∈ u↔ x ∈ v). By the Axiom of Extension, u = v.

1.14 Definition: We denote the unique empty set by ∅.

1.15 Remark: In a formal and rigorous treatment of the foundations of mathematics, we
would need to decide at this point how to interpret the use of the symbol ∅. One approach
is to add the symbol ∅ to our list of symbols, modify our definition of a formula to allow
the use of the new symbol ∅, and add the axiom ∀x ¬x ∈ ∅ to our list of axioms. Another
option is to interpret the use of the symbol as a shorthand notation for an expression which
can be expressed formally using the existing symbols, so that for example the expression
u = ∅ would be shorthand for the formula ∀x ¬x ∈ u.
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1.16 Definition: Given sets u and v, we say that u is a subset of v, and we write u ⊆ v,
when every element of u also lies in v, that is when ∀x (x ∈ u→ x ∈ v).

1.17 Definition: For any statement F (x) about x, the following formula is an axiom.

∀u∃v ∀x
(
x ∈ v ↔ (x ∈ u ∧ F (x))

)
More generally, for any statement F (x, u1, u2, · · · , un) about x, u1, u2, · · · , un, where n ≥ 0,
the following formula is an axiom.

∀u∀u1 · · · ∀un∃v ∀x
(
x ∈ v ↔

(
x ∈ u ∧ F (x, u1, · · · , un)

))
Any axiom of this form is called an Axiom of Separation.

1.18 Notation: Given sets u, u1, · · · , un and given a formula F (x, u1, · · · , un) about
x, u1, · · · , un, by the appropriate Axiom of Separation, there exists a set v with the prop-
erty that ∀x

(
x ∈ v ↔

(
x ∈ u∧ F (x, u1, · · · , un)

))
, and by the Extension Axiom, this set v

is unique, and we denote it by {
x ∈ u

∣∣F (x, u1, · · · , un)
}
.

1.19 Note: It is important to realize that a Separation Axiom only allows us to construct
a subset of a given set u, so for example we cannot use a Separation Axiom to show that
the collection S = {x

∣∣¬x ∈ x}, which is used to formulate Russel’s paradox, is a set.

1.20 Definition: The Pair Axiom is the formula

∀u∀v ∃w ∀x
(
x ∈ w ↔ (x = u ∨ x = v)

)
.

1.21 Notation: Given sets u and v, by the Pair Axiom there exists a set w with the
property that ∀x

(
x ∈ w ↔ (x = u ∨ x = v)

)
, and by the Extension Axiom, this set w is

unique, and we denote it by
{u, v}

1.22 Example: With this axiom, we can construct some non-empty sets. For example,
taking u = v = ∅ gives the set {∅, ∅} = {∅} (note that {∅} 6= ∅ by the Extension Axiom,
since ∅ ∈ {∅} but ∅ /∈ ∅). Then taking u = ∅ and v = {∅} gives the set

{
∅, {∅}

}
.

1.23 Definition: The Union Axiom is the formula

∀u∃w ∀x
(
x ∈ w ↔ ∃v (v ∈ u ∧ x ∈ v)

)
.

1.24 Definition: Given a set u, by the Union Axiom there exists a set w with the property
that ∀x

(
x ∈ w ↔ ∃v (v ∈ u ∧ x ∈ v)

)
, and by the Extension Axiom this set w is unique.

We call the set w the union of the elements in u, and we denote it by⋃
u =

⋃
v∈u

v .

Given two sets u and v, we define the union of u and v to be the set

u ∪ v =
⋃
{u, v} .

Given three sets u, v and w, note that {z} = {z, z} is a set and so {x, y, z} = {x, y} ∪ {z}
is also a set. More generally, if u1, u2, · · · , un are sets then {u1, u2, · · · , un} is a set and we
define the union of the sets u1, · · · , un to be

u1 ∪ u2 ∪ · · · ∪ un =
n⋃
k=1

uk =
⋃
{u1, u2, · · · , un} .
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1.25 Definition: Given a set u, we define the intersection of the elements in u to be
the set ⋂

u =
{
x ∈

⋃
u
∣∣∣ ∀v(v ∈ u→ x ∈ v)

}
Given two sets u and v, we define the intersection of u and v to be the set

u ∩ v =
⋂
{u, v} ,

and more generally, given sets u1, u2, · · · , un, we define the intersection of u1, u2, · · · , un
to be the set

u1 ∩ u2 ∩ · · · ∩ un =

n⋂
k=1

uk =
⋂{

u1, u2, · · · , un
}
.

1.26 Definition: The Power Set Axiom is the formula

∀u∃w ∀v (v ∈ w ↔ v ⊆ u) .

1.27 Definition: Given a set u, the set w with the property that ∀v(v ∈ w ↔ v ⊆ u)
(which exists by the Power Set Axiom and is unique by the Extension Axiom) is called the
power set of u and is denoted by P(u), so we have

P(u) =
{
v
∣∣v ⊆ u} .

1.28 Example: Find the power set of the set
{
∅, {∅}

}
.

Solution: We have
P
({
∅, {∅}

})
=
{
∅, {∅}, {{∅}},

{
∅, {∅}

}}
.

1.29 Definition: Given two sets x and y, we define the ordered pair (x, y) to be the set

(x, y) =
{
{x}, {x, y}

}
.

Given two sets u and v, note that if x ∈ u and y ∈ v then we have {x} ∈ P(u ∪ v) and
{x, y} ∈ P(u ∪ v) and so (x, y) =

{
{x}, {x, y}

}
∈ P

(
P(u ∪ v)

)
. We define the product

u× v to be the set
u× v =

{
(x, y)

∣∣x ∈ u ∧ y ∈ v} ,
that is

u× v =
{
z ∈ P

(
P(u ∪ v)

)∣∣∃x∃y((x ∈ u ∧ y ∈ v) ∧ z = (x, y)
)}
.

1.30 Exercise: Find
⋃(
{∅} ×

{
{∅}, {∅, {∅}}

})
.

1.31 Definition: We define

0 = ∅ , 1 = {0} = 0 ∪ {0} , 2 = {0, 1} = 1 ∪ {1} , 3 = {0, 1, 2} = 2 ∪ {2} ,

and so on. For a set x, we define the successor of x to be the set

x+ 1 = x ∪ {x} .

A set u is called inductive when it has the property that(
0 ∈ u ∧ ∀x (x ∈ u→ x+ 1 ∈ u)

)
.

1.32 Definition: The Axiom of Infinity is the formula

∃u
(
0 ∈ u ∧ ∀x (x ∈ u→ x+ 1 ∈ u)

)
,

so the Axiom of Infinity states that there exists an inductive set.
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1.33 Theorem: There exists a unique set w of the form

w =
{
x
∣∣x ∈ v for every inductive set v

}
.

Moreover, this set w is an inductive set.

Proof: By the axiom of infinity, there exists an inductive set, say u. Let w be the set

w =
{
x ∈ u

∣∣x ∈ v for every inductive set v
}

=
{
x ∈ u

∣∣∀v ((0 ∈ v ∧ ∀y (y ∈ v → y + 1 ∈ v)
)
→ x ∈ v

)}
.

We claim that this set w does not depend on the choice of u. To prove this, let u1 and u2
be two inductive sets and let

w1 =
{
x ∈ u1

∣∣x ∈ v for every inductive set v
}

w2 =
{
x ∈ u2

∣∣x ∈ v for every inductive set v
}
.

Then for any set x we have

x ∈ w1 ⇐⇒ x ∈ u1 and x ∈ v for every inductive set v

⇐⇒ x ∈ v for every inductive set v (since u1 is inductive)

⇐⇒ x ∈ u2 and x ∈ v for every inductive set v (since u2 is inductive)

⇐⇒ x ∈ w2 .

Thus w1 = w2, showing that w is unique. We leave it as an exercise to show that w is
inductive.

1.34 Definition: The unique set w in the above theorem is called the set of natural
numbers, and we denote it by N. We write

N =
{
x
∣∣x ∈ v for every inductive set v

}
= {0, 1, 2, 3 · · ·} .

For x, y ∈ N, we write x < y when x ∈ y and we write x ≤ y when x < y or x = y.

1.35 Notation: For a formula F , we write ∀x∈u F as a shorthand notation for the formula
∀x (x∈u→ F ). Similarly, we write ∃x∈u F as a shorthand notation for ∃x (x∈u ∧ F ).

1.36 Theorem: (Principle of Induction) Let F (x) be a statement about x. Suppose that

(1) F (0), and
(2) ∀x∈N

(
F (x)→ F (x+ 1)

)
.

Then ∀x∈N F (x).

Proof: Let u =
{
x ∈ N

∣∣F (x)
}

. By (1) we have 0 ∈ u. Let x ∈ u. Then x ∈ N and F (x).
Since x ∈ N we have x + 1 ∈ N (since N is inductive). Since x ∈ N and F (x) we have
F (x+ 1) by (2). Since x+ 1 ∈ N and F (x+ 1), we have x+ 1 ∈ u (by the definition of u).
We have shown that 0 ∈ u and that ∀x (x ∈ u → x+ 1 ∈ u), so u is inductive. Since u is
inductive, we have N ⊆ u (by the definition of N). Thus x ∈ N =⇒ x ∈ u =⇒ F (x).

1.37 Remark: In the above theorem, the expression F (0) is short for ∀x
(
x = 0→ F (x)

)
which in turn is short for ∀x

(
∀y ¬y ∈ x → F (x)

)
. Similarly, F (x + 1) is short for the

formula ∀y
(
y = x+ 1→ F (y)

)
, where F (y) is short for ∀x

(
x = y → F (x)

)
.
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1.38 Definition: Given a statement F (x, y) about x and y, the following formula is an
axiom:

∀u
(
∀x∃!y F (x, y)→ ∃w ∀y

(
y ∈ w ↔ ∃x∈u F (x, y)

))
,

where ∃!yF (x, y) is short for ∃y
(
F (x, y) ∧ ∀z

(
F (x, z) → z = y

))
with F (x, z) short for

the formula ∀y
(
y = z → F (x, y)

)
. More generally, given a statement F (x, y, u1, · · · , un)

about x, y, u1, · · · , un with n ≥ 0, the following formula is an axiom:

∀u∀u1 · · · ∀un
(
∀x∃!y F (x, y, u1, · · · , un)→ ∃w ∀y

(
y ∈ w ↔ ∃x∈u F (x, y, u1, · · · , un)

))
.

An axiom of this form is called a Replacement Axiom.

1.39 Notation: Given sets u, u1, · · · , un and given a statement F (x, y, u1, · · · , un) about
x, y, u1, · · · , un with the property that ∀x∃!y F (x, y, u1, · · · , un), for each set x we let
y = f(x) denote the unique set for which F (x, y, u1, · · · , un) holds, and then we denote the
unique set w, whose existence is stipulated by the above Replacement Axiom, by{

f(x)
∣∣x ∈ u} .

1.40 Example: If u is a set then the collection{
P(x)

∣∣x ∈ u}
is also a set, by the Replacement Axiom taking F (x, y) to be the formula y = P(x).

1.41 Definition: The Axiom of Choice is the formula given by

∀u
((
¬φ ∈ u ∧ ∀x∈u ∀y∈u (¬x = y → x ∩ y = ∅)

)
→ ∃w ∀v∈u ∃!x∈v x ∈ w

)
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Relations, Equivalence Relations, Functions and Recursion

1.42 Remark: We have now stated each of the ZFC axioms formally. Up until now, we
have used lower-case letters to denote all sets (and all elements of sets, which are also sets).
From now on, we shall often use upper-case letters to denote sets, as is more customary.

1.43 Definition: A binary relation R on a set X is a subset R ⊆ X × X. More
generally, a binary relation is any set R whose elements are ordered pais. For a binary
relation R, we usually write xRy instead of (x, y) ∈ R.

1.44 Definition: Let R and S be binary relations. The domain of R is

Domain(R) =
{
x
∣∣∃y xRy}

and the range of R is
Range(R) =

{
x
∣∣∃y xRy} .

For any set A, the image of A under R is

R(A) =
{
y | ∃x∈A xRy

}
and the inverse image of A under R is

R−1(A) =
{
x
∣∣ ∃y∈A xRy

}
.

The inverse of R is
R−1 =

{
(y, x)

∣∣(x, y) ∈ R
}

and the composite S composed with R is

S ◦R =
{

(x, z)
∣∣∃y xRy ∧ ySz} .

1.45 Theorem: Let A be a set and let R and S be binary relations. Then

(1) Domain(R), Range(R), R(A) and R−1(A) are sets, and
(2) R−1 and S ◦R are binary relations.

Proof: The proof is left as an exercise.

1.46 Definition: An equivalence relation on a set X is a binary relation R on X such
that

(1) R is reflexive, that is ∀x∈X xRx,
(2) R is symmetric, that is ∀x, y∈X (xRy → yRx), and
(3) R is transitive, that is ∀x, y, z∈X

(
(xRy ∧ yRz)→ xRz

)
.

1.47 Definition: Let R be an equivalence relation on the set X. For a ∈ X, the equiv-
alence class of a modulo R is the set

[a]R =
{
x ∈ X

∣∣xRa} .
1.48 Definition: A partition of a set X is a set S of non-empty pairwise disjoint sets
whose union is X, that is a set S such that

(1) ∀X,Y ∈ S
(
X 6= Y → X ∩ Y = ∅

)
, and

(2)
⋃
S = X.
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1.49 Theorem: Given a set X, we have the following correspondence between equivalence
relations on X and partitions of X.

(1) Given an equivalence relation R on X, the set of all equivalence classes

SR =
{

[a]R
∣∣ a ∈ X}

is a partition of X.

(2) Given a partition S of X, the relation RS on X defined by

RS =
{

(x, y) ∈ X ×X
∣∣∃A ∈ S (x ∈ A ∧ y ∈ A)

}
is an equivalence relation on X.

(3) Given an equivalence relation R on X we have RSR = R, and given a partition S of X
we have SRS = S.

Proof: The proof is left as an exercise.

1.50 Notation: Given an equivalence relation R on X, the set of all equivalence classes,
which we denoted by SR in the above theorem, is usually denoted by X/R, so

X/R =
{

[a]R
∣∣ a ∈ X} .

1.51 Definition: Let R be an equivalence relation. A set of representatives for R is a
subset of X which contains exactly one element from each equivalence class in X/R.

1.52 Remark: Notice that the Axiom of Choice is equivalent to the statement that every
equivalence relation has a set of representatives.

1.53 Definition: Given sets X and Y , a function from X to Y is a binary relation
f ⊆ X × Y with the property that

∀x∈X ∃! y∈Y (x, y) ∈ f .

More generally, a function is a binary relation with the property that

∀x∈Domain(f) ∃! y (x, y) ∈ f .

For a function f , we usually write y = f(x) instead of xfy. It is customary to use the
notation f : X → Y when X = Domain(f) and Y is any set with Range(f) ⊆ Y .

1.54 Definition: Let f : X → Y . The function f is called one-to-one (or injective)
when

∀y∈Y ∃ at most one x∈X y = f(x)

and f is called onto (or surjective) when

∀y∈Y ∃ at least one x∈X y = f(x) .

1.55 Definition: Let f : X → Y . Let IX and IY denote the identity functions on X
and Y respectively (that is IX(x) = x for all x ∈ X and IY (y) = y for all y ∈ Y ). A left
inverse of f is a function g : Y → X such that g ◦ f = IX . A right inverse of f is a
function H : Y → X such that f ◦H = IY . Note that if f has a left inverse g and a right
inverse H, then we have g = g ◦ IY = g ◦ f ◦H = IX ◦H = H. In this case we say that g
is the (unique two-sided) inverse of f .
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1.56 Theorem: Let f : X → Y . Then

(1) f is one-to-one if and only if f has a left inverse.
(2) f is onto if and only if f has a right inverse.
(3) f is one-to-one and onto if and only if f has a (two-sided) inverse.

Proof: The proof is left as an exercise. We remark that the Axiom of Choice is needed.

1.57 Definition: A function f : X → Y is called invertible (or bijective) when it is
one-to-one and onto, or equivalently, when it has a (unique two-sided) inverse.

1.58 Remark: The Axiom of Choice is equivalent to the statement that for every set S,
there exists a function f : S →

⋃
S with the property that ∀X ∈S

(
X 6= ∅ → f(X)∈X

)
.

Such a function f is called a choice function for the set S.

1.59 Theorem: (The Recursion Theorem)

(1) Let A be a set, let a ∈ A, and let g : A×N→ A. Then there exists a unique function
f : N→ A such that

f(0) = a and f(n+ 1) = g
(
f(n), n

)
for all n ∈ N .

(2) Let A and B be sets, let g : A→ B, and let h : A×B ×N→ B. Then there exists a
unique function f : A×N→ B such that for all a ∈ A we have

f(a, 0) = g(a) and f(a, n+ 1) = h
(
a, f(a, n), n

)
for all n ∈ N .

Proof: To prove part (1), note first that for each n ∈ N we can construct a (unique)
function fn : {0, 1, · · · , n} → A such that f(0) = a and fn(k + 1) = g

(
fn(k), k

)
for all k

with 0 ≤ k < n (that the functions fn exist and are unique can be proven by induction).
Notice that since {0, 1, · · · , n} = n+1, we have fn : (n+1)→ A, so fn ⊆ (n+1)×A ⊆ N×A,
and so all of the functions fn are subsets of N × A. We can combine all these functions
into a single function f : N→ A as follows. First we let

F =
{
f ⊆ N×A

∣∣∣ ∃n∈N
(
f : (n+1)→ A , f(0) = a , ∀k∈(n+1) f(k+1) = g

(
f(k), k

))}
,

and then we let
f =

⋃
F .

We leave it as an exercise to prove that indeed f is a function which satisfies the conditions
of the theorem.

We can prove part (2) in a similar manner. First we let

F =
{
f ⊆ A×N×B

∣∣∣∃n∈N
(
f : A× (n+ 1)→ B and

∀a∈A
(
f(a, 0) = g(a) ∧ ∀k∈(n+ 1) f(a, k + 1) = h

(
a, f(a, k), k

))}
,

then we let f =
⋃
F .

51



The Construction of the Integers, Rational, Real and Complex Numbers

1.60 Definition: By part (2) of the Recursion Theorem, there is a unique function
s : N×N→ N such that for all a, b ∈ N we have

s(a, 0) = a , s(a, b+ 1) = s(a, b) + 1 .

We call s(a, b) the sum of a and b in N, and we write it as

a+ b = s(a, b) .

Also, there is a unique function p : N×N→ N such that for all a, b ∈ N we have

p(a, 0) = 0 , p(a, b+ 1) = p(a, b) + a .

We call p(a, b) the product of a and b in N, and we write it as

a · b = p(a, b) .

1.61 Remark: It can be shown (using induction) that the sum and product satisfy all
the usual properties in N.

1.62 Definition: We define the set of integers to be the set

Z =
(
N×N

)/
R

where R is the equivalence relation given by

(a, b)R(c, d)⇐⇒ a+ d = b+ c .

For [(a, b)] and [(c, d)] in Z, we define

[(a, b)] ≤ [(c, d)]⇐⇒ b+ c ≤ a+ d

[(a, b)] + [(c, d)] = [(a+ c, b+ d)]

[(a, b)] · [(c, d)] = [(ac+ bd, ad+ bc)] .

For n ∈ N, we write n = [(n, 0)] and −n = [(0, n)], so that every element of Z can be
written as ±n for some n ∈ N, and we can identify N with a subset of Z.

1.63 Remark: It can be shown that the ordering and the sum and product defined above
are well-defined and satisfy the usual properties in Z.

1.64 Definition: We define the set of rational numbers to be the set

Q =
(
N×P

)/
R

where P = {x ∈ N
∣∣x 6= 0} and R is the equivalence relation given by

(a, b)R(c, d)⇐⇒ ad = bc .

For [(a, b)] and [(c, d)] in Q, we define

[(a, b)] ≤ [(c, d)]⇐⇒ a · d ≤ b · c
[(a, b)] + [(c, d)] = [(a · d+ b · c, b · d)]

[(a, b)] · [(c, d)] = [(a · c, b · d)] .

For a ∈ N and b ∈ P, it is customary to write a
b = [(a, b)]. Also for a ∈ Z we write

a = [(a, 1)], and we identify Z with a subset of Q.
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1.65 Remark: It can be shown that the above ordering, sum and product are well-defined
and satisfy the usual rules in Q.

1.66 Definition: We define the set of real numbers to be the set

R =
{
x ⊆ Q

∣∣x 6= ∅ , x 6= Q , ∀a∈x ∀ b∈Q (b ≤ a→ b ∈ x) , ∀a∈x ∃ b∈x a < b
}
.

For x, y ∈ R, we define

x ≤ y ⇐⇒ x ⊆ y
x+ y =

{
a+ b

∣∣ a, b ∈ Q , a ∈ x , b ∈ y
}
.

For 0 ≤ x, y ∈ R we define

x · y =
{
a · b

∣∣ 0 ≤ a, b ∈ Q , a ∈ x , b ∈ y
}
∪
{
c ∈ Q

∣∣c < 0
}
,

and we leave, as an exercise, the definition of x · y in the case that x < 0 or y < 0.

1.67 Remark: It can be shown that the above ordering,sum and product are well-defined
and satisfy the usual rules in R.

1.68 Definition: We define the set of complex numbers to be the set

C = R×R .

We define addition and multiplication in C by

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (ac− bd, ad+ bc) .

We write i = (0, 1). For x ∈ R we write x = (x, 0), and we identify R with a subset of C.

1.69 Remark: It can be shown that the above sum and product are well-defined and
satisfy the usual rules in C.
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Systems of Sets

1.70 Definition: The system of sets, indexed by the set A, which we write as

〈Xα

∣∣α ∈ A〉 ,
is defined to be the function F with domain A given by F (α) = Xα for all α ∈ A. We
denote the range of this function F by{

Xα

∣∣α ∈ A} .
1.71 Definition: Given an indexed system of sets 〈Xα

∣∣α ∈ A〉, we define the union, the
intersection and the product of the family to be the sets⋃

α∈A
Xα =

⋃{
Xα

∣∣α ∈ A} =
{
x
∣∣x ∈ Xα for some α ∈ A

}
⋂
α∈A

Xα =
⋂{

Xα

∣∣α ∈ A} =
{
x
∣∣x ∈ Xα for all α ∈ A

}
∏
α∈A

Xα =
{
g : A→

⋃
α∈A

Xα

∣∣∣g(α) ∈ Xα for all α ∈ A
}
.

1.72 Remark: The Axiom of Choice is equivalent to the statement that for every indexed
system of sets 〈Xα

∣∣α ∈ A〉 there exists a function f : A→
⋃
α∈A

Xα such that

∀α∈A
(
Xα 6= ∅ → f(α) ∈ Xα

)
.

1.73 Definition: In the special case that A is a subset of Z of the form

A = {n ∈ Z|n ≥ a} = {a, a+ 1, a+ 2, · · ·}

for some a ∈ Z, the system 〈Xn

∣∣n ∈ A〉 is called a sequence and it is denoted by

〈Xn〉n≥a = 〈Xa, Xa+1, Xa+2, · · ·〉 .

We use the notation
∞⋃
n=a

Xn =
⋃
n≥a

Xn =
⋃
n∈A

Xk

∞⋂
n=a

Xk =
⋂
n≥a

Xk =
⋂
n∈A

Xk

∞∏
n=a

Xk =
∏
n≥a

Xk =
∏
n∈A

Xk .
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1.74 Definition: In the special case that A = {n ∈ Z|a ≤ n ≤ b} = {a, a+1, a+2, · · · , b}
for some a ≤ b ∈ Z, the system 〈Xn

∣∣n ∈ A〉 is called an ordered (b− a)-tuple, and it is
written as

〈Xn

∣∣a ≤ n ≤ b〉 = 〈Xa, Xa+1, · · · , Xb〉 = (Xa, Xa+1, · · · , Xb) .

We use the notation

Xa ∪Xa+1 ∪ · · · ∪Xb =
b⋃

n=a

Xn =
⋃
n∈A

Xn

Xa ∩Xa+1 ∩ · · · ∩Xb =
b⋂

n=a

Xn =
⋂
n∈A

Xn

Xa ×Xa+1 × · · · ×Xb =
b∏

n=a

Xn =
∏
n∈A

Xn .

1.75 Remark: This notation is not equivalent to our earlier notation for (u, v) and u×v,
but this inconsistency of notation usually causes no difficulty.

1.76 Definition: For a set X and for n ∈ N we define

Xn =
{

(x0, · · · , xn−1)
∣∣ each xi ∈ X

}
=
{
f
∣∣ f : n→ X

}
.

More generally, for any sets A and B we sometimes write

BA =
{
f
∣∣ f : A→ B

}
.
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Appendix 2: Exponential and Trigonometric Functions

2.1 Definition: Let X and Y be sets and let f : X → Y . We say that f is injective (or
one-to-one, written as 1 : 1) when for every y ∈ Y there exists at most one x ∈ X such
that f(x) = y. Equivalently, f is injective when for all x1, x2 ∈ X, if f(x1) = f(x2) then
x1 = x2. We say that f is surjective (or onto) when for every y ∈ Y there exists at least
one x ∈ X such that f(x) = y. Equivalently, f is surjective when Range(f) = Y . We say
that f is bijective (or invertible) when f is both injective and surjective, that is when
for every y ∈ Y there exists exactly one x ∈ X such that f(x) = y. When f is bijective,
we define the inverse of f to be the function f−1 : Y → X such that for all y ∈ Y , f−1(y)
is equal to the unique element x ∈ X such that f(x) = y. Note that when f is bijective so
is f−1, and in this case we have (f−1)−1 = f .

2.2 Example: Let f(x) = 1
3

√
12x− x2 for 0 ≤ x ≤ 6. Show that f is injective and find

a formula for its inverse function.

Solution: Note that when 0 ≤ x ≤ 6 (indeed when 0 ≤ x ≤ 12) we have 12x − x2 =
x(12− x) ≥ 0, so that 1

3

√
12x− x2 exists, and we have 12x− x2 = 36− (x− 6)2 ≤ 36 so

that 1
3

√
12x− x2 ≤ 1

3

√
36 = 2. Thus if 0 ≤ x ≤ 6 then f(x) = 1

3

√
12x− x2 exists and we

have 0 ≤ f(x) ≤ 2. Let x, y ∈ R with 0 ≤ x ≤ 6 and 0 ≤ y ≤ 2. Then we have

y = f(x)↔ y = 1
3

√
12x− x2

↔ 3y =
√

12x− x2

↔ 9y2 = 12x− x2 , since y ≥ 0

↔ x2 − 12x+ 9y2 = 0

↔ x =
12±

√
144− 36y2

2
= 6± 3

√
4− y2 , by the Quadratic Formula

↔ x = 6− 3
√

4− y2 since x ≤ 6.

Verify that when 0 ≤ y ≤ 2 we have 0 ≤ 4 − y2 ≤ 4 so that
√

4− y2 exists and we have

0 ≤ 6 − 3
√

4− y2 ≤ 6. Thus when we consider f as a function f : [0, 6] → [0, 2], it is

bisectve and its inverse f−1 : [0, 2]→ [0, 6] is given by f−1(y) = 6− 3
√

4− y2.

2.3 Definition: Let F be a field and let f : A ⊆ F → F . We say that f is even when
f(−x) = f(x) for all x ∈ F and we say that f is odd when f(−x) = −f(x) for all x ∈ F .

2.4 Definition: Let F be an ordered field and let f : A ⊆→ F . We say that f is
increasing when it has the property that for all x, y ∈ A, if x < y then f(x) < f(y), and
we say f is decreasing when for all x, y ∈ A with x < y we have f(x) > f(y). We say that
f is monotonic when f is either increasing or decreasing. Note that every monotonic
function is injective.
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2.5 Remark: We assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. These functions can be defined rigorously. We shall give a
brief description of how one can define the exponential and logarithmic function rigorously,
and we shall provide an informal (non-rigorous) description of the trigonometric and inverse
trigonometric functions.

2.6 Definition: Let us outline one possible way to define the value of xy for suitable real
numbers x, y ∈ R. First we define x0 = 1 for all x ∈ R. Then for n ∈ Z with n ≥ 1 we
define xn recursively by xn = x · xn−1 for all x ∈ R. Also, for n ∈ Z with n ≥ 1 we define
x−n = 1

xn for all x 6= 0. At this stage we have defined xy for y ∈ Z.

When 0 < n ∈ Z is odd, for all x ∈ R we define x1/n = y where y is the unique real
number such that yn = x (to be rigorous, one must prove that this number y exists and
is unique). When 0 < n ∈ Z is even, for x ≥ 0 we define x1/n = y where y is the unique
nonnegative real number such that yn = x (again, to be rigorous a proof is required). Also,
for 0 < n ∈ Z we define x−1/n = 1

x1/n , which is defined for x 6= 0 if n is odd, and is defined
for x > 0 when n is even. When n,m ∈ Z with n > 0 and m > 0 and gcd(n,m) = 1, we
define xn/m = (xn)1/m, which is defined for all x ∈ R when m is odd and for x ≥ 0 when
m is even, and we define x−n/m = 1

xn/m
, defined for x 6= 0 when m is odd and for x > 0

when m is even. At this stage, we have defined xy for y ∈ Q.
When x > 1 and y ∈ R, we define xy = sup

{
xt
∣∣t ∈ Q, t ≤ y

}
(to be rigorous,

one needs to prove that the supremum exists and that when y ∈ Q this agrees with our
previous definition). When 0 < x < 1 and y ∈ R we define xy = inf

{
xt
∣∣t ∈ Q, t ≤ y

}
.

Finally, we define 1y = 1 for all y ∈ R and we define 0y = 0 for all y > 0.

2.7 Theorem: (Properties of Exponentials) Let a, b, x, y ∈ R with a, b > 0. Then

(1) a0 = 1,
(2) ax+y = ab ac,
(3) ax−y = ax/ay,
(4) (ax)y = axy,
(5) (ab)x = axbx.

Proof: We omit the proof.

2.8 Theorem: (Properties of Power Functions)

(1) When a > 0, the function f : [0,∞) → [0,∞) given by f(x) = xa is increasing and
bijective and its inverse function is given by f−1(x) = x1/a.
(2) When a < 0, the function f : (0,∞) → (0,∞) given by f(x) = xa is decreasing and
bijective and its inverse is given by f−1(x) = a1/x.

Proof: We omit the proof.

2.9 Definition: A function of the form f(x) = xa is called a power function.
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2.10 Theorem: (Properties of Exponential Functions)

(1) When a > 1 the function f : R→ (0,∞) given by f(x) = ax is increasing and bijective.
(2) When 0 < a < 1 the function f : R → (0,∞) given by f(x) = ax is decreasing and
bijective.

Proof: We omit the proof.

2.11 Definition: For a > 0 with a 6= 1, the function f : R→ (0,∞) given by f(x) = ax

is called the base a exponential function, its inverse function f−1 : (0,∞)→ R is called
the base a logarithmic function, and we write f−1(x) = loga x. By the definition of the
inverse function, we have loga(ax) = x for all x ∈ R and eloga y = y for all y > 0, and for
all x, y ∈ R with y > 0 we have y = ax ↔ x = loga y.

2.12 Theorem: (Properties of Logarithms) Let a, b, x, y ∈ (0,∞). Then

(1) loga 1 = 0,
(2) loga(xy) = loga x+ loga y,
(3) loga(x/y) = loga x− loga y,
(4) loga(xy) = y loga x, and
(5) logb x = loga x/ loga b,
(6) if a > 1, the function g : (0,∞)→ R given by g(x) = loga x is increasing and bijective.

Proof: The proof is left as an exercise.

2.13 Definition: There is a number e ∈ R called natural base, with e ∼= 2.71828, which
can be defined in many ways, for example we can define

e = sup
{(

1 + 1
n

)n∣∣∣1 ≤ n ∈ Z
}

(to be rigorous, one must prove that the set A =
{

(1+ 1
n )n
∣∣1 ≤ n ∈ Z

}
is bounded above).

The logarithm to the base e is called the natural logarithm, and we write

lnx = loge x for x > 0.

The properties of exponentials and logarithms in Theorems 2.13 and 2.18 give

e0 = 1 , ax+y = exey , ex−y = ex/ey , (ex)y = exy,

ln 1 = 0 , ln(xy) = lnx+ ln y , ln(x/y) = lnx− ln y , lnxy = y lnx

loga x =
lnx

ln a
and ax = ex ln a.
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2.14 Definition: We define the trigonometric functions informally as follows. For θ ≥ 0,
we define cos θ and sin θ to be the x- and y-coordinates of the point at which we arrive when
we begin at the point (1, 0) and travel for a distance of θ units counterclockwise around the
unit circle x2 + y2 = 1. For θ ≤ 0, cos θ and sin θ are the x and y-coordinates of the point
at which we arrive when we begin at (1, 0) and travel clockwise around the unit circle for a
distance of |θ units. When cos θ 6= 0 we define sec θ = 1/ cos θ and tan θ = sin θ/ cos θ, and
when sin θ 6= 0 we define csc θ = 1/ sin θ and cot θ = cos θ/ sin θ. (This definition is not
rigorous because we did not define what it means to travel around the circle for a given
distance).

(x, y) = (cos θ, sin θ)

θ

(1, 0)

2.15 Definition: We define π, informally, to be the distance along the top half of the
unit circle from (1, 0) to (−1, 0), and so we have cosπ = −1 and sinπ = 0. By symmetry,
the distance from (1, 0) to (0, 1) along the circle is equal to π

2 so we also have cos π2 = 0
and sin π

2 = 1.

2.16 Theorem: (Basic Trigonometric Properties) For θ ∈ R we have

(1) cos2 θ + sin2 θ = 1,
(2) cos(−θ) = cos θ and sin(−θ) = − sin θ,
(3) cos(θ + π) = − cos θ and sin(θ + π) = − sin θ,
(4) cos(θ + 2π) = cos θ and sin(θ + 2π) = sin θ).

Proof: Informally, these properties can all be seen immediately from the above definitions.
We omit a rigorous proof.

2.17 Theorem: (Trigonometric Ratios) Let θ ∈
(
0, π2

)
. For a right angle triangle with

an angle of size θ and with sides of lengths x, y and r as shown, we have

r y

θ
x

cos θ =
x

r
, sin θ =

y

r
and tan θ =

y

x
.

Proof: We can see this informally by scaling the picture in Definition 2.17 by a factor of r.

2.18 Theorem: (Special Trigonometric Values) We have the following exact trigonometric
values.

θ 0 π
6

π
4

π
3

π
2

cos θ 1
√
3
2

√
2
2

1
2 0

sin θ 0 1
2

√
2
2

√
3
2 1

Proof: This follows from the above theorem using certain particular right angled triangles.
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2.19 Theorem: (Trigonometric Sum Formulas) For α, β ∈ R we have

cos(α+ β) = cosα cosβ − sinα sinβ , and

sin(α+ β) = sinα cosβ + cosα sinβ.

Proof: Informally, we can prove this with the help of a picture. The picture below illustrates
the situation when α, β ∈

(
0, π2

)
.

B c F

d

α A

E
b

β α a
O D C (1,0)

In the picture, O is the origin, A is the point with coordinates (cosα, sinα) and B is the
point (x, y) =

(
cos(α + β), sin(α + β)

)
. In triangle ODE we see that cosα = OD

OE = a
cos β

and sinα = DE
OE = b

cos β , and so a = cosα cosβ , b = sinα cosβ. In triangle EFB, verify

that the angle at E has size α, and so we have cosα = EF
EB = d

sin β and sinα = BF
BE = c

sin β ,
and so c = sinα sinβ , d = cosα sinβ. The x and y-coordinates of the point B are x = a−c
and y = b+ d, and so

cos(α+ β) = x = a− c = cosα cosβ − sinα sinβ , and

sin(α+ β) = y = b+ d = sinα cosβ − cosα sinβ.

This proves the theorem (informally) in the case that α, β ∈
(
0, π2

)
. One can then show

that the theorem holds for all α, β ∈ R by using the Basic Trigonometric Properties (2),
(3) and (4).

2.20 Theorem: (Double Angle Formulas) For all x, y ∈ R we have

(1) sin 2x = 2 sinx cosx and cos 2x = cos2− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x, and

(2) cos2 x =
1 + cos 2x

2
and sin2 x =

1− cos 2x

2
.

Proof: The proof is left as an exercise.

2.21 Theorem: (Trigonometric Functions)

(1) The function f : [0, π]→ [−1, 1] defined by f(x) = cosx is decreasing and bijective.
(2) The function g :

[
− π

2 ,
π
2

]
→ [−1, 1] given by g(x) = sinx is increasing and bijective.

(3) The function h :
(
− π

2 ,
π
2

)
given by h(x) = tanx is increasing and bijective.

Proof: We omit the proof.

2.22 Definition: The inverses of the functions f , g and h in the above theorem are called
the inverse cosine, the inverse sine, and the inverse tangent functions. We write
f−1(x) = cos−1 x, g−1 = sin−1 x and h−1(x) = tan−1 x. By the definition of the inverse
function, we have
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2.23 Definition: Let A and B be sets, let F be a field, let c ∈ F . Let f : A → F and
g : B → F . We define the functions cf , f + g , f − g , f · g : A ∩B → F by

(cf)(x) = c f(x)

(f + g)(x) = f(x) + g(x)

(f − g)(x) = f(x)− g(x)

(f · g)(x) = f(x)g(x)

for all x ∈ A ∩B, and for C = {x ∈ A ∩B | g(x) 6= 0} we define f/g : C → F by

(f/g)(x) = f(x)/g(x)

for all x ∈ C.

2.24 Definition: A polynomial function over a field F is a function f : F → F
which can be obtained from the functions 1 and x using (finitely many applications of)
the operations cf , f + g, f − g, f · g and f ◦ g. In other words, a polynomial is a function
of the form

f(x) =
∑n
i=0cix

i = c0 + c1x+ c2x
2 + · · ·+ cnx

n

for some n ∈ N and some ci ∈ F . The numbers ci are called the coefficients of the
polynomial and when cn 6= 0 the number n is called the degree of the polynomial.

2.25 Definition: A rational function over a field F is a function f : A ⊆ F → F
which can be obtained from the functions 1 and x using (finitely many applications of)
the operations cf , f + g, f − g, f · g, f/g and f ◦ g. In other words, a rational function is
a function of the form

f(x) = p(x)/q(x)

for some polynomials p and q.

2.26 Definition: The functions 1, x, x1/n with 0 < n ∈ Z, ex, lnx, sinx and sin−1 x,
are called the basic elementary functions. An elementary function is any function
f : A ⊆ R→ R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations cf , f + g, f − g, f · g, f/g and f ◦ g.

2.27 Example: The following functions are elementary

|x| =
√
x2,

cosx = sin
(
x+ π

2

)
,

tan−1 x = sin−1
( x√

1 + x2

)
,

f(x) =
e
√
x+sin x

tan−1(lnx)

We shall see later that every elementary function is continuous in its domain, so any
function which is discontinuos at a point in its domain cannot be elementary.
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