
MATH 148 Calculus 2, Solutions to the Exercises for Chapter 7

1: (a) Define fn : [0,∞) → R by fn(x) = nxe−nx. Find the pointwise limit f(x) = lim
n→∞

fn(x) and determine

whether fn → f uniformly on [0,∞).

Solution: Note that fn(0) = 0 hence lim
n→∞

fn(0) = 0. When x > 0, we have lim
n→∞

fn(x) = lim
n→∞

nx

enx
= 0 by

l’Hôpitals’ Rule, indeed

lim
n→∞

nx

enx
= lim
r→∞

rx

erx
= lim
r→∞

d
dr (rx)
d
dr (erx)

= lim
r→∞

x

xerx
= lim
r→∞

1

erx
= 0

since erx → ∞ as r → ∞. Thus the pointwise limit is f(x) = lim
n→∞

nxe−nx = 0 for all x ∈ [0,∞). In other

words we have fn → 0 pointwise on [0,∞).

Note that fn
(
1
n

)
= 1

e for all n ∈ Z+, and so the convergence is not uniform. To be very explicit, fn → 0

uniformly on [0,∞) means that ∀ ε > 0 ∃m ∈ Z+ ∀n ∈ Z+ ∀x ∈ [0,∞)
(
n≥m =⇒

∣∣fn(x) − 0
∣∣ < ε

)
, so the

convergence is not uniform when ∃ ε>0 ∀m∈Z+ ∃n∈Z+ ∃x∈ [0,∞)
(
n≥m and

∣∣fn(x) − 0
∣∣ ≥ ε

)
. To prove

this, we choose ε = 1
e , we let m ∈ Z+, we choose n = m, and we choose x = 1

n , and then we have n ≥ m and∣∣fn(x)− 0
∣∣ = fn

(
1
n

)
= 1

e ≥ ε.

(b) Define fn : [0,∞) → R by fn(x) = x
1+nx2 . Find the pointwise limit f(x) = lim

n→∞
fn(x) and determine

whether fn → f uniformly on [0,∞).

Solution: Note that lim
n→∞

fn(0) = lim
n→∞

0 = 0, and when x > 0 we have lim
n→∞

fn(x) = lim
n→∞

x
1+nx2 = 0 since

1+nx2 →∞ as n→∞. Thus the pointwise limit is f(x) = lim
n→∞

x
1+nx2 = 0 for all x ∈ [0,∞). In other words,

we have fn → 0 pointwise on [0,∞).

Let n ∈ Z+. Note that fn(x) = x
1+nx2 ≥ 0 for all x ∈ [0,∞) and we have fn

′(x) = (1+nx2)−x(2nx)
(1+nx2)2 =

1−nx2

(1+nx2)2 so that fn
′(x) > 0 when 0 ≤ x < 1√

n
and fn

′(x) < 0 when x > 1√
n

. By the First Derivative Test, fn(x)

attains its maximum value at x = 1√
n

and the maximum value is fn
(

1√
n

)
= 1

2
√
n

. Since
∣∣fn(x)

∣∣ = fn(x) ≤ 1
2
√
n

for all x ∈ [0,∞) and 1
2
√
n
→ 0 as n→∞, it follows that fn → 0 uniformly on [0,∞). To be very explicit, let

ε > 0, choose m ∈ Z+ so that 1
2
√
m
< ε, let n ∈ Z+ and let x ∈ [0,∞). Suppose that n ≥ m. Then we have∣∣fn(x)− 0

∣∣ = fn(x) ≤ 1
2
√
n
≤ 1

2
√
m
< ε.

(c) Define fn : [0,∞]→ R by fn(x) = x+n
x+4n . Show that (fn) converges uniformly on [0, r] for every r > 0 but

that (fn) does not converge uniformly on [0,∞).

Solution: The pointwise limit is f(x) = lim
n→∞

fn(x) = lim
n→∞

x+n
x+4n = 1

4 , so we have fn → 1
4 pointwise on [0,∞).

Note that fn
′(x) = (x+4n)−(x+n)

(x+4n)2 = 3n
(x+4n)2 > 0 for all x ∈ [0,∞) so that fn(x) is strictly increasing on

[0,∞) with fn(0) = 1
4 and lim

x→∞
fn(x) = lim

x→∞
x+n
x+4n = 1. Because lim

x→∞
fn(x) = 1 it follows that (fn) does not

converge uniformly on [0,∞) to the constant function 1
4 . To be explicit, choose ε = 1

2 , let m ∈ Z+, choose
n ≥ m, and choose x ∈ [0,∞) large enough so that

∣∣fn(x)− 1
∣∣ ≤ 1

4 . Then we have fn(x) ≥ 1− 1
4 = 3

4 so that∣∣fn(x)− 1
4

∣∣ ≥ 3
4 −

1
4 = 1

4 = ε.
On the other hand, we claim that for every r > 0 we have fn → 1

4 uniformly on [0, r]. Let r > 0. Note
that fn(0) = 1

4 and for 0 < x ≤ r we have∣∣∣fn(x)− 1

4

∣∣∣ =
∣∣∣ x+ n

x+ 4n
− 1

4

∣∣∣ =
3x

4(x+ 4n)
=

3

4 + 16n
x

≤ 3

4 + 16n
r

−→ 0 as n→∞.

It follows that fn → 1
4 uniformly on [0, r], as claimed. Indeed, to be explicit, let ε > 0, choose m ∈ Z+ large

enough that 3

4+
16m
r

< ε, let x ∈ [0, r] and let n ∈ Z+ with n ≥ m. Then
∣∣fn(x)− 1

4

∣∣ ≤ 3

4+
16n
r

≤ 3

4+
16m
r

< ε.



2: (a) Find

∫ 1

0

lim
n→∞

nx(1− x2)n dx and lim
n→∞

∫ 1

0

nx(1− x2)n dx.

Solution: Let x ∈ [0, 1]. If x = 0 or x = 1 then nx(1−x2)n = 0 for all n and so lim
n→∞

nx(1−x2)n = 0. If x ∈ (0, 1)

then 0 < (1−x2) < 1, so the series
∑
nx(1−x2)n converges by the Ratio Test and so lim

n→∞
nx(1−x2)n = 0 by

the Divergence Test. Thus

∫ 1

0

lim
n→∞

nx(1−x2)n dx =

∫ 1

0

0 dx = 0. On the other hand, using the substitution

u = 1− x2 so du = −2x dx we have∫ 1

0

nx(1− x2)n dx =

∫ 0

1

− 1
2nu

2 du =

[
−nun+1

2(n+ 1)

]0
1

=
n

2(n+ 1)
,

and so we have lim
n→∞

∫ 1

0

nx(1− x2)n dx = 1
2 .

(b) Find

∫ 4

1

lim
n→∞

tan−1(nx)

x
dx and lim

n→∞

∫ 4

1

tan−1(nx)

x
dx.

Solution: Let x ∈ [1, 4]. Then lim
n→∞

tan−1(nx)

x
=

π

2x
and so∫ 4

1

lim
n→∞

tan−1(nx)

x
dx =

∫ 4

1

π

2x
dx =

[
π
2 lnx

]4
1

= π ln 2 .

We claim that

{
tan−1(nx)

x

}
→ π

2x
uniformly on [1, 4]. Indeed, given ε > 0 we can choose N so that

x ≥ N =⇒
∣∣ tan−1 x− π

2

∣∣ < ε for all x ≥ N . Then for n ≥ N and x ≥ 1 we have∣∣∣∣ tan−1(nx)

x
− π

2x

∣∣∣∣ =

∣∣tan−1(nx)− π
2

∣∣
x

<
ε

x
≤ ε .

Since the convergence is uniform, lim
n→∞

∫ 4

1

tan−1(nx)

x
dx =

∫ 4

1

lim
n→∞

tan−1(nx)

x
dx = π ln 2.

(c) Show that

∞∑
n=0

cos(2nx)

1 + n2
converges uniformly on R and find

∫ π/4

0

∞∑
n=0

cos(2nx)

1 + n2
dx.

Solution: For all x ∈ R we have

∣∣∣∣cos(2nx)

1 + n2

∣∣∣∣ ≤ 1

1 + n2
<

1

n2
, and

∑
1
n2 converges, so

∞∑
n=0

cos(2nx)

1 + n2
converges

uniformly by the Weirstrass M-Test. Since the convergence is uniform,∫ π/4

0

∞∑
n=0

cos(2nx)

1 + n2
dx =

∞∑
n=0

∫ π/4

0

cos(2nx)

1 + n2
dx =

∞∑
n=0

[
1

2n
sin(2nx)

1 + n2

]π/4
0

=
√
2
2 + 1

4 + 0 + 0 + · · · =
√
2
2 + 1

4 .

(d) Show that

∞∑
n=1

sin
( x
n2

)
converges uniformly on any closed interval [a, b].

Solution: Note that | sinx| ≤ |x| for all x ∈ R and so
∣∣sin ( xn2

)∣∣ ≤ |x|n2 for all x. Let [a, b] be any closed interval

and let M = max(|a|, |b|). Then for x ∈ [a, b] we have |x| ≤ M and so
∣∣sin ( xn2

)∣∣ ≤ |x|
n2 ≤ M

n2 . Since
∑

M
n2

converges,
∑

sin
(
x
n2

)
converges uniformly on [a, b] by the Weirstrass M-Test.



3: Determine which of the following statements are true for all sequences of functions (fn) and (gn) and all
E ⊆ R.

(a) If (fn) and (gn) converge uniformly on E then (fngn) converge uniformly on E.

Solution: This is FALSE. Let E = R, let f(x) = g(x) = x and let fn(x) = gn(x) = x + 1
n . Then we have

fn(x)2 = x2 + 2x
n + 1

n2 so lim
n→∞

fn(x)2 = x2 = f(x)2 for all x ∈ R, but the convergence is not uniform, since

given any positive integer n, when x ≥ n we have |fn(x)2 − f(x)2| = 2x
n + 1

n2 > 2.

(b) Show that if (fn) and (gn) converge uniformly on E and f and g are bounded on E then (fngn) converges
uniformly on E.

Solution: This is TRUE. Suppose that (fn) and (gn) converge uniformly on E and f and g are bounded on
E, say |f(x)| ≤ M and |g(x)| ≤ M for all x ∈ E. Choose N1 so that n ≥ N1 =⇒ |fn(x) − f(x)| < 1. Note
that for n ≥ N1 we have |fn(x)| ≤ |fn(x)− f(x)|+ |f(x)| ≤M + 1. Now choose N ≥ N1 so that when n ≥ N
we have |fn(x)− f(x)| < ε

2M and |gn(x)− g(x)| < ε
2(M+1) for all x. Then when n ≥ N we have

|fn(x)gn(x)− f(x)g(x)| ≤ |fn(x)gn(x)− fn(x)g(x)|+ |fn(x)g(x)− f(x)g(x)|
= |fn(x)||gn(x)− g(x)|+ |fn(x)− f(x)||g(x)|
≤ (M + 1) ε

2(M+1) + ε
2M M = ε .

Thus fngn → fg uniformly on E.

(c) If (fn) converges uniformly on (a, b) and pointwise on [a, b] then (fn) converges uniformly on [a, b].

Solution: This is TRUE. Indeed, suppose that (fn) converges uniformly in (a, b) and that
(
fn(a)

)
and

(
fn(b)

)
both converge. Then given ε > 0 we can choose N so that when l,m ≥ N we have |fl(x)− fm(x)| < ε for all
x ∈ (0, 1), and |fl(a)− fm(a)| < ε and |fl(b) = fm(b)| < ε, and so we have |fl(x)− fm(x)| < ε for all x ∈ [a, b].

(d) If each fn is continuous on [a, b] and
∑
fn converges uniformly on [a, b] then

∑
Mn converges, where

Mn = max
{
|fn(x)|

∣∣a ≤ x ≤ b}.

Solution: This is FALSE. For a counterexample, let

fn(x) =

{
1
n sin2(2nπ x) , if 1

2n ≤ x ≤
1

2n−1

0 , otherwise.

Then Mn = 1
n so

∑
Mn diverges, and yet we claim that

∑
fn converges uniformly on [0, 1]. Indeed if we write

S(x) =
∞∑
n=1

fn(x) and Sl(x) =
∞∑
n=l

fn(x) then for all x ∈ [0, 1] we have

∣∣Sl(x)− S(x)| =
∞∑

n=l+1

fn(x) ≤ max{Ml+1,Ml+2, · · ·} = 1
l+1

since for each x, at most one of the terms fn(x) is non-zero.



4: (a) Find the Taylor series centered at 0, and its interval of convergence, for f(x) =
x

x2 − 6x+ 8
.

Solution: We have

f(x) =
x

x2 − 6x+ 8
=

x

(x− 2)(x− 4)
=
−1

x− 2
+

2

x− 4
=

1
2

1− x
2

−
1
2

1− x
4

.

Since
1
2

1− x
2

=

∞∑
n=0

1
2

(
x
2

)n
=

∞∑
n=0

1
2·2nx

n when
∣∣x
2

∣∣ < 1, that is |x| < 2, and
1
2

1− x
4

=

∞∑
n=0

1
2·4nx

n when |x| < 4,

we have

f(x) =

∞∑
n=0

1
2·2nx

n −
∞∑
n=0

1
2·4nx

n =

∞∑
n=0

1
2

(
1
2n −

1
4n

)
xn

when |x| < 2.

(b) Find the Taylor series centered at π
4 , and its interval of convergence, for f(x) = sinx cosx.

Solution: We provide two solutions. The first solution uses the known Taylor series for cosx. We have

f(x) = sinx cosx = 1
2 sin 2x = 1

2 cos
(
2x− π

2

)
= 1

2 cos
(
2
(
x− π

4

))
= 1

2

∞∑
n=0

(−1)n

(2n)!

(
2
(
x− π

4

))2n
=

∞∑
n=0

(−1)n22n−1

(2n)!

(
x− π

4

)2n
for all x ∈ R.

The second solution uses the formula for the coefficients of the Taylor series. We have f(x) = 1
2 sin 2x,

f ′(x) = cos 2x, f ′′(x) = −2 sin 2x, f ′′′(x) = −4 cos 2x, f ′′′′(x) = 8 sin 2x and so on. Put in x = π
4 to get

f
(
π
4

)
= 1

2 , f ′
(
π
4

)
= 0, f ′′

(
π
4

)
= −2, f ′′′

(
π
4

)
= 0, f ′′′′

(
π
4

)
= 8 and so on. In general, the odd-order derivatives

at 0 are all zero, that is f (2n+1)(0) = 0, and the even-order derivatives are given by f (2n)(0) = (−1)n22n−1.

Thus the coefficients of the Taylor series are given by c2n+1 = 0 and c2n =
(−1)n22n−1

(2n)!
, so the Taylor series is

T (x) =

∞∑
n=0

(−1)n22n−1

(2n)!

(
x− π

4

)2n
. To find the interval of convergence, let an =

(−1)n22n−1

(2n)!

(
x− π

4

)2n
. Then∣∣∣∣an+1

an

∣∣∣∣ =
4
∣∣x− π

4

∣∣2
(2n+ 2)(2n+ 1)

→ 0 as n→∞, so
∑
an converges for all x ∈ R.

(c) Let 0 < a < b. Note that Q ∩ [a, b] is countable, say Q ∩ [a, b] = {q1, q2, q3, · · ·}. Find the interval of

convergence of the power series
∞∑
n=1

qnx
n.

Solution: Since 0 < a ≤ qn ≤ b, we have 0 < n
√
a ≤ n

√
qn ≤ n

√
b for all n, and since lim

n→∞
n
√
a = 1 = lim

n→∞
n
√
b we

have lim
n→∞

n
√
qn = 1 by the Squeeze Theorem. Thus the radius of convergence is R = 1

/
lim
n→∞

n
√
qn = 1. When

x = ±1, lim
n→∞

qnx
n does not exist and so

∑
qnx

n diverges. Thus the interval of convergence is I = (−1, 1).



5: (a) Find the 4th Taylor polynomial centered at 0 for f(x) =
ln(1 + x)

e2x
.

Solution: We have

f(x) = e−2x ln(1 + x)

=
(

1 + (−2x) + 1
2! (−2x)2 + 1

3! (−2x)3 + 1
4! (−2x)4 + · · ·

)(
x− 1

2x
2 + 1

3x
3 − 1

4x
4 − · · ·

)
=
(

1− 2x+ 2x2 − 4
3x

3 + 2
3x

4 − · · ·
)(
x− 1

2x
2 + 1

3x
3 − 1

4x
4 − · · ·

)
= x−

(
1
2 + 2

)
x2 +

(
1
3 + 1 + 2

)
x3 −

(
1
4 + 2

3 + 1 + 4
3

)
x4 + · · ·

= x− 5
2x

2 + 10
3 x

3 − 13
4 x

4 + · · ·

so the Taylor polynomial of degree 4 is T4(x) = x− 5
2x

2 + 10
3 x

3 − 13
4 x

4.

(b) Find the 7th Taylor polynomial centered at 0 for f(x) = sec(
√

2x).

Solution: f(x) =
1

cos(
√

2x)
=

1

1− 1
2 (2x2) + 1

24 (4x4)− 1
720 (8x6) + · · ·

=
1

1− x2 + 1
6x

4 − 1
90x

6 + · · ·
. We

perform long division:

1 + x2 + 5
6x

4 + 61
90x

6 + · · ·

1− x2 + 1
6x

4 − 1
90x

6 + · · ·
)

1 + 0x2 + 0x4 + 0x6 + · · ·
1− x2 + 1

6x
4 − 1

90x
6 + · · ·

x2 − 1
6x

4 + 1
90x

6 + · · ·
x2 − x4 + 1

6x
6 + · · ·

5
6x

4 − 14
90x

6 + · · ·
5
6x

4 − 5
6x

6 + · · ·
61
90x

6 + · · ·
so T7(x) = 1 + x2 + 5

6x
4 + 61

90x
6.

(c) Let f(x) = x3 +x+ 1. Note that f is increasing with f(0) = 1, and let g(x) = f−1(x). Find the 6th Taylor
polynomial centered at 1 for the inverse function g(x).

Solution: Say g(y) = a0 + a1(y − 1) + a2(y − 1)2 + a3(y − 1)3 + · · ·. Then

x = g
(
f(x)

)
= g(x3 + x+ 1) = a0 + a1(x+ x3) + a2(x+ x3)2 + a3(x+ x3)3 + · · ·

= a0 + a1(x+ x3) + a2(x2 + 2x4 + x6) + a3
(
x3 + 3x5 + · · ·

)
+ a4

(
x4 + 4x6 + · · ·

)
+ a5

(
x5 + · · ·

)
+ a6

(
x6 + · · ·

)
+ · · ·

= a0 + a1x+ a2x
2 + (a3 + a1)x3 + (a4 + 2a2)x4 + (a5 + 3a3)x5 + (a6 + 4a4 + a2)x6 + · · ·

Comparing coefficients, we see that a0 = 0, a1 = 1, a2 = 0, a3 = −a1 = −1, a4 = −2a2 = 0, a5 = −3a3 = 3
and a6 = −4a4 − a2 = 0, and so the 6th Taylor polynomial is T6(x) = (x− 1)− (x− 1)3 + 3(x− 1)5.



6: (a) Let f(x) = (8 + x3)2/3. Find f (9)(0), the 9th derivative of f at 0.

Solution: f(x) = (8 + x3)2/3 = 4
(
1 + x3

8

)2/3
= 4

(
1 + 2

3
x3

8 +

(
2
3

)(
− 1

3

)
2!

(
x3

8

)2
+

(
2
3

)(
− 1

3

)(
− 4

3

)
3!

(
x3

8

)3
+ · · ·

)
, so

c9 = 4·2·1·4
33·3!·83 = 1

34 25 and f (9)(0) = 9! c9 = 9!
34 25 = 140.

(b) Evaluate the limit lim
x→0

x ex
2 − sinx

x− tan−1 x
.

Solution: lim
x→0

x ex
2 − sinx

x− tan−1 x
= lim
x→0

x (1 + x2 + 1
2x

4 + · · ·)− (x− 1
6x

3 + · · ·)
x− (x− 1

3x
3 + · · ·)

lim
x→0

7
6x

3 + · · ·
1
3x

3 + · · ·
= 7

2 .

(c) Suppose that there exists a function y = f(x), whose Taylor series centered at 0 has a positive radius of
convergence, such that 1

2 y
′′ + y′ − 3y = x + 1 with y(0) = 1 and y′(0) = 2. Find the Taylor polynomial of

degree 5 centred at 0 for f(x).

Solution: Let y = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + · · ·. Then y′ = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + 5c5x
4 + · · ·

and y′′ = 2c2 + 6c3x+ 12c4x
2 + 20c5x

3 + · · ·. So we have

0 = 1
2 y
′′ + y′ − 3y − x− 1

= (c2 + 3c3x+ 6c4x
2 + 10c5x

3 + · · ·) + (c1 + 2c2x+ 3c3x
2 + 4c4x

3 + · · ·)
− (3c0 + 3c1x+ 3c2x

2 + 3c3x
3 + · · ·)− x− 1

= (c2 + c1 − 3c0 − 1) + (3c3 + 2c2 − 3c1 − 1)x+ (6c4 + 3c3 − 3c2)x2 + (10c5 + 4c4 − 3c3)x3 + · · ·
Since y(0) = 1 and y′(0) = 2 we have c0 = 1 and c2 = 2. Put these values in the above equation to get

0 = (c2 − 2) + (3c3 + 2c2 − 7)x+ (6c4 + 3c3 − 3c2)x2 + (10c5 + 4c4 − 3c3)x3 + · · ·
For y to be a solution, all the coefficients must be zero, so we have

(c2 − 2) = 0 =⇒ c2 = 2

(3c3 + 2c2 − 7) = 0 =⇒ 3c3 = 7− 2c2 = 3 =⇒ c3 = 1

(6c4 + 3c3 − 3c2) = 0 =⇒ 6c4 = 3c2 − 3c3 = 3 =⇒ c4 = 1
2

(10c5 + 4c4 − 3c3) = 0 =⇒ 10c5 = 3c3 − 4c4 = 1 =⇒ c5 = 1
10 .

Thus the Taylor polynomial of degree 5 centered at 0 is

T5(x) = 1 + 2x+ 2x2 + x3 + 1
2x

4 + 1
10x

5 .



7: Estimate each of the following numbers so that the error is at most 1
1000 .

(a) 5
√
e

Solution: ex = 1 + x+ 1
2!x

2 + 1
3!x

3 + 1
4!x

4 + · · ·, so we have

5
√
e = e

1
5 = 1 + 1

5 + 1
522! + 1

533! + 1
544! + · · · ∼= 1 + 1

5 + 1
522! + 1

533! = 1 + 1
5 + 1

50 + 1
750 = 916

750

with error

E = 1
544! + 1

555! + 1
566! + · · · = 1

544!

(
1 + 1

5·5 + 1
52·5·6 + 1

53·5·6·7 + · · ·
)

≤ 1
544!

(
1 + 1

52 + 1
54 + 1

56 + · · ·
)

= 1
544!

1
1− 1

25

= 1
544!

25
24 = 1

13200

where we used the C.T. and the formula for the sum of a geometric series.

(b) ln(4/5)

Solution: We provide two solutions. For the first solution, we use ln(1− x) = −x− 1
2x

2 − 1
3x

3 − · · ·. We have

ln
(
4
5

)
= ln

(
1− 1

5

)
= − 1

5 −
1

2·52 −
1

3·53 −
1

4·54 − · · · ∼= −
1
5 −

1
2·52 −

1
3·53 = − 1

5 −
1
50 −

1
375 = − 167

750

with error

E = 1
4·54 + 1

5·55 + 1
6·56 + · · · < 1

4·54 + 1
4·55 + 1

4·56 + · · · =
1

4·54

1− 1
5

= 1
4·54 ·

5
4 = 1

42·53 = 1
2000 ,

where we used the C.T. and the formula for the sum of a geometric series.
For the second solution, we use ln(1 + x) = x− 1

2x
2 + 1

3x
3 − 1

4x
4 + · · ·. We have

ln 4
5 = − ln 5

4 = − ln
(
1 + 1

4

)
=
(
− 1

4 + 1
2·42 −

1
3·43 + 1

4·44 − · · ·
) ∼= − 1

4 + 1
32 −

1
192 = − 43

192

with error E ≤ 1
4·44 <

1
1000 by the A.S.T.

(c)

∫ 1

0

√
4 + x3 dx

Solution: Using the Binomial Series, we have√
4 + x3 dx = 2

(
1 +

x3

4

)1/2

= 2

(
1 + 1

2

(
x3

4

)
+

(
1
2

)(
− 1

2

)
2!

(
x3

4

)2

+

(
1
2

)(
− 1

2

)(
− 3

2

)
3!

(
x3

4

)3

+

(
1
2

)(
− 1

2

)(
− 3

2

)(
− 5

2

)
4!

(
x3

4

)4

+ · · ·

)
= 2 + 1

4 x
3 − 1

2·2!·42 x
6 + 1·3

22·3!·43 x
9 − 1·3·5

23·4!·44 x
12 + · · ·

and so ∫ 1

0

√
4 + x3 dx =

[
2x+ 1

4·4 x
4 − 1

2·2!·42·7 x
7 + 1·3

22·3!·43·10 x
10 − 1·3·5

23·4!·44·13 x
13 + · · ·

]1
0

= 2 + 1
4·4 −

1
2·2!·42·7 + 1·3

22·3!·43·10 −
1·3·5

23·4!·44·13 + · · ·
∼= 2 + 1

4·4 −
1

2·2!·42·7 = 2 + 1
16 −

1
448 = 923

448

with absolute error E ≤ 1·3
22·3!·43·10 = 1

5120 by the A.S.T.

To be rigorous, we should justify our application of the A.S.T. When an =
(−1)n+11 · 3 · 5 · · · (2n− 3)

2n−1 · n! · 4n · (3n+ 1)
we

have

∣∣∣∣an+1

an

∣∣∣∣ =
2n− 1

2 · (n+ 1) · 4 · (3n+ 4)
<

2n+ 2

2 · (n+ 1) · 4 · (3n+ 4)
=

1

4 · (3n+ 4)
. Since

∣∣∣∣an+1

an

∣∣∣∣ < 1 we know

that {|an|} is decreasing, and since lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 we know that
∑
an converges by the R.T. so lim

n→∞
|an| = 0

by the D.T. Thus we can indeed apply the A.S.T.



8: Find the exact value of each of the following sums.

(a)

∞∑
n=1

(n+ 1)2

n!

Solution: For all x we have ex =

∞∑
n=0

xn

n!
, so x ex =

∞∑
n=0

xn+1

n!
. Differentiate to get (x+ 1) ex =

∞∑
n=0

(n+ 1)xn

n!
,

so (x2 + x) ex =

∞∑
n=0

(n+ 1)xn+1

n!
. Differentiate again to get (x2 + 3x+ 1) ex =

∞∑
n=0

(n+ 1)2xn

n!
. Put in x = 1

to get 5 e =

∞∑
n=0

(n+ 1)2

n!
= 1 +

∞∑
n=1

(n+ 1)2

n!
. Thus

∞∑
n=1

(n+ 1)2

n!
= 5 e− 1.

(b)

∞∑
n=1

n

(2n+ 1)2n

Solution: Let S =

∞∑
n=1

n

(2n+ 1)2n
= 1

3·21 + 2
5·22 + 3

7·23 + · · ·. For |x| < 1 we have
1

1− x2
= 1+x2 +x4 +x6 + · · ·.

Integrate both sides to get 1
2 ln

(
1+x
1−x

)
= x+ x3

3 + x5

5 + x7

7 + · · ·. Divide both sides by x and the differentiate to

get

x
1−x2 − 1

2 ln
(

1+x
1−x

)
x2

= 2x
3 + 4x3

5 + 6x5

7 + · · ·. Multiply by x to get 1
1−x2 − 1

2x ln
(

1+x
1−x

)
= 2x3

3 + 4x4

5 + 6x6

7 + · · ·.

Put in x = 1√
2

to get 2− 1√
2

ln
(√

2+1√
2−1

)
= 2

3·2 + 4
5·22 + 6

7·23 + · · · = 2S. Thus

S = 1− 1
2
√
2

ln
(√

2+1√
2−1

)
= 1− 1√

2
ln
(√

2 + 1
)
.

(c)

∞∑
n=0

(−1)n+1

3n− 2

Solution: For |x| < 1 we have

∞∑
n=0

(−1)nx3n =
1

1 + x3
, so

∞∑
n=0

(−1)nx3n+1

3n+ 1
=

∫ x

0

dt

1 + t3
. By Abel’s Theorem

we can put in x = 1 to get

∞∑
n=0

(−1)n

3n+ 1
=

∫ 1

0

dt

1 + t3
. Thus

∞∑
n=0

(−1)n+1

3n− 2
= 1

2 +

∞∑
n=1

(−1)n+1

3n− 2
= 1

2 +

∞∑
n=0

(−1)n

3n+ 1
= 1

2 +

∫ 1

0

dt

t3 + 1
.

To get
1

t3 + 1
=

A

t+ 1
+
B(2t− 1) + C

t2 − t+ 1
, we need A(t2 − t + 1) + B(2t2 + t − 1) + C(t + 1) = 1. Equate

coefficients to get the three equations A + 2B = 0, −A + B + C = 0 and A− B + C = 1. Solve these to get
A = 1

3 , B = − 1
6 and C = 1

2 . Thus we find that

∞∑
n=0

(−1)n+1

3n− 2
= 1

2 +

∫ 1

0

dt

t3 + 1
= 1

2 +

∫ 1

0

1
3

t+ 1
−

1
6 (2t− 1) + 1

2

t2 − t+ 1
dt

= 1
2 +

[
1
3 ln(t+ 1)− 1

6 ln(t2 − t+ 1) + 1√
3

tan−1
(t− 1

2 )√
3

2

]1
0

= 1
2 + 1

3 ln 2 + 1√
3

tan−1 1√
3
− 1√

3
tan−1 1√

3
= 1

2 + 1
3 ln 2 + π

3
√
3
.



9: (Dirichlet’s Tests for Convergence)

(a) Let (an)n≥1 and (bn)n≥1 be sequences in R. Suppose there exists M ≥ 0 such that
∣∣ ∑̀
n=1

an
∣∣ ≤ M for all

` ∈ Z+ and suppose that (bn)n≥1 is decreasing with bn → 0. Show that
∞∑
n=1

anbn converges.

Solution: I may include a solution later.

(b) Show that
∞∑
n=1

1
n sinnx converges for all x ∈ R.

Solution: I may include a solution later.

(c) Let ∅ 6= A ⊆ R, and let fn, gn : A → R for all n ∈ Z+. Suppose that there exists M ≥ 0 such that∣∣∣ ∑̀
n=1

fn(x)
∣∣∣ ≤ M for all ` ∈ Z+ and all x ∈ A, and suppose that (gn(x)

)
n≥1 is decreasing for all x ∈ A with

gn → 0 uniformly in A. Prove that
∞∑
n=1

fngn converges uniformly on A.

Solution: I may include a solution later.

(d) Prove that
∞∑
n=1

1
n cosnx converges uniformly on every closed interval [a, b] ⊆ (0, 2π).

Solution: I may include a solution later.


