
MATH 148 Calculus 2, Solutions to the Exercises for Chapter 6

1: (a) Let a1 = 6 and for n ≥ 1 let an+1 = 1 + 2
an/3. Determine whether {an} converges, and if so find the limit.

Solution: Suppose for now that {an} does converge and say lim
n→∞

an = l. Then by taking the limit on both

sides of the recursion formula an+1 = 1 + 2an/3, we obtain l = 1 + 2l/3. By inspection l = 3 and l = 9 are two
solutions (to find these two solutions, sketch the graphs of y = x and y = 1 + 2x/3 on the same grid). We can
prove that these are the only two solutions as follows. Let f(x) = 1 + 2x/3−x. Then f ′(x) = ln 2

3 · 2
x/3− 1, so

f ′(x) = 0 when ln 2
3 · 2

x/3 = 1, that is when x = a where a = 3 log2(3/ ln 2), and note that we have f ′(x) < 0
when x < a and f ′(x) > 0 when x > a. Thus f is decreasing on (−∞, a] and increasing on [a,∞), and so f
has at most two roots. Thus if {an} does converge, the limit must be l = 3 or l = 9.

We claim that 9 > an > an+1 > 3 for all n ≥ 1. We have a1 = 6 and a2 = 5, so the claim is true when
n = 1. Suppose it is true when n = k. Then we have 9 > ak > ak+1 > 3 =⇒ 3 > an/3 > an+1/3 > 1 =⇒ 8 >
2an/3 > 2a+n+1/3 > 2 =⇒ 9 > 1 + 2an/3 > 1 + 2an+1/3 > 3, that is 9 > ak+1 > ak+2 > 3, and so the claim is
true when n = k + 1. By induction, the claim is true for all n ≥ 1. Thus {an} is decreasing and is bounded
below by 3, so it converges by the MCT. As shown above, the limit must be 3 or 9. Since a1 = 6 and {an} is
decreasing, its limit must be 3.

(b) Let a1 = 7
2 and for n ≥ 1 let an+1 =

6

5− an
. Determine whether {an} converges, and if so find the limit.

Solution: Suppose for now that {an} does converge, and say lim
n→∞

an = l. Taking the limit on both sides of

the recursion formula an+1 =
6

5− an
gives l = 6

5−l =⇒ 5l − l2 = 6 =⇒ l2 − 5l + 6 = 0 =⇒ (l − 2)(l − 3) = 0,

and so we must have l = 2 or l = 3.
We claim that an < an+1 < 2 for all n ≥ 4. We have a1 = 7

2 , a2 = 4, a3 = 6, a4 = −6 and a5 = 6
11 ,

so the claim is true when n = 4. Suppose the claim is true when n = k. Then we have ak < ak+1 < 2 =⇒
−ak > −ak+1 > −2 =⇒ 5 − ak > 5 − ak+1 > 3 =⇒ 1

5−ak < 1
5−ak+1

< 1
3 =⇒ 6

5−ak < 6
5−ak+1

< 2, that is

ak+1 < ak+2 < 2, so the claim is true when n = k + 1. By induction, the claim is true for all n ≥ 4. Thus
{an}n≥4 is increasing and is bounded above by 2, so {an} converges and lim

n→∞
an ≤ 2 by the MCT. We showed

above that the limit must be 2 or 3, and so we must have lim
n→∞

an = 2.

(c) Let (xk)k≥0 be a sequence in R with
∣∣xk − xk−1∣∣ ≤ 1

k2 for all k ≥ 1. Show that (xk) converges in R.

Solution: Notice that for all k ≥ 2 we have 1
k2 ≤

1
(k−1) k = 1

k−1 −
1
k . It follows that for 1 ≤ k < l we have

|xk − xl| =
∣∣xk − xk+1 + xk+1 − xk+2 + xk+2 − xk+3 + · · · − xl−1 + xl−1 − xl

∣∣
≤ |xk − xk+1|+ |xk+1 − xk+2|+ |xk+2 − xk+3|+ · · ·+ |xl−1 − xl|
≤ 1

(k+1)2 + 1
(k+2)2 + 1

(k+3)2 + · · ·+ 1
(l−1)2 + 1

l2

≤ 1
k(k+1) + 1

(k+1)(k+2) + 1
(k+2)(k+3) + · · ·+ 1

(l−2)(l−1) + 1
(l−1) l

= 1
k −

1
k+1 + 1

k+1 −
1
k+2 + 1

k+2 −
1
k+3 + · · · − 1

l−1 + 1
l−1 −

1
l

= 1
k −

1
l ≤

1
k .

Let ε > 0. Choose m ∈ Z with m ≥ 1
ε . For k, l ≥ m say with k ≤ l, if k = l then |xk − xl| = 0 and if k < l

then, as shown above, |xk − xl| ≤ 1
k ≤

1
m ≤ ε. Thus (xk) is a Cauchy sequence, and so it converges by the

Cauchy Criterion.



2: Determine which of the following series converge.

(a)

∞∑
n=0

√
n

2n2 + 1

Solution: For n ≥ 1 we have 0 ≤
√
n

2n2 + 1
≤
√
n

2n2
=

1

2n3/2
, and we know that

∑ 1

2n3/2
converges

(
since it is

a constant multiple of the p-series with p = 3
2

)
, and so

∑ √
n

2n2 + 1
converges by the C.T.

(b)

∞∑
n=1

(−1)n 21/n

Solution: Let an = (−1)n21/n. Then |an| = 21/n −→ 20 = 1. Since |an| 6−→ 0, we know that an 6−→ 0, and so∑
an diverges by the D.T.

(c)

∞∑
n=1

n!nn

(2n)!

Solution: Let an =
n!nn

(2n)!
. Then

an+1

an
=

(n+ 1)!(n+ 1)n+1

(2n+ 2)!
· (2n)!

n!nn
=

(n+ 1)2

(2n+ 2)(2n+ 1)
·
(
n+ 1

n

)n
→ e

4
< 1,

so
∑
an converges by the R.T.

(d)

∞∑
n=1

(
n sin−1

(
1
n

)
− 1
)

.

Solution: Let an =
(
n sin−1

(
1
n

)
− 1
)

and let bn = 1
n2 . Then using l’Hôpital’s Rule twice, we have

lim
n→∞

an
bn

= lim
n→∞

n sin−1
(
1
n

)
− 1

1
n2

= lim
x→0+

1
x sin−1 x− 1

x2
= lim
x→0+

sin−1 x− x
x3

= lim
x→0+

(1− x2)−1/2 − 1

3x2
= lim
x→0+

x(1− x2)−3/2

6x
= lim
x→0+

(1− x2)−3/2

6
= 1

6 .

Since
∑
bn converges (its a p-series with p = 2),

∑
an converges too by the L.C.T.



3: Find the sum of each of the following series, if the sum exists.

(a)

∞∑
n=0

(−2)n+1 + 3n

6n−1

Solution:

∞∑
n=0

(−2)n+1 + 3n

6n−1
=

∞∑
n=0

(−2)n+1

6n−1
+

∞∑
n=0

3n

6n−1
=
−12

1 + 1
3

+
6

1− 1
2

− 9 + 12 = 3.

(b)

∞∑
n=3

2

n2 − 4

Solution: The lth partial sum is

Sl =

l∑
n=3

2

n2 − 4
=

l∑
n=3

( 1
2

n− 2
−

1
2

n+ 2

)
= 1

2

( (
1
1 −

1
5

)
+
(
1
2 −

1
6

)
+
(
1
3 −

1
7

)
+
(
1
4 −

1
8

)
+ · · ·

+
(

1
l−5 −

1
l−1

)
+
(

1
l−4 −

1
l

)
+
(

1
l−3 −

1
l+1

)
+
(

1
l−2 −

1
l+2

))
= 1

2

(
1 + 1

2 + 1
3 + 1

4 −
1
l−1 −

1
l −

1
l+1 −

1
l+2

)
,

so the sum is S = lim
l→∞

Sl = 1
2

(
1 + 1

2 + 1
3 + 1

4

)
= 25

24 .

(c)

∞∑
n=−1

e
−(n ln 2)/2

Solution: Note that e
−(n ln 2)/2

=
(

1√
2

)n
n, so this is a geometric series, and we have

∞∑
n=−1

e
−(n ln 2)/2

=

∞∑
n=−1

(
1√
2

)n
=

√
2

1− 1√
2

=
2√

2− 1
= 2
(√

2 + 1
)
.

(d)

∞∑
n=2

6n2

n6 − 1

Solution: Note that
6n2

n6 − 1
=

3n2

n3 − 1
− 3n2

n3 + 1
=

1

n− 1
+

2n+ 1

n2 + n+ 1
− 1

n+ 1
− 2n− 1

n2 − n+ 1
, so the lth partial

sum is

Sl =

l∑
n=2

((
1

n− 1
− 1

n+ 1

)
+

(
2
(
n+ 1

2

)(
n+ 1

2

)2
+ 3

4

−
2
(
n− 1

2

)(
n− 1

2

)2
+ 3

4

))
=
((

1
1 −

1
3

)
+
(
1
2 −

1
4

)
+ · · ·+

(
1
l−2 −

1
l

)
+
(

1
l−1 −

1
l+1

))
+ 2

((
5
2(

5
2

)2
+ 3

4

−
3
2(

3
2

)2
+ 3

4

)
+

(
7
2(

7
2

)2
+ 3

4

−
5
2(

5
2

)2
+ 3

4

)
+ · · ·

+

(
l − 1

2(
l − 1

2

)2
+ 3

4

−
l − 3

2(
l − 3

2

)2
+ 3

4

)
+

(
l + 1

2(
l + 1

2

)2
+ 3

4

−
l − 1

2(
l − 1

2

)2
+ 3

4

))

=
(

1 + 1
2 −

1
l −

1
l+1

)
+ 2

(
−

3
2(

3
2

)2
+ 3

4

+
l + 1

2(
l + 1

2

)2
+ 3

4

)

so the sum is S = lim
l→∞

Sl = 1 + 1
2 − 2

3
2(

3
2

)2
+ 3

4

= 1 + 1
2 − 1 = 1

2 .



4: Find the sum of each of the following series, if the sum exists.

(a)

∞∑
n=0

n

(n+ 1)!

Solution: Note that 1
n! −

1
(n+1)! = (n+1)−1

(n+1)! = n
(n+1)! and so

Sl =
l∑

n=0

n
(n+1)! =

l∑
n=0

(
1
n! −

1
(n+1)!

)
=
(
1
0! −

1
1!

)
+
(
1
1! −

1
2!

)
+
(
1
2! −

1
3!

)
+ · · ·+

(
1

(l−1)! −
1
l!

)
+
(

1
l! −

1
(l+1)!

)
= 1

0! −
1

(l+1)! = 1− 1
(l+1)!

and so
∞∑
n=0

n
(n+1)! = lim

l→∞
Sl = lim

l→∞

(
1− 1

(l+1)!

)
= 1.

(b)

∞∑
n=1

n2

2n

Solution: More generally, let us find

∞∑
n=1

n2rn where |r| < 1. Let Sl =

l∑
n=1

n2rn = r + 22r2 + 32r3 + · · · l2rl.

Then rSl = r2 + 22r3 + · · ·+ (l − 1)2rl + l2rl+1 and so

(1− r)Sl = r + (22 − 12)r2 + (32 − 22)r3 + · · ·+ (l2 − (l − 1)2)rl − l2rl+1

=
(
r + 3r2 + 5r3 + · · ·+ (2l − 1)rl

)
− l2rl+1 = Tl − l2rl+1 ,

where Tl =

l∑
n=1

(2n−1)rn = r+3r2+5r3+ · · ·+(2l−1)rl. We have rTl = r2+3r3+ · · ·+(2l−3)rl+(2l−1)rl+1

and so
(1− r)Tl = r + 2r2 + 2r3 + · · ·+ 2rl − (2l − 1)rl+1 = −r + 2Ul − (2l − 1)rl+1 ,

where Ul =

l∑
n=1

rl = r + r2 + r3 + · · ·+ rl. Since lim
l→∞

Ul =

∞∑
n=1

rn =
r

1− r
we have

∞∑
n=1

(2n− 1)rn = lim
l→∞

Tl = lim
l→∞

−r + 2Ul − (2l − 1)rl+1

1− r
=
−r + 2r

1−r − 0

1− r
=
r(1 + r)

(1− r)2

since lim
l→∞

(2l − 1)rl+1 = 0, as you can verify using l’Hôpital’s Rule, and

∞∑
n=1

n2rn = lim
l→∞

Sl = lim
l→∞

Tl − l2rl+1

1− r
=

r(1+r)
(1−r)2 − 0

1− r
=
r(1 + r)

(1− r)3

since lim
l→∞

l2rl+1 = 0. In particular, taking r = 1
2 gives

∞∑
n=1

n2

2n
=

1
2 ·

3
2(

1
2

)3 = 6 .

(c)

∞∑
n=2

1

an−1an+1
, where {an} is the Fibonacci sequence.

Solution: Note that 1
an−1an

− 1
anan+1

= an+1−an−1

an−1anan+1
= an

an−1anan+1
= 1

an−1an+1
and so

Sl =
l∑

n=2

1
an−1an+1

=
l∑

n=2

(
1

an−1an
− 1

anan+1

)
=
(

1
a1a2
− 1

a2a3

)
+
(

1
a2a3
− 1

a3a4

)
+ · · ·+

(
1

al−2al−1
− 1

al−1al

)
+
(

1
al−1al

− 1
alal+1

)
=

1

a1a2
− 1

alal+1
= 1− 1

alal+1
.

Thus
∞∑
n=2

1
an−1an+1

= lim
l→∞

Sl = lim
l→∞

(
1− 1

alal+1

)
= 1.



5: Given a sequence (an)n≥k, we define the infinite product

∞∏
n=k

an to be lim
`→∞

P` where P` =
∏̀
n=k

an, if the limit

exists. Evaluate each of the following infinite products.

(a)

∞∏
n=2

(
1− 1

n2

)
Solution: We have

Pl =

l∏
n=2

(
1− 1

n2

)
=

l∏
n=2

(
n2−1
n2

)
=

l∏
n=2

(n−1)(n+1)
n2 = 1·3

22 ·
2·4
32 ·

3·5
42 ·

4·6
52 · · ·

(n−2)(n)
(n−1)2 ·

(n−1)(n+1)
n2 = n+1

2n

and so

∞∏
n=2

(
1− 1

n2

)
= lim
l→∞

Pl = lim
l→∞

n+1
2n = 1

2 .

(b)

∞∏
n=0

(
1 +

1

22n

)

Solution: Let Pn =
n∏
k=0

(
1 +

1

22k

)
. Then

(
1− 1

2

)
Pn =

(
1− 1

2

) (
1 + 1

2

) (
1 + 1

22

) (
1 + 1

24

)
· · ·
(
1 + 1

22n
)

=
(
1− 1

22

) (
1 + 1

22

) (
1 + 1

24

)
· · ·
(
1 + 1

22n
)

=
(
1− 1

24

) (
1 + 1

24

) (
1 + 1

28

)
· · ·
(
1 + 1

22n
)

= · · · =
(
1− 1

22n
) (

1 + 1
22n
)

=
(

1− 1

22n+1

)
.

Thus Pn =
1− 1

22n+1

1− 1
2

→ 1

1− 1
2

= 2 as n→∞.

(c)

∞∏
n=2

n3 − 1

n3 + 1

Solution: Let Pn =

n∏
k=2

k3 − 1

k3 + 1
. Then

Pn =

n∏
k=2

(k − 1)(k2 + k + 1)

(k + 1)(k2 − k + 1)
=

n∏
k=2

k − 1

k + 1

n∏
k=2

k2 + k + 1

(k − 1)2 + (k − 1) + 1

=
(

1
3 ·

2
4 ·

3
5 · · ·

k−2
k ·

k−1
k+1

)(
7
3 ·

13
7 ·

21
13 · · ·

(k−1)2+(k−1)+1
(k−2)2+(k−2)+1 ·

k2+k+1
(k−1)2+(k−1)+1

)
=
(

1·2
k(k+1)

)(
k2+k+1

3

)
→ 2

3 as n→∞ .



6: (a) For n ≥ 1, let an =
(
−2/3
n

) (
− 1

2

)n
= 2·5·8·····(3n−1)

6n n! .

(i) Find the smallest `∈Z+ such that when the sum S =

∞∑
n=1

(−1)nan is approximated by S ∼= S`=
∑̀
n=1

(−1)nan,

the error is
∣∣S − S`∣∣ ≤ 1

30 .

Solution: Note that an+1 = an ·
3n+ 2

6(n+ 1)
< 1

2 an so {an} decreases with limit 0, and so we can apply the

A.S.T. The first few terms of {an} are

a1 = 2
6 = 1

3 , a2 = 2·5
62·2 = 5

36 , a3 = 2·5·8
63·3! = 5

81 , a4 = 2·5·8·11
64·4! = 55

1944 , a5 = 2·5·8·11·14
65·5! = 77

5832

By the A.S.T, if we approximate S by S ∼= S3 then the error is |S − S3| < a4 = 55
1944 <

55
1650 = 1

30 , while if we
approximate S by S ∼= S2 then the error is |S − S2| > a3 − a4 = 5

81 −
55

1944 = 65
1944 >

65
1950 = 1

30 .

(ii) Find the smallest `∈Z+ such that when the sum T =

∞∑
n=1

an is approximated by T ∼= T` =
∑̀
n=1

an, the

error is T − T` ≤ 1
30 .

Solution: Note that for n ≥ 5 we have an = a5
17·20...(3n−1)

6n−5n!/5! ≤ a5 18·21···(3n)
6n−5n!/5! = a5

3n−5n!/5!
6n−5n!/5! = a5

1
2n−5 , and so if

we approximate T by T ∼= T4 then, using the C.T, the error is

T − T4 =
∞∑
n=5

an ≤ a5
∞∑
n=5

1
2n−5 = 2 a5 = 77

2916 <
77

2310 = 1
30 .

On the other hand, if we approximate T by T ∼= T3 then the error is

T − T3 =
∞∑
n=4

an > a4 + a5 = 55·3+77
5832 = 121

2916 >
121
3630 = 1

30 .

(b) Let f(x) =
1

x(lnx)2
, let an = f(n) for n ≥ 2, let S =

∞∑
n=2

an, and let S` =
∑̀
n=2

an.

(i) Find a value of ` ∈ Z+ such that if we approximate S by S ∼= S` then the error is at most 1
100 .

Solution: Note that f(x) is positive, continuous and decreasing for x > 1, so we can apply the I.T. If we
approximate S by S ∼= Sl then by the I.T. the error is

E = S − Sl =

∞∑
n=l+1

an ≤
∫ ∞
l

f(x) dx =

∫ ∞
l

dx

x(lnx)2
=

[
−1

lnx

]∞
l

=
1

ln l
.

To get E ≤ 1
100 we can choose l so that 1

ln l ≥
1

100 , that is ln l ≥ 100, so we can take l ≥ e100 (a huge number).

(ii) Use a calculator to find a value of ` ∈ Z+ such that if we approximate S by

S ∼= S` + 1
2

(∫ ∞
`

f(x) dx+

∫ ∞
`+1

f(x) dx

)
then the error is at most 1

100 .

Solution: By the I.T, if we make the above approximation then the error is

E ≤ 1
2

(∫ ∞
l

f(x) dx−
∫ ∞
l+1

f(x) dx

)
= 1

2

(
1

ln l
− 1

ln(l + 1)

)
,

so to get E ≤ 1
100 we can choose l so that 1

2

(
1
ln l −

1
ln(l+1)

)
≤ 1

100 . By trial and error with the help of a

calculator, we find that 1
2

(
1

ln(10) −
1

ln(11)

)
∼= 0.0086 < 1

100 and so we can take l = 10.



7: Determine, with proof, which of the following statements are true.

(a) If
∑
an converges that

∑
e
an

diverges.

Solution: This is true, and we give a proof. Suppose that
∑
an converges. Then lim

n→∞
an = 0 by the D.T, and

so lim
n→∞

e
an

= e0 = 1. Since lim
n→∞

e
an 6= 0,

∑
e
an

diverges by the D.T.

(b) If
∑
an converges then

∑
an

2 converges.

Solution: This is false, and we provide a counterexample. Let an = (−1)n√
n

. Then
∑
an converges by the A.S.T,

but
∑
an

2 =
∑

1
n which diverges.

(c) If
∑
an converges and

∑
|bn| converges, then

∑
anbn converges.

Solution: This is true. Indeed, suppose that
∑
an converges and that

∑
|bn| converges. Since

∑
an converges,

we have an → 0 (by the Divergence Test) so we can choose N so that n ≥ N =⇒ |an| ≤ 1. Then for n ≥ N we
have 0 ≤ |anbn| = |an||bn| ≤ |bn|, and so, since

∑
|bn| converges,

∑
|anbn| also converges by the Comparison

Test. Since absolute convergence implies convergence,
∑
anbn converges, too.

(d) If f(x) is positive and continuous and

∫ ∞
1

f(x) dx converges then
∞∑
n=1

f(n) converges.

Solution: This is false, and we provide a counterexample. Let

g1(x) =


2x− 1 if

1

2
≤ x ≤ 1,

3− 2x if 1 ≤ x ≤ 3

2
,

0 otherwise,

g2(x) =


4x− 7 if

7

4
≤ x ≤ 2,

9− 4x if 2 ≤ x ≤ 9

4
,

0 otherwise,

g3(x) =


8x− 23 if

23

8
≤ x ≤ 3,

25− 8x if 3 ≤ x ≤ 25

8
,

0 otherwise,

and in general, for k ≥ 1 let

gk(x) =


2kx− k2k + 1 if k − 1

2k
≤ x ≤ k,

k2k + 1− 2kx if k ≤ x ≤ k +
1

2k
,

0 otherwise.

Then

∫ ∞
0

g1(x) dx = 1
2 ,

∫ ∞
0

g2(x) dx = 1
4 ,

∫ ∞
0

g3(x) dx = 1
8 , and in general

∫ ∞
0

gk(x) dx =
1

2k
. Now let

g(x) = gk(x) when x ∈
[
k − 1

2k
, k + 1

2k

]
and let g(x) = 0 otherwise. The graph of g(x) is shown below.

Then g(x) is nonnegative and continuous, and

∫ ∞
1

g(x) dx converges, indeed

∫ ∞
0

g(x) dx = 1
2 + 1

4 + 1
8 +· · · = 1.

On the other hand we have g(n) = 1 for all integers n ≥ 1, so

∞∑
n=1

g(n) = ∞. For a strictly positive

counterexample, let f(x) = g(x) + e−x.



(e) If lim
n→∞

an
bn

= 1 then
(∑

an converges ⇐⇒
∑
bn converges

)
.

Solution: This is false. For a counterexample, let a2n = 1√
n

and a2n+1 = − 1√
n

for all n ≥ 1, so we have

{an} =
{

1,−1, 1√
2
,− 1√

2
, 1√

3
,− 1√

3
, · · ·

}
, and let b2n =

(
1 + 1√

n

)
a2n =

(
1√
n

+ 1
n

)
and b2n+1 = a2n+1 = − 1√

n
.

Note that
∑
an converges by the A.S.T. Also, we have

a2n+1

b2n+1
= 1 for all n and

a2n
b2n

=
1

1 + 1√
n

→ 1 as n→∞,

and so
an
bn
→ 1 as n → ∞. But

∑
bn diverges, since, writing Sl for the lth partial sum of

∞∑
n=1

bn, we have

S2l+1 =
l∑

n=1
(a2n + a2n+1) =

l∑
n=1

((
1√
n

+ 1
n

)
− 1√

n

)
=

l∑
n=1

1
n →∞ as l→∞.

(f) If
∑
an converges then

∑ an
1+an

converges.

Solution: This is false, and we provide a counterexample. Note that
1
m

1+ 1
m

= 1
m+1 and

− 1
m

1+(− 1
m )

= −1
m−1 , and

that 1
m+1 −

1
m−1 = −2

m2−1 . Thus for a counterexample, we can let

an = 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
3 ,−

1
3 , · · · ,

1
3 ,−

1
3 ,

1
4 ,−

1
4 , · · · ,

1
4 ,−

1
4 , · · ·

where for each m the pair 1
m ,−

1
m is repeated m2 − 1 times so that 1

m+1 −
1

m−1 + · · · + 1
m+1 −

1
m−1 = −2.

Note that
∑
an converges by the A.S.T, but

∑ an
1 + an

= −∞.



8: Let (an)n≥1 be a sequence with an ≥ 0 for all n ≥ 1, and let Sn =
n∑
k=1

ak.

(a) Show that if {an}n≥1 is decreasing and
∑
n≥1

an converges, then lim
n→∞

nan = 0.

Solution: Suppose that {an}n≥1 is decreasing and
∑
n≥1

an converges. Let ε > 0. By the Cauchy Criterion for

convergence we can choose N ≥ 1 so that

m > l > N =⇒
m∑

n=l+1

an <
ε
2 .

Fix l > N . Since an → 0 (by the Divergence Test) we can choose M ≥ l so that

m > M =⇒ am < ε
2l .

Since {an} is decreasing so that am ≤ an for all n ≤ m, for m > M we have

mam = lam +

m∑
n=l+1

am ≤ lam +

m∑
n=l+1

an <
ε
2 + ε

2 = ε .

Thus lim
m→∞

mam = 0.

(b) Show that if a1 > 0 and
∑
n≥1

an diverges, then
∑
n≥1

an
Sn

also diverges.

Solution: Let Tl =
l∑

n=1

an
Sn

. Let l1 = 1. Note that Tl1 = T1 = a1
S1

= a1
a1

= 1 > 1
2 . Suppose, inductively, that

we have found lk so that Tlk >
k
2 . Since

∞∑
n=lk+1

an = ∞, we can choose lk+1 so that
lk+1∑

n=lk+1

an > Slk , that is

Slk+1
− Slk > Slk . Then, since {Sn} is increasing so that Sn ≤ Slk+1

for all n ≤ lk+1, we have

Tlk+1
= Tlk +

lk+1∑
n=lk+1

an
Sn
≥ Tlk +

lk+1∑
n=lk+1

an
Slk+1

= Tlk +
Slk+1

− Slk
Slk+1

= Tlk +
Slk+1

− Slk
Slk + (Slk+1

− Slk)
> Tlk +

Slk+1
− Slk

2(Slk+1
− Slk)

> Tlk + 1
2 >

k
2 + 1

2 = k+1
2 .

Thus for all k ≥ 1 we can find lk such that Tlk >
k
2 . Since {Tl} is increasing, we obtain

∞∑
n=1

an
Sn

= lim
l→∞

Tl =∞ .



9: Let (an)n≥1 be a sequence of real numbers. When f : Z+ → Z+ is a bijective map and we write nk = f(k),
the sequence (ank

)k≥1 is called a rearrangement of the sequence (an)n≥1. Prove each of the following.

(a) If
∞∑
n=1

an converges absolutely, then
∞∑
k=1

ank
=
∞∑
n=1

an for every rearrangement (ank
)k≥1.

Solution: I may include a solution later.

(b) If
∞∑
n=1

an converges conditionally then for every r∈R there is a rearrangement (ank
)k≥1 such that

∞∑
k=1

ank
= r.

Solution: I may include a solution later.

(c) If
∞∑
n=1

an diverges with
∞∑
n=1

an 6= −∞ then there is a rearrangement (ank
)k≥1 such that

∞∑
k=1

ank
=∞.

Solution: We sketch a proof. Suppose that
∑
an diverges and that

∑
an 6= −∞. Let pn be the nth non-

negative term in {an} and let qn be the nth negative term in {an}. Since each pn is non-negative, either∑
pn converges or

∑
pn = ∞. Since each qn is negative, either

∑
qn converges or

∑
qn = −∞. Note that

it is not possible for
∑
pn to converge, since if

∑
pn converges and

∑
qn converges then

∑
an also converges

(absolutely), and if
∑
pn converges and

∑
qn = −∞ then

∑
an = −∞. Thus we must have

∑
pn =∞.

Let Pl and Ql denote the lth partial sums for
∞∑
n=1

pn and
∞∑
n=1

qn. Let k1 be the smallest positive integer

such that Pk1 > 1 + |Q1| = 1−Q1. Having chosen k1, · · · , kn−1, let kn be the smallest integer with kn > kn−1
such that Pkn > n−Qn (each kn exists since

∑
pn =∞). Let {bn} be the rearrangement of {an} given by

{bn} =
{
p1, · · · , pk1 , q1, pk1+1, · · · , pk2 , q2, pk2+1, · · · , pk3 , q3, · · ·

}
Verify that

∑
bn =∞.


