

MATH 148 Calculus 2, Solutions to the Exercises for Chapter 6

1: (a) Let $a_1 = 6$ and for $n \geq 1$ let $a_{n+1} = 1 + 2^{a_n/3}$. Determine whether $\{a_n\}$ converges, and if so find the limit.

Solution: Suppose for now that $\{a_n\}$ does converge and say $\lim_{n \rightarrow \infty} a_n = l$. Then by taking the limit on both sides of the recursion formula $a^{n+1} = 1 + 2^{a_n/3}$, we obtain $l = 1 + 2^{l/3}$. By inspection $l = 3$ and $l = 9$ are two solutions (to find these two solutions, sketch the graphs of $y = x$ and $y = 1 + 2^{x/3}$ on the same grid). We can prove that these are the only two solutions as follows. Let $f(x) = 1 + 2^{x/3} - x$. Then $f'(x) = \frac{\ln 2}{3} \cdot 2^{x/3} - 1$, so $f'(x) = 0$ when $\frac{\ln 2}{3} \cdot 2^{x/3} = 1$, that is when $x = a$ where $a = 3 \log_2(3/\ln 2)$, and note that we have $f'(x) < 0$ when $x < a$ and $f'(x) > 0$ when $x > a$. Thus f is decreasing on $(-\infty, a]$ and increasing on $[a, \infty)$, and so f has at most two roots. Thus if $\{a_n\}$ does converge, the limit must be $l = 3$ or $l = 9$.

We claim that $9 > a_n > a_{n+1} > 3$ for all $n \geq 1$. We have $a_1 = 6$ and $a_2 = 5$, so the claim is true when $n = 1$. Suppose it is true when $n = k$. Then we have $9 > a_k > a_{k+1} > 3 \implies 3 > a_n/3 > a_{n+1}/3 > 1 \implies 8 > 2^{a_n/3} > 2^{a_{n+1}/3} > 2 \implies 9 > 1 + 2^{a_n/3} > 1 + 2^{a_{n+1}/3} > 3$, that is $9 > a_{k+1} > a_{k+2} > 3$, and so the claim is true when $n = k + 1$. By induction, the claim is true for all $n \geq 1$. Thus $\{a_n\}$ is decreasing and is bounded below by 3, so it converges by the MCT. As shown above, the limit must be 3 or 9. Since $a_1 = 6$ and $\{a_n\}$ is decreasing, its limit must be 3.

(b) Let $a_1 = \frac{7}{2}$ and for $n \geq 1$ let $a_{n+1} = \frac{6}{5 - a_n}$. Determine whether $\{a_n\}$ converges, and if so find the limit.

Solution: Suppose for now that $\{a_n\}$ does converge, and say $\lim_{n \rightarrow \infty} a_n = l$. Taking the limit on both sides of the recursion formula $a_{n+1} = \frac{6}{5 - a_n}$ gives $l = \frac{6}{5 - l} \implies 5l - l^2 = 6 \implies l^2 - 5l + 6 = 0 \implies (l - 2)(l - 3) = 0$, and so we must have $l = 2$ or $l = 3$.

We claim that $a_n < a_{n+1} < 2$ for all $n \geq 4$. We have $a_1 = \frac{7}{2}$, $a_2 = 4$, $a_3 = 6$, $a_4 = -6$ and $a_5 = \frac{6}{11}$, so the claim is true when $n = 4$. Suppose the claim is true when $n = k$. Then we have $a_k < a_{k+1} < 2 \implies -a_k > -a_{k+1} > -2 \implies 5 - a_k > 5 - a_{k+1} > 3 \implies \frac{1}{5-a_k} < \frac{1}{5-a_{k+1}} < \frac{1}{3} \implies \frac{6}{5-a_k} < \frac{6}{5-a_{k+1}} < 2$, that is $a_{k+1} < a_{k+2} < 2$, so the claim is true when $n = k + 1$. By induction, the claim is true for all $n \geq 4$. Thus $\{a_n\}_{n \geq 4}$ is increasing and is bounded above by 2, so $\{a_n\}$ converges and $\lim_{n \rightarrow \infty} a_n \leq 2$ by the MCT. We showed above that the limit must be 2 or 3, and so we must have $\lim_{n \rightarrow \infty} a_n = 2$.

(c) Let $(x_k)_{k \geq 0}$ be a sequence in \mathbb{R} with $|x_k - x_{k-1}| \leq \frac{1}{k^2}$ for all $k \geq 1$. Show that (x_k) converges in \mathbb{R} .

Solution: Notice that for all $k \geq 2$ we have $\frac{1}{k^2} \leq \frac{1}{(k-1)k} = \frac{1}{k-1} - \frac{1}{k}$. It follows that for $1 \leq k < l$ we have

$$\begin{aligned} |x_k - x_l| &= |x_k - x_{k+1} + x_{k+1} - x_{k+2} + x_{k+2} - x_{k+3} + \cdots - x_{l-1} + x_{l-1} - x_l| \\ &\leq |x_k - x_{k+1}| + |x_{k+1} - x_{k+2}| + |x_{k+2} - x_{k+3}| + \cdots + |x_{l-1} - x_l| \\ &\leq \frac{1}{(k+1)^2} + \frac{1}{(k+2)^2} + \frac{1}{(k+3)^2} + \cdots + \frac{1}{(l-1)^2} + \frac{1}{l^2} \\ &\leq \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+2)(k+3)} + \cdots + \frac{1}{(l-2)(l-1)} + \frac{1}{(l-1)l} \\ &= \frac{1}{k} - \frac{1}{k+1} + \frac{1}{k+1} - \frac{1}{k+2} + \frac{1}{k+2} - \frac{1}{k+3} + \cdots - \frac{1}{l-1} + \frac{1}{l-1} - \frac{1}{l} \\ &= \frac{1}{k} - \frac{1}{l} \leq \frac{1}{k}. \end{aligned}$$

Let $\epsilon > 0$. Choose $m \in \mathbb{Z}$ with $m \geq \frac{1}{\epsilon}$. For $k, l \geq m$ say with $k \leq l$, if $k = l$ then $|x_k - x_l| = 0$ and if $k < l$ then, as shown above, $|x_k - x_l| \leq \frac{1}{k} \leq \frac{1}{m} \leq \epsilon$. Thus (x_k) is a Cauchy sequence, and so it converges by the Cauchy Criterion.

2: Determine which of the following series converge.

$$(a) \sum_{n=0}^{\infty} \frac{\sqrt{n}}{2n^2 + 1}$$

Solution: For $n \geq 1$ we have $0 \leq \frac{\sqrt{n}}{2n^2 + 1} \leq \frac{\sqrt{n}}{2n^2} = \frac{1}{2n^{3/2}}$, and we know that $\sum \frac{1}{2n^{3/2}}$ converges (since it is a constant multiple of the p -series with $p = \frac{3}{2}$), and so $\sum \frac{\sqrt{n}}{2n^2 + 1}$ converges by the C.T.

$$(b) \sum_{n=1}^{\infty} (-1)^n 2^{1/n}$$

Solution: Let $a_n = (-1)^n 2^{1/n}$. Then $|a_n| = 2^{1/n} \rightarrow 2^0 = 1$. Since $|a_n| \not\rightarrow 0$, we know that $a_n \not\rightarrow 0$, and so $\sum a_n$ diverges by the D.T.

$$(c) \sum_{n=1}^{\infty} \frac{n!n^n}{(2n)!}$$

Solution: Let $a_n = \frac{n!n^n}{(2n)!}$. Then $\frac{a_{n+1}}{a_n} = \frac{(n+1)!(n+1)^{n+1}}{(2n+2)!} \cdot \frac{(2n)!}{n!n^n} = \frac{(n+1)^2}{(2n+2)(2n+1)} \cdot \left(\frac{n+1}{n}\right)^n \rightarrow \frac{e}{4} < 1$, so $\sum a_n$ converges by the R.T.

$$(d) \sum_{n=1}^{\infty} \left(n \sin^{-1} \left(\frac{1}{n} \right) - 1 \right).$$

Solution: Let $a_n = \left(n \sin^{-1} \left(\frac{1}{n} \right) - 1 \right)$ and let $b_n = \frac{1}{n^2}$. Then using l'Hôpital's Rule twice, we have

$$\begin{aligned} \lim_{n \rightarrow \infty} \frac{a_n}{b_n} &= \lim_{n \rightarrow \infty} \frac{n \sin^{-1} \left(\frac{1}{n} \right) - 1}{\frac{1}{n^2}} = \lim_{x \rightarrow 0^+} \frac{\frac{1}{x} \sin^{-1} x - 1}{x^2} = \lim_{x \rightarrow 0^+} \frac{\sin^{-1} x - x}{x^3} \\ &= \lim_{x \rightarrow 0^+} \frac{(1 - x^2)^{-1/2} - 1}{3x^2} = \lim_{x \rightarrow 0^+} \frac{x(1 - x^2)^{-3/2}}{6x} = \lim_{x \rightarrow 0^+} \frac{(1 - x^2)^{-3/2}}{6} = \frac{1}{6}. \end{aligned}$$

Since $\sum b_n$ converges (its a p -series with $p = 2$), $\sum a_n$ converges too by the L.C.T.

3: Find the sum of each of the following series, if the sum exists.

$$(a) \sum_{n=0}^{\infty} \frac{(-2)^{n+1} + 3^n}{6^{n-1}}$$

$$\text{Solution: } \sum_{n=0}^{\infty} \frac{(-2)^{n+1} + 3^n}{6^{n-1}} = \sum_{n=0}^{\infty} \frac{(-2)^{n+1}}{6^{n-1}} + \sum_{n=0}^{\infty} \frac{3^n}{6^{n-1}} = \frac{-12}{1 + \frac{1}{3}} + \frac{6}{1 - \frac{1}{2}} - 9 + 12 = 3.$$

$$(b) \sum_{n=3}^{\infty} \frac{2}{n^2 - 4}$$

Solution: The l^{th} partial sum is

$$\begin{aligned} S_l &= \sum_{n=3}^l \frac{2}{n^2 - 4} = \sum_{n=3}^l \left(\frac{\frac{1}{2}}{n-2} - \frac{\frac{1}{2}}{n+2} \right) \\ &= \frac{1}{2} \left(\left(\frac{1}{1} - \frac{1}{5} \right) + \left(\frac{1}{2} - \frac{1}{6} \right) + \left(\frac{1}{3} - \frac{1}{7} \right) + \left(\frac{1}{4} - \frac{1}{8} \right) + \dots \right. \\ &\quad \left. + \left(\frac{1}{l-5} - \frac{1}{l-1} \right) + \left(\frac{1}{l-4} - \frac{1}{l} \right) + \left(\frac{1}{l-3} - \frac{1}{l+1} \right) + \left(\frac{1}{l-2} - \frac{1}{l+2} \right) \right) \\ &= \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{l-1} - \frac{1}{l} - \frac{1}{l+1} - \frac{1}{l+2} \right), \end{aligned}$$

so the sum is $S = \lim_{l \rightarrow \infty} S_l = \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right) = \frac{25}{24}$.

$$(c) \sum_{n=-1}^{\infty} e^{-(n \ln 2)/2}$$

Solution: Note that $e^{-(n \ln 2)/2} = \left(\frac{1}{\sqrt{2}} \right)^n n$, so this is a geometric series, and we have

$$\sum_{n=-1}^{\infty} e^{-(n \ln 2)/2} = \sum_{n=-1}^{\infty} \left(\frac{1}{\sqrt{2}} \right)^n = \frac{\sqrt{2}}{1 - \frac{1}{\sqrt{2}}} = \frac{2}{\sqrt{2} - 1} = 2(\sqrt{2} + 1).$$

$$(d) \sum_{n=2}^{\infty} \frac{6n^2}{n^6 - 1}$$

Solution: Note that $\frac{6n^2}{n^6 - 1} = \frac{3n^2}{n^3 - 1} - \frac{3n^2}{n^3 + 1} = \frac{1}{n-1} + \frac{2n+1}{n^2+n+1} - \frac{1}{n+1} - \frac{2n-1}{n^2-n+1}$, so the l^{th} partial sum is

$$\begin{aligned} S_l &= \sum_{n=2}^l \left(\left(\frac{1}{n-1} - \frac{1}{n+1} \right) + \left(\frac{2(n+\frac{1}{2})}{(n+\frac{1}{2})^2 + \frac{3}{4}} - \frac{2(n-\frac{1}{2})}{(n-\frac{1}{2})^2 + \frac{3}{4}} \right) \right) \\ &= \left(\left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{1}{4} \right) + \dots + \left(\frac{1}{l-2} - \frac{1}{l} \right) + \left(\frac{1}{l-1} - \frac{1}{l+1} \right) \right) \\ &\quad + 2 \left(\left(\frac{\frac{5}{2}}{(\frac{5}{2})^2 + \frac{3}{4}} - \frac{\frac{3}{2}}{(\frac{3}{2})^2 + \frac{3}{4}} \right) + \left(\frac{\frac{7}{2}}{(\frac{7}{2})^2 + \frac{3}{4}} - \frac{\frac{5}{2}}{(\frac{5}{2})^2 + \frac{3}{4}} \right) + \dots \right. \\ &\quad \left. + \left(\frac{l-\frac{1}{2}}{(l-\frac{1}{2})^2 + \frac{3}{4}} - \frac{l-\frac{3}{2}}{(l-\frac{3}{2})^2 + \frac{3}{4}} \right) + \left(\frac{l+\frac{1}{2}}{(l+\frac{1}{2})^2 + \frac{3}{4}} - \frac{l-\frac{1}{2}}{(l-\frac{1}{2})^2 + \frac{3}{4}} \right) \right) \\ &= \left(1 + \frac{1}{2} - \frac{1}{l} - \frac{1}{l+1} \right) + 2 \left(-\frac{\frac{3}{2}}{(\frac{3}{2})^2 + \frac{3}{4}} + \frac{l+\frac{1}{2}}{(l+\frac{1}{2})^2 + \frac{3}{4}} \right) \end{aligned}$$

so the sum is $S = \lim_{l \rightarrow \infty} S_l = 1 + \frac{1}{2} - 2 \frac{\frac{3}{2}}{(\frac{3}{2})^2 + \frac{3}{4}} = 1 + \frac{1}{2} - 1 = \frac{1}{2}$.

4: Find the sum of each of the following series, if the sum exists.

$$(a) \sum_{n=0}^{\infty} \frac{n}{(n+1)!}$$

Solution: Note that $\frac{1}{n!} - \frac{1}{(n+1)!} = \frac{(n+1)-1}{(n+1)!} = \frac{n}{(n+1)!}$ and so

$$\begin{aligned} S_l &= \sum_{n=0}^l \frac{n}{(n+1)!} = \sum_{n=0}^l \left(\frac{1}{n!} - \frac{1}{(n+1)!} \right) \\ &= \left(\frac{1}{0!} - \frac{1}{1!} \right) + \left(\frac{1}{1!} - \frac{1}{2!} \right) + \left(\frac{1}{2!} - \frac{1}{3!} \right) + \cdots + \left(\frac{1}{(l-1)!} - \frac{1}{l!} \right) + \left(\frac{1}{l!} - \frac{1}{(l+1)!} \right) \\ &= \frac{1}{0!} - \frac{1}{(l+1)!} = 1 - \frac{1}{(l+1)!} \end{aligned}$$

and so $\sum_{n=0}^{\infty} \frac{n}{(n+1)!} = \lim_{l \rightarrow \infty} S_l = \lim_{l \rightarrow \infty} \left(1 - \frac{1}{(l+1)!} \right) = 1$.

$$(b) \sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

Solution: More generally, let us find $\sum_{n=1}^{\infty} n^2 r^n$ where $|r| < 1$. Let $S_l = \sum_{n=1}^l n^2 r^n = r + 2^2 r^2 + 3^2 r^3 + \cdots + l^2 r^l$.

Then $rS_l = r^2 + 2^2 r^3 + \cdots + (l-1)^2 r^l + l^2 r^{l+1}$ and so

$$\begin{aligned} (1-r)S_l &= r + (2^2 - 1^2)r^2 + (3^2 - 2^2)r^3 + \cdots + (l^2 - (l-1)^2)r^l - l^2 r^{l+1} \\ &= (r + 3r^2 + 5r^3 + \cdots + (2l-1)r^l) - l^2 r^{l+1} = T_l - l^2 r^{l+1}, \end{aligned}$$

where $T_l = \sum_{n=1}^l (2n-1)r^n = r + 3r^2 + 5r^3 + \cdots + (2l-1)r^l$. We have $rT_l = r^2 + 3r^3 + \cdots + (2l-3)r^l + (2l-1)r^{l+1}$

and so

$$(1-r)T_l = r + 2r^2 + 2r^3 + \cdots + 2r^l - (2l-1)r^{l+1} = -r + 2U_l - (2l-1)r^{l+1},$$

where $U_l = \sum_{n=1}^l r^n = r + r^2 + r^3 + \cdots + r^l$. Since $\lim_{l \rightarrow \infty} U_l = \sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$ we have

$$\sum_{n=1}^{\infty} (2n-1)r^n = \lim_{l \rightarrow \infty} T_l = \lim_{l \rightarrow \infty} \frac{-r + 2U_l - (2l-1)r^{l+1}}{1-r} = \frac{-r + \frac{2r}{1-r} - 0}{1-r} = \frac{r(1+r)}{(1-r)^2}$$

since $\lim_{l \rightarrow \infty} (2l-1)r^{l+1} = 0$, as you can verify using l'Hôpital's Rule, and

$$\sum_{n=1}^{\infty} n^2 r^n = \lim_{l \rightarrow \infty} S_l = \lim_{l \rightarrow \infty} \frac{T_l - l^2 r^{l+1}}{1-r} = \frac{\frac{r(1+r)}{(1-r)^2} - 0}{1-r} = \frac{r(1+r)}{(1-r)^3}$$

since $\lim_{l \rightarrow \infty} l^2 r^{l+1} = 0$. In particular, taking $r = \frac{1}{2}$ gives $\sum_{n=1}^{\infty} \frac{n^2}{2^n} = \frac{\frac{1}{2} \cdot \frac{3}{2}}{\left(\frac{1}{2}\right)^3} = 6$.

$$(c) \sum_{n=2}^{\infty} \frac{1}{a_{n-1}a_{n+1}}, \text{ where } \{a_n\} \text{ is the Fibonacci sequence.}$$

Solution: Note that $\frac{1}{a_{n-1}a_n} - \frac{1}{a_n a_{n+1}} = \frac{a_{n+1}-a_{n-1}}{a_{n-1}a_n a_{n+1}} = \frac{a_n}{a_{n-1}a_n a_{n+1}} = \frac{1}{a_{n-1}a_{n+1}}$ and so

$$\begin{aligned} S_l &= \sum_{n=2}^l \frac{1}{a_{n-1}a_{n+1}} = \sum_{n=2}^l \left(\frac{1}{a_{n-1}a_n} - \frac{1}{a_n a_{n+1}} \right) \\ &= \left(\frac{1}{a_1a_2} - \frac{1}{a_2a_3} \right) + \left(\frac{1}{a_2a_3} - \frac{1}{a_3a_4} \right) + \cdots + \left(\frac{1}{a_{l-2}a_{l-1}} - \frac{1}{a_{l-1}a_l} \right) + \left(\frac{1}{a_{l-1}a_l} - \frac{1}{a_la_{l+1}} \right) \\ &= \frac{1}{a_1a_2} - \frac{1}{a_la_{l+1}} = 1 - \frac{1}{a_la_{l+1}}. \end{aligned}$$

Thus $\sum_{n=2}^{\infty} \frac{1}{a_{n-1}a_{n+1}} = \lim_{l \rightarrow \infty} S_l = \lim_{l \rightarrow \infty} \left(1 - \frac{1}{a_la_{l+1}} \right) = 1$.

5: Given a sequence $(a_n)_{n \geq k}$, we define the infinite product $\prod_{n=k}^{\infty} a_n$ to be $\lim_{\ell \rightarrow \infty} P_\ell$ where $P_\ell = \prod_{n=k}^{\ell} a_n$, if the limit exists. Evaluate each of the following infinite products.

$$(a) \prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2}\right)$$

Solution: We have

$$P_l = \prod_{n=2}^l \left(1 - \frac{1}{n^2}\right) = \prod_{n=2}^l \left(\frac{n^2-1}{n^2}\right) = \prod_{n=2}^l \frac{(n-1)(n+1)}{n^2} = \frac{1 \cdot 3}{2^2} \cdot \frac{2 \cdot 4}{3^2} \cdot \frac{3 \cdot 5}{4^2} \cdot \frac{4 \cdot 6}{5^2} \cdots \frac{(n-2)(n)}{(n-1)^2} \cdot \frac{(n-1)(n+1)}{n^2} = \frac{n+1}{2n}$$

and so $\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2}\right) = \lim_{l \rightarrow \infty} P_l = \lim_{l \rightarrow \infty} \frac{n+1}{2n} = \frac{1}{2}$.

$$(b) \prod_{n=0}^{\infty} \left(1 + \frac{1}{2^{2^n}}\right)$$

Solution: Let $P_n = \prod_{k=0}^n \left(1 + \frac{1}{2^{2^k}}\right)$. Then

$$\begin{aligned} (1 - \frac{1}{2}) P_n &= (1 - \frac{1}{2}) (1 + \frac{1}{2}) (1 + \frac{1}{2^2}) (1 + \frac{1}{2^4}) \cdots (1 + \frac{1}{2^{2^n}}) = (1 - \frac{1}{2^2}) (1 + \frac{1}{2^2}) (1 + \frac{1}{2^4}) \cdots (1 + \frac{1}{2^{2^n}}) \\ &= (1 - \frac{1}{2^4}) (1 + \frac{1}{2^4}) (1 + \frac{1}{2^8}) \cdots (1 + \frac{1}{2^{2^n}}) = \cdots = (1 - \frac{1}{2^{2^n}}) (1 + \frac{1}{2^{2^n}}) = \left(1 - \frac{1}{2^{2^{n+1}}}\right). \end{aligned}$$

Thus $P_n = \frac{1 - \frac{1}{2^{2^{n+1}}}}{1 - \frac{1}{2}} \rightarrow \frac{1}{1 - \frac{1}{2}} = 2$ as $n \rightarrow \infty$.

$$(c) \prod_{n=2}^{\infty} \frac{n^3 - 1}{n^3 + 1}$$

Solution: Let $P_n = \prod_{k=2}^n \frac{k^3 - 1}{k^3 + 1}$. Then

$$\begin{aligned} P_n &= \prod_{k=2}^n \frac{(k-1)(k^2+k+1)}{(k+1)(k^2-k+1)} = \prod_{k=2}^n \frac{k-1}{k+1} \prod_{k=2}^n \frac{k^2+k+1}{(k-1)^2+(k-1)+1} \\ &= \left(\frac{1}{3} \cdot \frac{2}{4} \cdot \frac{3}{5} \cdots \frac{k-2}{k} \cdot \frac{k-1}{k+1}\right) \left(\frac{7}{3} \cdot \frac{13}{7} \cdot \frac{21}{13} \cdots \frac{(k-1)^2+(k-1)+1}{(k-2)^2+(k-2)+1} \cdot \frac{k^2+k+1}{(k-1)^2+(k-1)+1}\right) \\ &= \left(\frac{1 \cdot 2}{k(k+1)}\right) \left(\frac{k^2+k+1}{3}\right) \rightarrow \frac{2}{3} \text{ as } n \rightarrow \infty. \end{aligned}$$

6: (a) For $n \geq 1$, let $a_n = \binom{-2/3}{n} \left(-\frac{1}{2}\right)^n = \frac{2 \cdot 5 \cdot 8 \cdots (3n-1)}{6^n n!}$.

(i) Find the smallest $\ell \in \mathbb{Z}^+$ such that when the sum $S = \sum_{n=1}^{\infty} (-1)^n a_n$ is approximated by $S \cong S_{\ell} = \sum_{n=1}^{\ell} (-1)^n a_n$, the error is $|S - S_{\ell}| \leq \frac{1}{30}$.

Solution: Note that $a_{n+1} = a_n \cdot \frac{3n+2}{6(n+1)} < \frac{1}{2} a_n$ so $\{a_n\}$ decreases with limit 0, and so we can apply the A.S.T. The first few terms of $\{a_n\}$ are

$$a_1 = \frac{2}{6} = \frac{1}{3}, \quad a_2 = \frac{2 \cdot 5}{6^2 \cdot 2} = \frac{5}{36}, \quad a_3 = \frac{2 \cdot 5 \cdot 8}{6^3 \cdot 3!} = \frac{5}{81}, \quad a_4 = \frac{2 \cdot 5 \cdot 8 \cdot 11}{6^4 \cdot 4!} = \frac{55}{1944}, \quad a_5 = \frac{2 \cdot 5 \cdot 8 \cdot 11 \cdot 14}{6^5 \cdot 5!} = \frac{77}{5832}$$

By the A.S.T, if we approximate S by $S \cong S_3$ then the error is $|S - S_3| < a_4 = \frac{55}{1944} < \frac{55}{1650} = \frac{1}{30}$, while if we approximate S by $S \cong S_2$ then the error is $|S - S_2| > a_3 - a_4 = \frac{5}{81} - \frac{55}{1944} = \frac{65}{1944} > \frac{65}{1950} = \frac{1}{30}$.

(ii) Find the smallest $\ell \in \mathbb{Z}^+$ such that when the sum $T = \sum_{n=1}^{\infty} a_n$ is approximated by $T \cong T_{\ell} = \sum_{n=1}^{\ell} a_n$, the error is $T - T_{\ell} \leq \frac{1}{30}$.

Solution: Note that for $n \geq 5$ we have $a_n = a_5 \frac{17 \cdot 20 \cdots (3n-1)}{6^{n-5} n! / 5!} \leq a_5 \frac{18 \cdot 21 \cdots (3n)}{6^{n-5} n! / 5!} = a_5 \frac{3^{n-5} n! / 5!}{6^{n-5} n! / 5!} = a_5 \frac{1}{2^{n-5}}$, and so if we approximate T by $T \cong T_4$ then, using the C.T, the error is

$$T - T_4 = \sum_{n=5}^{\infty} a_n \leq a_5 \sum_{n=5}^{\infty} \frac{1}{2^{n-5}} = 2a_5 = \frac{77}{2916} < \frac{77}{2310} = \frac{1}{30}.$$

On the other hand, if we approximate T by $T \cong T_3$ then the error is

$$T - T_3 = \sum_{n=4}^{\infty} a_n > a_4 + a_5 = \frac{55 \cdot 3 + 77}{5832} = \frac{121}{2916} > \frac{121}{3630} = \frac{1}{30}.$$

(b) Let $f(x) = \frac{1}{x(\ln x)^2}$, let $a_n = f(n)$ for $n \geq 2$, let $S = \sum_{n=2}^{\infty} a_n$, and let $S_{\ell} = \sum_{n=2}^{\ell} a_n$.

(i) Find a value of $\ell \in \mathbb{Z}^+$ such that if we approximate S by $S \cong S_{\ell}$ then the error is at most $\frac{1}{100}$.

Solution: Note that $f(x)$ is positive, continuous and decreasing for $x > 1$, so we can apply the I.T. If we approximate S by $S \cong S_l$ then by the I.T. the error is

$$E = S - S_l = \sum_{n=l+1}^{\infty} a_n \leq \int_l^{\infty} f(x) dx = \int_l^{\infty} \frac{dx}{x(\ln x)^2} = \left[\frac{-1}{\ln x} \right]_l^{\infty} = \frac{1}{\ln l}.$$

To get $E \leq \frac{1}{100}$ we can choose l so that $\frac{1}{\ln l} \geq \frac{1}{100}$, that is $\ln l \geq 100$, so we can take $l \geq e^{100}$ (a huge number).

(ii) Use a calculator to find a value of $\ell \in \mathbb{Z}^+$ such that if we approximate S by

$$S \cong S_{\ell} + \frac{1}{2} \left(\int_{\ell}^{\infty} f(x) dx + \int_{\ell+1}^{\infty} f(x) dx \right)$$

then the error is at most $\frac{1}{100}$.

Solution: By the I.T, if we make the above approximation then the error is

$$E \leq \frac{1}{2} \left(\int_l^{\infty} f(x) dx - \int_{l+1}^{\infty} f(x) dx \right) = \frac{1}{2} \left(\frac{1}{\ln l} - \frac{1}{\ln(l+1)} \right),$$

so to get $E \leq \frac{1}{100}$ we can choose l so that $\frac{1}{2} \left(\frac{1}{\ln l} - \frac{1}{\ln(l+1)} \right) \leq \frac{1}{100}$. By trial and error with the help of a calculator, we find that $\frac{1}{2} \left(\frac{1}{\ln(10)} - \frac{1}{\ln(11)} \right) \cong 0.0086 < \frac{1}{100}$ and so we can take $l = 10$.

7: Determine, with proof, which of the following statements are true.

(a) If $\sum a_n$ converges that $\sum e^{a_n}$ diverges.

Solution: This is true, and we give a proof. Suppose that $\sum a_n$ converges. Then $\lim_{n \rightarrow \infty} a_n = 0$ by the D.T., and so $\lim_{n \rightarrow \infty} e^{a_n} = e^0 = 1$. Since $\lim_{n \rightarrow \infty} e^{a_n} \neq 0$, $\sum e^{a_n}$ diverges by the D.T.

(b) If $\sum a_n$ converges then $\sum a_n^2$ converges.

Solution: This is false, and we provide a counterexample. Let $a_n = \frac{(-1)^n}{\sqrt{n}}$. Then $\sum a_n$ converges by the A.S.T., but $\sum a_n^2 = \sum \frac{1}{n}$ which diverges.

(c) If $\sum a_n$ converges and $\sum |b_n|$ converges, then $\sum a_n b_n$ converges.

Solution: This is true. Indeed, suppose that $\sum a_n$ converges and that $\sum |b_n|$ converges. Since $\sum a_n$ converges, we have $a_n \rightarrow 0$ (by the Divergence Test) so we can choose N so that $n \geq N \implies |a_n| \leq 1$. Then for $n \geq N$ we have $0 \leq |a_n b_n| = |a_n| |b_n| \leq |b_n|$, and so, since $\sum |b_n|$ converges, $\sum |a_n b_n|$ also converges by the Comparison Test. Since absolute convergence implies convergence, $\sum a_n b_n$ converges, too.

(d) If $f(x)$ is positive and continuous and $\int_1^\infty f(x) dx$ converges then $\sum_{n=1}^\infty f(n)$ converges.

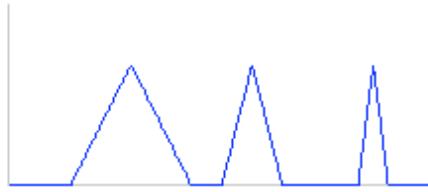
Solution: This is false, and we provide a counterexample. Let

$$g_1(x) = \begin{cases} 2x - 1 & \text{if } \frac{1}{2} \leq x \leq 1, \\ 3 - 2x & \text{if } 1 \leq x \leq \frac{3}{2}, \\ 0 & \text{otherwise,} \end{cases} \quad g_2(x) = \begin{cases} 4x - 7 & \text{if } \frac{7}{4} \leq x \leq 2, \\ 9 - 4x & \text{if } 2 \leq x \leq \frac{9}{4}, \\ 0 & \text{otherwise,} \end{cases} \quad g_3(x) = \begin{cases} 8x - 23 & \text{if } \frac{23}{8} \leq x \leq 3, \\ 25 - 8x & \text{if } 3 \leq x \leq \frac{25}{8}, \\ 0 & \text{otherwise,} \end{cases}$$

and in general, for $k \geq 1$ let

$$g_k(x) = \begin{cases} 2^k x - k2^k + 1 & \text{if } k - \frac{1}{2^k} \leq x \leq k, \\ k2^k + 1 - 2^k x & \text{if } k \leq x \leq k + \frac{1}{2^k}, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\int_0^\infty g_1(x) dx = \frac{1}{2}$, $\int_0^\infty g_2(x) dx = \frac{1}{4}$, $\int_0^\infty g_3(x) dx = \frac{1}{8}$, and in general $\int_0^\infty g_k(x) dx = \frac{1}{2^k}$. Now let $g(x) = g_k(x)$ when $x \in [k - \frac{1}{2^k}, k + \frac{1}{2^k}]$ and let $g(x) = 0$ otherwise. The graph of $g(x)$ is shown below.



Then $g(x)$ is nonnegative and continuous, and $\int_1^\infty g(x) dx$ converges, indeed $\int_0^\infty g(x) dx = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$.

On the other hand we have $g(n) = 1$ for all integers $n \geq 1$, so $\sum_{n=1}^\infty g(n) = \infty$. For a strictly positive counterexample, let $f(x) = g(x) + e^{-x}$.

(e) If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = 1$ then $(\sum a_n \text{ converges} \iff \sum b_n \text{ converges})$.

Solution: This is false. For a counterexample, let $a_{2n} = \frac{1}{\sqrt{n}}$ and $a_{2n+1} = -\frac{1}{\sqrt{n}}$ for all $n \geq 1$, so we have $\{a_n\} = \{1, -1, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \dots\}$, and let $b_{2n} = \left(1 + \frac{1}{\sqrt{n}}\right) a_{2n} = \left(\frac{1}{\sqrt{n}} + \frac{1}{n}\right)$ and $b_{2n+1} = a_{2n+1} = -\frac{1}{\sqrt{n}}$. Note that $\sum a_n$ converges by the A.S.T. Also, we have $\frac{a_{2n+1}}{b_{2n+1}} = 1$ for all n and $\frac{a_{2n}}{b_{2n}} = \frac{1}{1 + \frac{1}{\sqrt{n}}} \rightarrow 1$ as $n \rightarrow \infty$,

and so $\frac{a_n}{b_n} \rightarrow 1$ as $n \rightarrow \infty$. But $\sum b_n$ diverges, since, writing S_l for the l^{th} partial sum of $\sum_{n=1}^{\infty} b_n$, we have

$$S_{2l+1} = \sum_{n=1}^l (a_{2n} + a_{2n+1}) = \sum_{n=1}^l \left(\left(\frac{1}{\sqrt{n}} + \frac{1}{n} \right) - \frac{1}{\sqrt{n}} \right) = \sum_{n=1}^l \frac{1}{n} \rightarrow \infty \text{ as } l \rightarrow \infty.$$

(f) If $\sum a_n$ converges then $\sum \frac{a_n}{1+a_n}$ converges.

Solution: This is false, and we provide a counterexample. Note that $\frac{\frac{1}{m}}{1 + \frac{1}{m}} = \frac{1}{m+1}$ and $\frac{-\frac{1}{m}}{1 + (-\frac{1}{m})} = \frac{-1}{m-1}$, and that $\frac{1}{m+1} - \frac{1}{m-1} = \frac{-2}{m^2-1}$. Thus for a counterexample, we can let

$$a_n = \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \dots, \frac{1}{3}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{4}, \dots, \frac{1}{4}, -\frac{1}{4}, \dots$$

where for each m the pair $\frac{1}{m}, -\frac{1}{m}$ is repeated $m^2 - 1$ times so that $\frac{1}{m+1} - \frac{1}{m-1} + \dots + \frac{1}{m+1} - \frac{1}{m-1} = -2$.

Note that $\sum a_n$ converges by the A.S.T, but $\sum \frac{a_n}{1+a_n} = -\infty$.

8: Let $(a_n)_{n \geq 1}$ be a sequence with $a_n \geq 0$ for all $n \geq 1$, and let $S_n = \sum_{k=1}^n a_k$.

(a) Show that if $\{a_n\}_{n \geq 1}$ is decreasing and $\sum_{n \geq 1} a_n$ converges, then $\lim_{n \rightarrow \infty} na_n = 0$.

Solution: Suppose that $\{a_n\}_{n \geq 1}$ is decreasing and $\sum_{n \geq 1} a_n$ converges. Let $\epsilon > 0$. By the Cauchy Criterion for convergence we can choose $N \geq 1$ so that

$$m > l > N \implies \sum_{n=l+1}^m a_n < \frac{\epsilon}{2}.$$

Fix $l > N$. Since $a_n \rightarrow 0$ (by the Divergence Test) we can choose $M \geq l$ so that

$$m > M \implies a_m < \frac{\epsilon}{2l}.$$

Since $\{a_n\}$ is decreasing so that $a_m \leq a_n$ for all $n \leq m$, for $m > M$ we have

$$ma_m = la_m + \sum_{n=l+1}^m a_m \leq la_m + \sum_{n=l+1}^m a_n < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus $\lim_{m \rightarrow \infty} ma_m = 0$.

(b) Show that if $a_1 > 0$ and $\sum_{n \geq 1} a_n$ diverges, then $\sum_{n \geq 1} \frac{a_n}{S_n}$ also diverges.

Solution: Let $T_l = \sum_{n=1}^l \frac{a_n}{S_n}$. Let $l_1 = 1$. Note that $T_{l_1} = T_1 = \frac{a_1}{S_1} = \frac{a_1}{a_1} = 1 > \frac{1}{2}$. Suppose, inductively, that we have found l_k so that $T_{l_k} > \frac{k}{2}$. Since $\sum_{n=l_k+1}^{\infty} a_n = \infty$, we can choose l_{k+1} so that $\sum_{n=l_k+1}^{l_{k+1}} a_n > S_{l_k}$, that is $S_{l_{k+1}} - S_{l_k} > S_{l_k}$. Then, since $\{S_n\}$ is increasing so that $S_n \leq S_{l_{k+1}}$ for all $n \leq l_{k+1}$, we have

$$\begin{aligned} T_{l_{k+1}} &= T_{l_k} + \sum_{n=l_k+1}^{l_{k+1}} \frac{a_n}{S_n} \geq T_{l_k} + \sum_{n=l_k+1}^{l_{k+1}} \frac{a_n}{S_{l_{k+1}}} = T_{l_k} + \frac{S_{l_{k+1}} - S_{l_k}}{S_{l_{k+1}}} \\ &= T_{l_k} + \frac{S_{l_{k+1}} - S_{l_k}}{S_{l_k} + (S_{l_{k+1}} - S_{l_k})} > T_{l_k} + \frac{S_{l_{k+1}} - S_{l_k}}{2(S_{l_{k+1}} - S_{l_k})} > T_{l_k} + \frac{1}{2} > \frac{k}{2} + \frac{1}{2} = \frac{k+1}{2}. \end{aligned}$$

Thus for all $k \geq 1$ we can find l_k such that $T_{l_k} > \frac{k}{2}$. Since $\{T_l\}$ is increasing, we obtain

$$\sum_{n=1}^{\infty} \frac{a_n}{S_n} = \lim_{l \rightarrow \infty} T_l = \infty.$$

9: Let $(a_n)_{n \geq 1}$ be a sequence of real numbers. When $f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ is a bijective map and we write $n_k = f(k)$, the sequence $(a_{n_k})_{k \geq 1}$ is called a **rearrangement** of the sequence $(a_n)_{n \geq 1}$. Prove each of the following.

(a) If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{k=1}^{\infty} a_{n_k} = \sum_{n=1}^{\infty} a_n$ for every rearrangement $(a_{n_k})_{k \geq 1}$.

Solution: I may include a solution later.

(b) If $\sum_{n=1}^{\infty} a_n$ converges conditionally then for every $r \in \mathbb{R}$ there is a rearrangement $(a_{n_k})_{k \geq 1}$ such that $\sum_{k=1}^{\infty} a_{n_k} = r$.

Solution: I may include a solution later.

(c) If $\sum_{n=1}^{\infty} a_n$ diverges with $\sum_{n=1}^{\infty} a_n \neq -\infty$ then there is a rearrangement $(a_{n_k})_{k \geq 1}$ such that $\sum_{k=1}^{\infty} a_{n_k} = \infty$.

Solution: We sketch a proof. Suppose that $\sum a_n$ diverges and that $\sum a_n \neq -\infty$. Let p_n be the n^{th} non-negative term in $\{a_n\}$ and let q_n be the n^{th} negative term in $\{a_n\}$. Since each p_n is non-negative, either $\sum p_n$ converges or $\sum p_n = \infty$. Since each q_n is negative, either $\sum q_n$ converges or $\sum q_n = -\infty$. Note that it is not possible for $\sum p_n$ to converge, since if $\sum p_n$ converges and $\sum q_n$ converges then $\sum a_n$ also converges (absolutely), and if $\sum p_n$ converges and $\sum q_n = -\infty$ then $\sum a_n = -\infty$. Thus we must have $\sum p_n = \infty$.

Let P_l and Q_l denote the l^{th} partial sums for $\sum_{n=1}^{\infty} p_n$ and $\sum_{n=1}^{\infty} q_n$. Let k_1 be the smallest positive integer such that $P_{k_1} > 1 + |Q_1| = 1 - Q_1$. Having chosen k_1, \dots, k_{n-1} , let k_n be the smallest integer with $k_n > k_{n-1}$ such that $P_{k_n} > n - Q_n$ (each k_n exists since $\sum p_n = \infty$). Let $\{b_n\}$ be the rearrangement of $\{a_n\}$ given by

$$\{b_n\} = \{p_1, \dots, p_{k_1}, q_1, p_{k_1+1}, \dots, p_{k_2}, q_2, p_{k_2+1}, \dots, p_{k_3}, q_3, \dots\}$$

Verify that $\sum b_n = \infty$.