

MATH 148 Calculus 2, Exercises for Chapter 6

1: (a) Let $a_1 = 6$ and for $n \geq 1$ let $a_{n+1} = 1 + 2^{a_n/3}$. Determine whether (a_n) converges, and if so find the limit.
 (b) Let $a_1 = \frac{7}{2}$ and for $n \geq 1$ let $a_{n+1} = \frac{6}{5 - a_n}$. Determine whether (a_n) converges, and if so find the limit.
 (c) Let $(x_k)_{k \geq 0}$ be a sequence in \mathbb{R} with $|x_k - x_{k-1}| \leq \frac{1}{k^2}$ for all $k \geq 1$. Show that (x_k) converges in \mathbb{R} .

2: Determine which of the following series converge.

$$(a) \sum_{n=0}^{\infty} \frac{\sqrt{n}}{2n^2 + 1} \quad (b) \sum_{n=1}^{\infty} (-1)^n 2^{1/n} \quad (c) \sum_{n=1}^{\infty} \frac{n!n^n}{(2n)!} \quad (d) \sum_{n=1}^{\infty} \left(n \sin^{-1} \left(\frac{1}{n} \right) - 1 \right).$$

3: Find the sum of each of the following series, if the sum exists.

$$(a) \sum_{n=0}^{\infty} \frac{(-2)^{n+1} + 3^n}{6^{n-1}} \quad (b) \sum_{n=3}^{\infty} \frac{2}{n^2 - 4} \quad (c) \sum_{n=-1}^{\infty} e^{-(n \ln 2)/2} \quad (d) \sum_{n=2}^{\infty} \frac{6n^2}{n^6 - 1}$$

4: Find the sum of each of the following series, if the sum exists.

$$(a) \sum_{n=0}^{\infty} \frac{n}{(n+1)!} \quad (b) \sum_{n=1}^{\infty} \frac{n^2}{2^n} \quad (c) \sum_{n=2}^{\infty} \frac{1}{a_{n-1}a_{n+1}}, \text{ where } \{a_n\} \text{ is the Fibonacci sequence.}$$

5: Given a sequence $(a_n)_{n \geq k}$, we define the infinite product $\prod_{n=k}^{\infty} a_n$ to be $\lim_{\ell \rightarrow \infty} P_{\ell}$ where $P_{\ell} = \prod_{n=k}^{\ell} a_n$, if the limit exists. Evaluate each of the following infinite products.

$$(a) \prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2} \right) \quad (b) \prod_{n=0}^{\infty} \left(1 + \frac{1}{2^{2^n}} \right) \quad (c) \prod_{n=2}^{\infty} \frac{n^3 - 1}{n^3 + 1}$$

6: (a) For $n \geq 1$, let $a_n = \binom{-2/3}{n} \left(-\frac{1}{2} \right)^n = \frac{2 \cdot 5 \cdot 8 \cdots (3n-1)}{6^n n!}$.

(i) Find the smallest $\ell \in \mathbb{Z}^+$ such that when the sum $S = \sum_{n=1}^{\infty} (-1)^n a_n$ is approximated by $S \cong S_{\ell} = \sum_{n=1}^{\ell} (-1)^n a_n$, the error is $|S - S_{\ell}| \leq \frac{1}{30}$.

(ii) Find the smallest $\ell \in \mathbb{Z}^+$ such that when the sum $T = \sum_{n=1}^{\infty} a_n$ is approximated by $T \cong T_{\ell} = \sum_{n=1}^{\ell} a_n$, the error is $T - T_{\ell} \leq \frac{1}{30}$.

(b) Let $f(x) = \frac{1}{x(\ln x)^2}$, let $a_n = f(n)$ for $n \geq 2$, let $S = \sum_{n=2}^{\infty} a_n$, and let $S_{\ell} = \sum_{n=2}^{\ell} a_n$.

(i) Find a value of $\ell \in \mathbb{Z}^+$ such that if we approximate S by $S \cong S_{\ell}$ then the error is at most $\frac{1}{100}$.

(ii) Use a calculator to find a value of $\ell \in \mathbb{Z}^+$ such that if we approximate S by

$$S \cong S_{\ell} + \frac{1}{2} \left(\int_{\ell}^{\infty} f(x) dx + \int_{\ell+1}^{\infty} f(x) dx \right)$$

then the error is at most $\frac{1}{100}$.

7: Determine, with proof, which of the following statements are true.

(a) If $\sum a_n$ converges then $\sum e^{a_n}$ diverges.
 (b) If $\sum a_n$ converges then $\sum a_n^2$ converges.
 (c) If $\sum a_n$ converges and $\sum |b_n|$ converges, then $\sum a_n b_n$ converges.
 (d) If $f(x)$ is positive and continuous and $\int_1^{\infty} f(x) dx$ converges then $\sum_{n=1}^{\infty} f(n)$ converges.
 (e) If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = 1$ then $(\sum a_n \text{ converges} \iff \sum b_n \text{ converges})$.
 (f) If $\sum a_n$ converges then $\sum \frac{a_n}{1+a_n}$ converges.

8: Let $(a_n)_{n \geq 1}$ be a sequence of real numbers with $a_n \geq 0$ for all $n \geq 1$, and let $S_n = \sum_{k=1}^{\ell} a_k$.

(a) Show that if $(a_n)_{n \geq 1}$ is decreasing and $\sum_{n \geq 1} a_n$ converges, then $\lim_{n \rightarrow \infty} na_n = 0$.

(b) Show that if $a_1 > 0$ and $\sum_{n \geq 1} a_n$ diverges, then $\sum_{n \geq 1} \frac{a_n}{S_n}$ also diverges.

9: Let $(a_n)_{n \geq 1}$ be a sequence of real numbers. When $f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ is a bijective map and we write $n_k = f(k)$, the sequence $(a_{n_k})_{k \geq 1}$ is called a **rearrangement** of the sequence $(a_n)_{n \geq 1}$. Prove each of the following.

(a) If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{k=1}^{\infty} a_{n_k} = \sum_{n=1}^{\infty} a_n$ for every rearrangement $(a_{n_k})_{k \geq 1}$.

(b) If $\sum_{n=1}^{\infty} a_n$ converges conditionally then for every $r \in \mathbb{R}$ there is a rearrangement $(a_{n_k})_{k \geq 1}$ such that $\sum_{k=1}^{\infty} a_{n_k} = r$.

(c) If $\sum_{n=1}^{\infty} a_n$ diverges with $\sum_{n=1}^{\infty} a_n \neq -\infty$ then there is a rearrangement $(a_{n_k})_{k \geq 1}$ such that $\sum_{k=1}^{\infty} a_{n_k} = \infty$.