
MATH 148 Calculus 2, Solutions to the Exercises for Chapter 5

1: (a) Verify that y = x sinx is a solution of the DE y (y′′ + y) = x sin 2x.

Solution: We have y′ = sinx+ x cosx and y′′ = cosx+ cosx− x sinx = 2 cosx− x sinx and so

y (y′′ + y) = (x sinx)(2 cosx− x sinx+ x sinx)

= (x sinx)(2 cosx)

= x(2 sinx cosx)

= x sin 2x .

(b) Find all the solutions of the form y = ax2 + bx+ c to the DE
(
y′(x)

)2
+ 4x = 3y(x) + x2 + 1.

Solution: For y = ax2 + bx+ c we have y′ = 2ax+ b, so(
y′(x)

)2
+ 4x = 3y(x) + x2 + 1 ⇐⇒

(
y′(x)

)2
+ 4x− 3y(x)− x2 − 1 = 0

⇐⇒ (2ax+ b)2 + 4x− 3(ax2 + bx+ c)− x2 − 1 = 0

⇐⇒ (4a2 − 3a− 1)x2 + (4ab+ 4− 3b)x+ (b2 − 3c− 1) = 0

⇐⇒ 4a2 − 3a− 1 = 0 , 4ab+ 4 = 3b , and b2 = 3c+ 1

From 4a2 − 3a − 1 = 0 we get (4a + 1)(a − 1) = 0 and so a = − 1
4 or a = 1. When = − 1

4 , the equation
4ab+ 4 = 3b gives −1 + 4 = 3b so b = 1, and then the equation b2 = 3c+ 1 gives 1 = 3c+ 1 so c = 0. When
a = 1, 4ab+ 4 = 3b gives 4b+ 4 = 3b so b = −4 and then b2 = 3c+ 1 gives 16 = 3c+ 1 so c = 5. Thus there
are two solutions, and they are y = − 1

4x
2 + x and y = x2 − 4x+ 5.

(c) Find constants r1 and r2 such that y = er1x and er2x are both solutions to the DE y′′ + 3y′ + 2y = 0,
show that y = a er1x + b er2x is a solution for any constants a and b, and then find a solution to the DE with
y(0) = 1 and y′(0) = 0.

Solution: Let y = erx. Then y′ = r erx and y′′ = r2 erx and so y′′+3y′+2y = 0 ⇐⇒ r2 erx+3r erx+2 erx = 0
⇐⇒ (r2 + 3r + 2)erx = 0 ⇐⇒ (r + 1)(r + 2) erx = 0 ⇐⇒ r = −1 or r = −2. Thus we can take r1 = −1
and r2 = −2.

Now, let y = a er1x + b er2x = a e−x + b e−2x. Then y′ = −a e−x − 2b e−2x and y′′ = a e−x + 4b e−2x

and so we have y′′ + 3y′ + 2y = a e−x + 4b e−2x − 3a e−x − 6b e−2x + 2a e−x + 2b e−2x = 0. This shows that
y = a e−x + b e−2x is a solution to the DE. Also, note that y(0) = a + b and y′(0) = −a − 2b, and so to get
y(0) = 1 and y′(0) = 0 we need a+ b = 1 and −a−2b = 0. Solve these two equations to get a = 2 and b = −1.
Thus the required solution is y = 2 e−x − e−2x.



2: Find the general solution to each of the following DEs.

(a) x y′ + y =
√
x

Solution: This DE is linear since we can write it in the form y′ + 1
x y = x−1/2. An integrating factor is

λ = e

∫
1
x dx

= e
ln x

= x and so the solution is y = 1
x

∫
x · x−1/2 dx = 1

x

∫
x1/2 dx = 1

x

(
2
3 x

3/2 + c
)

= 2
3

√
x+

c

x
.

(b)
√
x y′ = 1 + y2

Solution: This DE is separable. We can write it as
dy

1 + y2
= x−1/2 dx and then integrate both sides to get

tan−1 y = 2x1/2 + c, that is y = tan
(
2
√
x+ c

)
.

(c) y′ = 2xy2 + y2 + 8x+ 4

Solution: This DE is separable since we can write it as y′ = (2x + 1)(y2 + 4) or as
dy

y2 + 4
= (2x + 1)dx.

Integrate both sides to get ∫
dy

y2 + 4
=

∫
2x+ 1 dx

1
2 tan−1(y/2) = x2 + x+ c

y = 2 tan
(
2(x2 + x+ c)

)
.

(d) y′ + y tanx = sin2 x

Solution: This DE is linear. An integrating factor is λ = e

∫
tan x dx

= e
ln(sec x)

= secx =
1

cosx
and the solution

is

y = cosx

∫
sin2 x

cosx
dx = cosx

∫
1− cos2 x

cosx
dx = cosx

∫
secx− cosx dx

= cosx
(

ln
∣∣ secx+ tanx

∣∣− sinx+ c
)
.



3: Find the solution to each of the following IVPs.

(a) x y′ = y2 + y with y(1) = 1.

Solution: This DE is separable. We write it as
dy

y2 + y
=
dx

x
. Integrate both sides, using partial fractions for

the integral on the left, to get ∫
1

y
− 1

y + 1
dy =

∫
1

x
dx

ln y − ln(y + 1) = lnx+ c

ln

(
y

y + 1

)
= lnx+ c

y

y + 1
= e

ln x+c
= a x ,

where a = ln c. Put in y(1) = 1 to get 1
2 , so we have

y

y + 1
=
x

2
so 2y = x(y+1) = xy+x, that is y(2−x) = x,

so the solution is y =
x

2− x
.

(b) x y′ + 2y = lnx with y(1) = 0.

Solution: This DE is linear since we can write it as y′ + 2
x y = 1

x lnx. An integrating factor is given by

λ = e

∫
2
x dx

= e
2 ln x

= x2 and so the solution is y =
1

x2

∫
x lnx dx. We integrate by parts using u = lnx and

dv = x dx so that du = 1
x dx and v = 1

2 x
2 to get

y =
1

x2

∫
x lnx dx

=
1

x2

(
1
2x

2 lnx−
∫

1
2 x dx

)
=

1

x2

(
1
2 x

2 lnx− 1
4 x

2 + c
)

=
c

x2
+ 1

2 lnx− 1
4

Put in y(1) = 0 to get 0 = c− 1
4 , so we have c = 1

4 and the solution is y = 1
4

( 1

x2
+ 2 lnx− 1

)
.

(c) y′ + xy = x3 with y(0) = 1.

Solution: This DE is linear. An integrating factor is λ = e

∫
x dx

= e
1
2x

2

. The solution to the DE is

y = e
− 1

2x
2
∫
x3e

1
2x

2

dx .

Integrate by parts using u = x2, du = 2x dx, v = e
1
2x

2

, dv = xe
1
2x

2

to get

y = e
− 1

2x
2
(
x2e

1
2x

2

−
∫

2xe
1
2x

2

dx

)
= e
− 1

2x
2
(
x2e

1
2x

2

− 2e
1
2x

2

+ c

)
= x2 − 2 + ce

− 1
2x

2

.

To get y(0) = 1 we need −2 + c = 1 so c = 3. Thus the solution to the IVP is

y = x2 − 2 + 3e
− 1

2x
2

for all x .



(d) y′ =
y

x+ y2
with y(3) = 1.

Solution: We interchange the rolls of x and y, and solve this DE for x = x(y). We have

x′(y) =
1

y′(x)
=
x+ y2

y

This DE is linear since we can write it as x′− 1
y x = y. An integrating factor is λ = e

∫
− 1

y dy
= e
− ln y

= 1
y and

the solution is

x = y

∫
1 dy = y(y + c) .

To get y(3) = 1 (that is to get x(1) = 3) we need 2 = 1 + c so c = 2, and so the solution is

x = y(y + 2) = (y + 1)2 − 1 .

Solve this for y = y(x) to get y = −1±
√
x+ 1. Note that to satisfy y(3) = 1 we need to use the + sign, so

y = −1 +
√
x+ 1 .



4: Consider the IVP y′ = 2(x+ y)− 1
2 with y(0) = 0.

(a) Find the exact solution y = f(x) to the above IVP.

Solution: The DE is linear as we can write it as y′−2y = 2x− 1
2 . An integrating factor is λ = e

∫
−2 dx

= e−2x,

and the solution is y = e2x

∫ (
2x− 1

2

)
e−2x dx. Integrate by parts using u = 2x − 1

2 , du = 2 dx, v = −1
2 e
−2x

and dv = e−2x dx to get

y = e2x

((
−x+ 1

4

)
e−2x +

∫
e−2x dx

)
= e2x

( (
−x+ 1

4

)
e−2x − 1

2e
−2x + c

)
= ce2x −

(
x+ 1

4

)
.

To get y(0) = 0 we need 0 = c− 1
4 so c = 1

4 , and the solution is

y = 1
4e

2x −
(
x+ 1

4

)
.

(b) Apply Euler’s method with step size ∆x = 1
2 to find a polygonal approximation y = g(x) for 0 ≤ x ≤ 2 to

the above solution y = f(x).

Solution: We make a table showing the values of xk, yk and mk, where x0 = 0, y0 = 0, mk = 2(xk + yk)− 1
2 ,

xk+1 = xk + ∆x and yk+1 = yk +mk∆x.

k xk yk mk

0 0 0 2 (0 + 0)− 1
2 = − 1

2

1 1
2 0 +

(
− 1

2

) (
1
2

)
= − 1

4 2
(

1
2 −

1
4

)
− 1

2 = 0

2 1 − 1
4 + (0)

(
1
2

)
= − 1

4 2
(

1− 1
4

)
− 1

2 = 1

3 3
2 − 1

4 + (1)
(

1
2

)
= 1

4 2
(

3
2 + 1

4

)
− 1

2 = 3

4 2 1
4 + (3)

(
1
2

)
= 7

4

(c) Sketch the direction field for the given DE along with the graph of the exact solution y = f(x) and the
graph of the polygonal solution y = g(x).

Solution: The direction field is shown in green, the exact solution is in blue, and the polygonal approximation
is in red.



(d) Let gn(x) be the polygonal approximation to the solution y = f(x) obtained by applying Euler’s method
with step size ∆x = 1

n . Show that lim
n→∞

gn(1) = f(1).

Solution: From part (a) we have f(1) = 1
4e

2− 5
4 . Fix n and let xk, yk and mk be obtained by applying Euler’s

method with step size ∆x = 1
n . Note that gn(1) = yn. Since x0 = 0 and xk+1 = xk + ∆x = xk + 1

n , we have

xk = k
n for all k ≥ 0. Since yk+1 = yk +mk∆x with mk = 2(xk + yk)− 1

2 = 2
(
k
n + yk

)
− 1

2 we have

yk+1 = yk +
(
2
(
k
n + yk

)
− 1

2

) (
1
n

)
= yk + 2k

n2 + 2
n yk −

1
2n = yk

(
1 + 2

k

)
+ 2k

n2 − 1
2n .

Now let zk = yk +
(
xk + 1

4

)
= yk + k

n + 1
4 for all k ≥ 0. Then z0 = 1

4 and

zk+1 = yk+1 + k+1
n + 1

4 = yk
(
1 + 2

n

)
+ 2k

n2 − 1
2n + k+1

n + 1
4

=
(
zk −

(
k
n + 1

4

)) (
1 + 2

n

)
+ 2k

n2 + 1
2n + k

n + 1
4

= zk
(
1 + 2

n

)
,

and so zk = 1
4

(
1 + 2

n

)k
for all k ≥ 0. Since yk = zk −

(
k
n + 1

4

)
, we have

yk = 1
4

(
1 + 2

n

)k − ( kn + 1
4

)
for all k ≥ 0 .

In particular,
gn(1) = yn = 1

4

(
1 + 2

n

)n − 5
4 .

Since
(
1 + 2

n

)n
= e

n ln(1+ 2
n )

and, using l’Hôpital’s Rule,

lim
n→∞

n ln
(
1 + 2

n

)
= lim
n→∞

ln
(
1 + 2

n

)
1
n

= lim
n→∞

− 2
n2

1 + 2
n

− 1
n2

= lim
n→∞

2

1 + 2
n

= 2 ,

we have lim
n→∞

(
1 + 2

n

)n
= e2, and so lim

n→∞
gn(1) = 1

4 e
2 − 5

4 , as required.



5: (a) The amount A(t) of a radioactive substance satisfies the DE

A′(t) = k A(t)

for some constant k < 0. The substance has a half-life of 10 seconds, which means that A(10) = 1
2 A(0). If

A(5) = 100 then find the exact time t at which A(t) = 20.

Solution: This DE is linear, since we can write it in the form A′ + kA = 0. An integrating factor is λ =

e

∫
k dt

= e
k t

and the general solution is A(t) = e−k t
∫

0 dt = c e−kt. Note that A(0) = c, so c is the initial

amount. Since the half-life is 10, we have

A(10) = 1
2 c =⇒ c e−10k = 1

2 c =⇒ e−10k = 1
2 =⇒ e10k = 2 =⇒ 10k = ln 2 =⇒ k = 1

10 ln 2 .

and so A(t) = c e
−(t/10) ln 2

= c 2−t/10. Also, we have A(5) = 100 =⇒ c 2−1/2 = 100 =⇒ c = 100
√

2 , and so
A(t) =

(
100
√

2
)

2−t/10. Finally, we have

A(t) = 20 ⇐⇒
(
100
√

2
)

2−t/10 = 20

⇐⇒ 2t/10 =
100
√

2

20
= 5
√

2 =
√

50

⇐⇒ t

10
= log2

√
50 = 1

2 log2 50

⇐⇒ t = 5 log2 50 .

(b) A pot of boiling water is removed from the heat and placed on a table in a room. The temperature T (t)
of the water at time t satisfies Newton’s Law of Cooling, that is

T ′(t) = k
(
C − T (t)

)
for some constant k > 0, where C is the room temperature. After 2 minutes, the water has cooled from 100◦

to 84◦. After another 2 minutes, it has cooled to 72◦. What is the temperature in the room?

Solution: This DE is linear since we can write it in the form T ′ + kT = kC. An integrating factor is

λ = e

∫
k dt

= e
kt

, and the general solution is T (t) = e−kt
∫
kC ekt = e−kt

(
Cekt + a

)
= C + a e−kt. Since

T (0) = 100 we have C + a = 100, so a = 100− C, and so

T (t) = C + (100− C) e−kt .

Since T (2) = 84, we have C + (100 − C) e−2k = 84, and so e−2k =
84− C
100− C

, and since T (4) = 72, we

have C + (100 − C) e−4k = 72, and so e−4k =
72− C
100− C

. Using the fact that e−4k =
(
e−2k

)2
, we have

72− C
100− C

=
(84− C)2

(100− C)2
. This gives (72−C)(100−C) = (84−C)2, that is 7200−172C+C2 = 7056−168C+C2

and so 144− 4C = 0 and we have C = 36.



6: (a) A tank initially contains 20 L of pure water. Brine containing 5 grams of salt per liter of water enters the
tank at 6 L/min. The solution is kept well mixed and drains from the tank at 2 L/min. Find the concentration
of salt in the tank when the tank contains 80 L of brine.

Solution: Let S(t) be the amount of salt in the tank (in grams) at time t (in minutes), and let V (t) be the
volume of brine in the tank (in litres). Note that S(0) = 0 and V (0) = 20. Also, let rin and rout be the
incoming and outgoing rates, and let cin and cout be the incoming and outgoing concentrations. We have
rin = 6, rout = 2, cin = 5 and cout = S(t)/V (t).

The volume V (t) satisfies the IVP V ′ = rin − rout = 6− 2 = 4 with V (0) = 20, and the solution is easily
found to be V (t) = 20 + 4t. The amount of salt S(t) then satisfies the IVP

S′ = rincin − rout − cout = 6 · 5− 2
S

20 + 4t
= 30− S

10 + 2t

with S(0) = 0. The DE is linear since we can write it as S′ +
1

2(5 + t)
S = 30. An integrating factor is

λ = e

∫
1

2(5+t)
dt

= e
1
2 ln(5+t)

= (5 + t)1/2, and the general solution is

S(t) = (5 + t)−1/2

∫
30 (5 + t)1/2 dt = (5 + t)−1/2

(
20 (5 + t)3/2 + c

)
= 20 (5 + t) +

c√
5 + t

.

Since S(0) = 0 we have 100 + c/
√

5 = 0 and so c = −100
√

5 and the solution is

S(t) = 20 (5 + t)− 100
√

5√
5 + t

.

The tank contains 80 litres when V (t) = 80, that is when 20 + 4t = 80, so t = 15. At t = 15, the amount of

salt is S(15) = 20 · 20− 100
√

5√
20

= 400− 50 = 350, and the concentration of salt is
S(15)

V (15)
=

350

80
=

35

8
.

(b) A tank, in the shape of a lower-hemisphere of radius 1 m, is initially filled with water. Water drains
through a circular hole of diameter 5 cm at the bottom of the tank. When the depth of water in the tank is
equal to y m, the water flows through the hole at a speed of 4

√
y m/s. Determine the time it takes for the

depth of the water in the tank to reach 25 cm.

Solution: The front view of the tank is shaped like the bottom half of the circle x2 + (y − 1)2 = 1, and the

right half of this circle is given by x =
√

1− (y − 1)2 =
√

2y − y2. The horizontal cross-section of the tank at

height y is a circle of radius r = x =
√

2y − y2, and so a slice of thickness ∆y has volume ∆V ∼= π(2y−y2)∆y.

Thus for a small time interval ∆t we have ∆V
∆t
∼= π(2y − y2)∆y

∆t . As ∆t→ 0 we get

V ′ = π(2y − y2) y′ .

On the other hand, since the water flows through a hole of area a = π(.025)2 = π
(

1
40

)2
= π

1600 m2 at a speed
v = 4

√
y m/s, we also have

V ′ = −av = − π
400

√
y .

Equating these two expressions for V ′ we obtain

π(2y − y2) y′ = − π
400

√
y .

This DE is separable as we can write it as (2y1/2 − y3/2)y′ = −1
400 . Integrate both sides, using the substitution

y = y(t) on the left, to get

∫
2y1/2 − y3/2 dy =

∫
− 1

400 dt which gives

4
3y

3/2 − 2
5 y

5/2 = − 1
400 t+ c .

To get y(0) = 1 we need 4
3 −

2
5 = c so c = 14

15 and so we have 4
3 y

3/2 − 2
5 y

5/2 = − 1
400 t + 14

15 . Thus we have

y(t) = 1
4 ⇐⇒

1
400 t = 14

15 −
4
3 ·

1
8 + 2

5 ·
1
32 = 14

15 −
1
6 + 1

80 ⇐⇒ t = 1120
3 − 200

3 + 5 = 935
3 .



7: (a) In a chemical reaction, 2 g of substance A reacts with 1 g of substance B to produce 3 g of substance C.
Suppose that 4 g of substance A and 3 g of substance B are combined at time t = 0 min. Let a(t), b(t) and
c(t) be the amounts, in grams, of the three substances, and suppose that

c′(t) = 3 a(t) b(t) .

Find a formula for c(t), and find the time at which 3 g of substance C has been produced.

Solution: To produce c g of substance C we must use up 2
3 c g of substance A and 1

3 c g of substance B, and
so a(t) = 4− 2

3 c(t) and b(t) = 3− 1
3 c(t). Thus c′ = 3ab = 3

(
4− 2

3 c
) (

3− 1
3 c
)

= (12− 2c)
(
3− 1

3 c
)

so

3 c′ = 2(6− c)(9− c) .

This DE is separable since we can write it as
3

(6− c)(9− c)
c′ = 2. Integrate both sides to get∫

3 dc

(6− c)(9− c)
=

∫
2 dt = 2t+ d .

We have

∫
3 dc

(6− c)(9− c)
=

∫
1

6− c
− 1

9− c
dc = − ln(6− c) + ln(9− c) + const = ln

9− c
6− c

+ const, and so

we have ln
9− c
6− c

= 2t+ d . To get c(0) = 0 we need ln 3
2 = d and so

ln
9− c
6− c

= 2t+ ln 3
2 (1)

Thus
9− c
6− c

= e2t+ln 3
2 = 3

2 e
2t =⇒ 18 − 2c = 18e2t − 3ce2t =⇒ c(3e2t − 2) = 18e2t − 18 =⇒ c =

18(e2t − 1)

3e2t − 2
Finally, put c = 3 into equation (1) to get ln 2 = 2t+ ln 3

2 =⇒ 2t = ln 2− ln 3
2 = ln 4

3 =⇒ t = 1
2 ln 4

3 .

(b) Let x(t) be the height of an object of mass m which is thrown upwards from the ground. If the force of
air resistance is −kx′, then x(t) satisfies the DE mx′′ + kx′ + mg = 0. Suppose that m = 1, k = 1

10 , g = 10,
x(0) = 0 and x′(0) = 20. Find the time t at which the object reaches its maximum height, find x(t), and
determine (with the help of a calculator) whether the object takes longer on the way up to its maximum height
or on the way back down to the ground.

Solution: Put in the given values for m, k and g to get x′′+ 1
10x
′+ 10 = 0. This is a linear DE for v = x′ since

we can write it as v′ + 1
10v = −10. An integrating factor is λ = e

∫
1
10 dt

= e
t/10

, and the general solution is

v(t) = e−t/10

∫
−10 et/10 dt = e−t/10

(
− 100 et/10 + c1

)
= c1 e

−t/10 − 100 .

Put in v(0) = x′(0) = 20 to get c1 − 100 = 20, so c1 = 120 and we have

v(t) = 120 e−t/10 − 100 .

It reaches its maximum height when v(t) = 0, and we have v(t) = 0 =⇒ 120 e−t/10 − 100 = 0 =⇒ e−t/10 =
100
120 = 5

6 =⇒ et/10 = 6
5 =⇒ 1

10 t = ln
(

6
5

)
=⇒ t = 10 ln

(
6
5

)
.

We have x(t) =

∫
v(t) dt =

∫
120 e−t/10 − 100 dt = −1200 e−t/10 − 100 t + c2. Put in x(0) = 0 to get

−1200 + c2 = 0, so c2 = 1200 and we have

x(t) = −1200 e−t/10 − 100 t+ 1200 = 1200
(
1− e−t/10

)
− 100 t .

By part (c), it gets to the top at t1 = 10 ln
(

6
5

)
. Consider its position at t2 = 2t1 = 20 ln

(
6
5

)
. If it takes longer

on the way up, then it will land before t = t2 and then x(t2) < 0. If it takes longer on the way back down,
then it will not yet have landed when t = t2 and so we will have x(t2) > 0. We have

x(t2) = 1200
(
1− e−2 ln(6/5)

)
− 2000 ln

(
6
5

)
= 1200

(
1− 25

36

)
− 2000 ln

(
6
5

)
= 100

(
11
3 − 20 ln

(
6
5

))
.

A calculator shows that 20 ln
(

6
5

) ∼= 3.64 < 11
3 , so x(t2) > 0, and so it takes longer on the way back down.



8: (a) A Bernoulli DE is a DE which can be written in the form y′ + py = qyn for some continuous functions
p and q and some integer n. Show that the substitution u = y1−n transforms the above Bernoulli DE for
y = y(x) into a linear DE for u = u(x).

Solution: Let u = y1−n so u′ = (1 − n) y−n y′. Multiply both sides of the DE y′ + p y = q yn by (1 − n) y−n

to get (1− n) y−n y′ + p (1− n) y1−n = q (1− n) which we can write as

u′ + p(1− n)u = q(1− n) .

This is a linear DE for u = u(x).

(b) Solve the IVP y′ + y = x y3, with y(0) = 2.

Solution: Let u = y−2 so u′ = −2y−3 y′, and multiply both sides of the DE y′ + y = x y3 by −2y−3 to get
−2y−3 y′ − 2y−2 = −2x, that is

u′ − 2u = −2x .

This is a linear DE for u = u(x). An integrating factor is I = e

∫
−2 dx

= e
−2x

, and the general solution is

u = e2x

∫
−2x e−2x dx. Integrate by parts using u = x, du = dx, v = e−2x and dv = −2e−2x dx to get

u = e2x

(
x e−2x −

∫
e−2x dx

)
= e2x

(
x e−2x + 1

2 e
−2x + c

)
= x+ 1

2 + c e2x ,

that is y−2 = x+ 1
2 + c e2x. To get y(0) = 2 we need 1

4 = 1
2 + c so c = − 1

4 and so we have

y−2 = x+ 1
2 −

1
4 e

2x =⇒ y =
(
x+ 1

2 −
1
4 e

2x
)−1/2

=
2√

4x+ 2− e2x
.

(c) A homogeneous DE is a DE which can be written in the form y′ = F
(
y
x

)
for some continuous function

F . Show that the substitution u = y
x transforms a homogeneous DE for y = y(x) into a separable DE for

u = u(x).

Solution: Let u = y
x , so y = xu. Then y′ = u + xu′, so we can write the DE y′ = F

(
y
x

)
as u + xu′ = F (u).

This is separable since we can write it as
u′

F (u)− u
=

1

x
.

(d) Solve the IVP y′ =
x2 + 3y2

2xy
with y(1) = 2.

Solution: This DE is homogeneous since we can write it as y′ =
1 + 3

(
y
x

)2
2
(
y
x

) . Let u = y
x so y = xu and

y′ = u + xu′. Then we can write the DE as u + xu′ =
1 + 3u2

2u
, that is xu′ =

1 + 3u2

2u
− u =

1 + u2

2u
. This is

separable, as we can write it as
2u du

1 + u2
=
dx

x
. Integrate both sides to get

ln(1 + u2) = ln |x|+ c =⇒ 1 + u2 = ax (where a = ±ec) =⇒ u = ±
√
ax− 1

=⇒ y

x
= ±
√
ax− 1 =⇒ y = ±x

√
ax− 1 .

To get y(1) = 2, we need 2 = ±
√
a− 1, so we need to use the + sign and we need a− 1 = 4 so a = 5. Thus

y = x
√

5x− 1 .



9: (a) The substitution u(x) = y′(x) and u′(x) = y′′(x) transforms a second order DE of the form y′′ = F (y′, x)
for y = y(x) to a first order DE for u = u(x). Use this substitution to solve the IVP y′′ − 2y′ = 4x with
y(0) = 0 and y′(0) = 0.

Solution: When we let u = y′ so that u′ = y′′, the DE becomes u′ − 2u = 4x, which is linear. An integrating

factor is λ = e

∫
−2 dx

= e
−2x

and so the solution is y′ = u = e2x

∫
4x e−2x dx. We integrate by parts using

u = 4x and dv = e−2x dx so that du = 4 dx and v = − 1
2 e
−2x to get

y′ = e2x

∫
4x e−2x dx = e2x

(
−2x e2x +

∫
2 e−2x dx

)
= e2x

(
−2x e−2x − e−2x + c1

)
= c1 e

2x − 2x− 1 .

Put in y′(0) = 0 to get 0 = c1− 1 so that c1 = 1, and so we have y′ = e2x− 2x− 1. Now integrate again to get

y =

∫
e2x − 2x− 1 dx = 1

2 e
2x − x2 − x+ c2 .

Put in y(0) = 0 to get 0 = 1
2 + c2, so we have c2 = − 1

2 , and the solution is y = 1
2 e

2x − x2 − x− 1
2 .

(b) The substitution u(y(x)) = y′(x) and u′(y(x))y′(x) = y′′(x) transforms a second order DE of the form
y′′= F (y′, y) for y = y(x) to a first order DE for u = u(y). Use this substitution to solve the IVP y y′′+(y′)2 = 0
with y(1) = 2 and y′(1) = 3.

Solution: Let u(y(x)) = y′(x) so u′(y(x))y′(x) = y′′(x), that is y′ = u and y′′ = uu′. The DE becomes

yu u′+u2 = 0. This is linear since we can write it as u′+ 1
yu = 0. An integrating factor is λ = e

∫
1
y dy = e

ln y
= y

and the solution is u = 1
y

∫
0 dy = a

y . Put in x = 1, y = 2, u = y′ = 3 to get 3 = a
2 so a = 6 and the solution

is u = 6
y , that is y′ = 6

y . This DE is separable since we can write it as y y′ = 6. Integrate both sides (with

respect to x) to get 1
2y

2 = 6x + c. Put in x = 1, y = 2 to get 2 = 6 + x so c = −4 and the solution is
1
2y

2 = 6x− 4, that is y = ±
√

12x− 8. Since y(1) = 2, we must use the + sign, so y =
√

12x− 8.

(c) Solve the IVP y′′ + (y′)2 = 2e−y with y(0) = 0 and y′(0) = 2.

Solution: Let u(y(x)) = y′(x) so u′(y(x))y′(x) = y′′(x), that is y′ = u and y′′ = uu′. Then we can write the
given DE as uu′ + u2 = 2e−y, that is

u′ + u = 2e−y u−1 .

This is a Bernoulli equation. Let v = u2 so v′ = 2uu′. Multiply the Bernoulli equation by 2u to get
2uu′ + 2u2 = 4e−y, and write this as

v′ + 2v = 4e−y .

This is linear. An integrating factor is λ = e

∫
2 dy

= e2y and the solution is

v = e−2y

∫
4ey = e−2y(4ey + b) .

From the initial conditions, when x = 0 we need y = 0, and u = y′ = 2 so v = u2 = 4, and so 4 = 4 + b, that
is b = 0. Thus we have

v = 4e−y .

Since v = u2 = (y′)2, we have (y′)2 = 4e−y so y′ = ±2e−y/2. Since y′(0) = 2 we must use the + sign, so

y′ = 2e−y/2 .

This DE is separable. We write it as ey/2dy = 2dx and integrate both sides to get

2ey/2 = 2x+ c .

To get y(0) = 0 we need 2 = c, so the solution is given by 2ey/2 = 2x+ 2. Solve for y = y(x) to get

y = 2 ln(x+ 1) .



10: An object of mass m falls towards the Earth. The force due to gravity is F = −GMm

x2
, where x is the distance

from the center of the Earth to the object, G is the gravitational constant and M is the mass of the Earth.

(a) If x(0) = x0 and x′(0) = 0 then find the velocity x′ as a function of x.

Solution: We have F = −GMm

x2
and F = ma = mx′′, and so x(t) satisfies the DE

x′′ = −GM
x2

, with x(0) = 0 and x′(0) = x0 .

The independent variable t does not occur explicitly in the DE, so we let x′ = v and x′′ = v v′ where v′ = dv
dx .

The DE becomes v v′ = −GM
x2

. This DE is separable, so we write it as v dv = −GM
x2

dx and integrate both

sides to get 1
2 v

2 =
GM

x
+ c1. Put x = x0 and u = 0 to get c1 = −GM

x0
, and so we have 1

2 v
2 = GM

(
1
x −

1
x0

)
,

that is v = ±2
√

2GM
√

1
x −

1
x0

. We are interested in the case that v = x′ ≤ 0, so

v = −
√

2GM

√
1

x
− 1

x0
.

We remark that (if you know some physics) this formula can also be obtained using conservation of energy.

(b) Find the time t as a function of x, and then find the time at which x = 1
2 x0.

Solution: Replace v by x′ again to get x′ = −
√

2GM
√

1
x −

1
x0

. This DE is separable, so we write it as

dx√
1
x −

1
x0

= −
√

2GM dt and integrate both sides to get

∫
dx√

1
x −

1
x0

= −
∫ √

2GM dt = −
√

2GM t+ c2. Let

I be the integral on the left. Then

I =

∫
dx√

1
x −

1
x0

=

∫ √
x dx√

1− x
x0

=

∫
2x0
√
x0 u

2

√
1− u2

du ,

where u2 =
x

x0
so
√
x =

√
x0 u and 2x0 u du = dx. Now let cos θ = u so that sin θ =

√
1− u2 and

− sin θ dθ = dx. Then

I = −
∫

2x0
√
x0 cos2 θ dθ = −x0

√
x0

(
θ + sin θ cos θ

)
+ c3 = −x0

√
x0

(
cos−1 u+ u

√
1− u2

)
+ c3

= −x0
√
x0

(
cos−1

√
x

x0
+

√
x

x0

√
1− x

x0

)
+ c3 .

Since I = −
√

2GM t+ c2, we obtain

−x0
√
x0

(
cos−1

√
x

x0
+

√
x

x0

√
1− x

x0

)
= −
√

2GM t+ c .

Put in t = 0 and x = x0 to get c = 0, and so we have

t =
x0
√
x0√

2GM

(
cos−1

√
x

x0
+

√
x

x0
−
( x
x0

)2
)
.

Finally, when x = 1
2 x0 we have t =

x0
√
x0√

2GM

(
π
4 + 1

2

)
=
x0
√
x0 (π + 2)

4
√

2GM
.


