
MATH 148 Calculus 2, Solutions to the Exercises for Chapter 4

1: Consider the parametric curve (x, y) =
(
t3 + 2t2 − 4t, t2 + t

)
with −3 ≤ t ≤ 2.

(a) Sketch the curve showing all of the horizontal and vertical points.

Solution: We have x′ = 3t2 + 4t − 4 = (3t − 2)(t + 2) so x′ = 0 ⇐⇒ x = −2, 23 , and we have y′ = 2t + 1 so
y′ = 0 ⇐⇒ t = − 1

2 . Thus the curve is horizontal when t = − 1
2 and vertical when t = −2, 23 . We make a

table of values and plot the curve.

t x y

−3 3 6
−2 8 2
−1 5 0
− 1

2
19
8 − 1

4
0 0 0
2
3 − 44

27
10
9

1 −1 2
2 8 6

y

x

(b) Find the equation of the tangent line at the point where t = 1.

Solution: When t = 1 we have (x, y) = (t3+2t2−4t, t2+t) = (−1, 2) and (x′, y′) = (3t2+4t−4, 2t+1) = (3, 3)

so
dy

dx
=
y′

x′
= 1. Thus the equation of the tangent line is y − 2 = 1(x+ 1) or equivalently y = x+ 3.

(c) Find
d2y

dx2
at the point where t = 1.

Solution: We have
d2y

dx2
=

d
dt

(
y′(t)
x′(t)

)
x′(t)

=

d
dt

(
2t+1

3t2+4t−4

)
3t2 + 4t− 4

=
(2)(3t2 + 4t− 4)− (2t+ 1)(6t+ 4)

(3t2 + 4t− 4)3
, and so when

t = 1, we have
d2y

dx2
=

2 · 3− 3 · 10

33
= − 8

9 .

(d) Eliminate the parameter to find an implicit cartesian equation for the curve.

Solution: We have
y = t2 + t

x = t3 + 2t2 − 4t

y2 = t4 + 2t3 + t2

xy = t5 + 3t4 − 2t3 − 4t2

x2 = t6 + 4t5 − 4t4 − 16t3 + 16t3

y3 = t6 + 3t5 + 3t4 + t3

and so
y3 − x2 = −t5 + 7t4 + 17t3 − 16t2

y3 − x2 + xy = 10t4 + 15t3 − 20t2

y3 − x2 + xy − 10y2 = −5t3 − 30t2

y3 − x2 + xy − 10y2 + 5x = −20t2 − 20t = −20y

and so the curve satisfies the Cartesian equation y3 − x2 + xy − 10y2 + 5x+ 20y = 0



2: (a) Sketch the curve (x, y) = (cos t, sin 2t), showing all horizontal and vertical points.

Solution: We have x′(t) = − sin t and y′(t) = 2 cos 2t. The curve is horizontal when y′(t) = 0, that is when
t = π

4 + π
2 k with k ∈ Z, and the curve is vertical when x′(t) = 0, that is when t = πk with k ∈ Z. We make a

table of values and sketch the curve.

t x y
0 1 0
π/6

√
3/2

√
3/2

π/4
√

2/2 1
π/3 1/2

√
3/2

π/2 0 0
2π/3 −1/2 −

√
3/2

3π/4 −
√

2/2 −1
5π/6 −

√
3/2 −

√
3/2

π −1 0
etc

y

1

x
1

(b) Find the angle inside the loop at the origin.

Solution: The curve passes through the origin when t = π
2 and then again when t = 3π

2 . We have x′
(
π
2

)
= −1

and y′
(
π
2

)
= −2, so the slope of the tangent line at t = π

2 is equal to 2. The angle from the positive x-axis to

this tangent line is α = tan−1 2 = sin−1 2
5 = cos−1 1√

5
. By symmetry, the angle inside the loop at the origin

is θ = 2α = 2 tan−1 2. Since 0 ≤ θ ≤ π and cos θ = cos 2α = cos2 α− sin2 α = 1
5 = 4

5 = − 3
5 , we can also write

the angle as θ = cos−1
(
− 3

5

)
.

(c) Find the total area of the enclosed region.

Solution: The total area is 4 times the area of the portion in the first quadrant, so A = 4

∫ 1

x=0

y dx. To find

this we use x = cos t so dx = − sin t dt and y = sin 2t = 2 sin t cos t. Then

A = 4

∫ 1

x=0

y dx = 4

∫ 0

t=π/2

(2 sinx cosx)(− sinx) dx =

∫ π/2

0

8 sin2 x cosx dx.

Now we use u = sin t so du = cos t dt to get∫ π/2

t=0

8 sin2 t cos t dt =

∫ 1

u=0

8u2 du =
[
8
3u

3
]1
0

= 8
3 .

(d) Find an implicit cartesian equation for this curve.

Solution: If x = cos t and y = sin 2t then x2 = cos2 t and y2 = 4 sin2 t cos2 t = 4 cos2 t(1−cos2 t) = 4x2(1−x2).
This shows that the parametric curve is contained in the implicit cartesian curve y2 = 4x2(1− x2).

Let us verify not that our parametric curve is not only contained in the implicit curve y2 = 4x2(1− x2)
but is in fact equal to that implicit curve. Suppose that y2 = 4x2(1−x2). Then we have y = ±2x

√
1− x2 with

−1 ≤ x ≤ 1. If y = 2x
√

1− x2 then we can let t = cos−1 x ∈ [0, π], and then cos t = x and, since sin t ≥ 0,

sin 2t = 2 sin t cos t = 2 cos t
√

sin2 t = 2 cos t
√

1− cos2 t = 2x
√

1− x2 = y .

If y = −2x
√

1− x2 then we can let t = − cos−1 x ∈ [−π, 0], and then cos t = x and, since sin t ≤ 0,

sin 2t = 2 sin t cos t = −2 cos t
√

sin2 t = −2 cos t
√

1− cos2 t = −2x
√

1− x2 = y .

This shows that the implicit curve is contained in the parametric curve.



y

x

3: (a) Sketch the curve (x, y) = (3t2, 3t− t3), showing all horizontal and vertical points.

Solution: We have x′(t) = 6t and y′(t) = 3− 3t2 = −3(t− 1)(t+ 1). The curve is horizontal when y′(t) = 0,
that is when t = ±1, and the curve is vertical when x′(t) = 0, that is when t = 0. We make a table of values
and sketch the curve.

t x y
−2 12 2
−
√

3 9 0
−1 3 −2
0 0 0
1 3 2√
3 9 0

2 12 −2

(b) Find the arclength of the loop in this curve.

Solution: The total arclength of the loop is equal to twice the arclength of the portion above the x-axis, so we
have

L = 2

∫ √3

t=0

√
x′(t)2 + y′(t)2 dt =

∫ √3

0

2
√

(6t)2 + (3− 3t2)2 dt =

∫ √3

0

6
√

(2t)2 + (1− t2)2 dt

=

∫ √3

0

6
√

1 + 2t2 + t4 dt =

∫ √3

0

6(1 + t2) dt =
[
6t+ 2t3

]√3

0
= 6
√

3 + 2 · 3
√

3 = 12
√

3 .

(c) Find the area of the surface obtained by revolving the loop about the x-axis.

Solution: The surface is obtained by revolving the portion of the curve with 0 ≤ t ≤
√

3 about the x-axis. As
shown above, we have

√
x′(t)2 + y′(t)2 = 3(1 + t2) and so the area is

A =

∫ √3

t=0

2π y(t)
√
x′(t)2 + y′(t)2 dt =

∫ √3

0

2π(3t− t3) · 3(1 + t2) = π

∫ √3

0

18t+ 12t3 − 6t5 dt

= π
[
9t2 + 3t4 − t5

]√3

0
= π(27 + 27− 27) = 27π .



4: A circular hoop of radius 1, initially centered at (3, 0), rolls without slipping once, counterclockwise, around
a circular hoop of radius 2 which remains stationary, centered at (0, 0). Consider the curve which is followed
by the point on the moving hoop which is initially at the position (4, 0).

(a) Show that the curve is given parametrically by (x, y) =
(
3 cos θ+ cos 3θ, 3 sin θ+ sin 3θ

)
, with 0 ≤ θ ≤ 2π.

Solution: When the center of the small hoop rotates through an angle θ, the hoop must spin through an angle
3θ in order to roll without slipping. (This can be seen with the help of the following picture, in which the green
arcs all have length 2θ). After rotating through an angle θ, the center of the small hoop is at (3 cos θ, 3 sin θ),
so the point labeled by X is at (3 cos θ, 3 sin θ) + (sin 3θ, cos 3θ).

y

X 2θ θ

O

2θ

θ 2θ
O X x

(b) Find the area enclosed by the curve.

Solution: Using the identity 2 sinA sinB = cos(A − B) − cos(A + B) with A = 3θ and B = θ, we get
2 sin θ sin 3θ = cos 2θ − cos 4θ, so the area is

A = 4

∫ π/2

θ=0

|y(θ)x′(θ)|dθ = −4

∫ π/2

0

y(θ)x′(θ) dθ = −4

∫ π/2

0

(3 sin θ + sin 3θ)(−3 sin θ − 3 sin 3θ) dθ

=

∫ π/2

0

36 sin θ + 48 sin θ sin 3θ + 12 sin2 3θ dθ

=

∫ π/2

0

(18− 18 cos 2θ) + 24(cos 2θ − cos 4θ) + (6− 6 cos 6θ) dθ

=

∫ π/2

0

24 + 6 cos 2θ − 24 cos 4θ − 6 cos 6θ dθ =
[
24θ + 3 sin 2θ − 6 sin 4θ − sin 6θ

]π/2
0

= 12π .

(c) Find the distance travelled by the point on the moving hoop.

Solution: The distance travelled by the point is the arclenth of the curve, which is

L = 4

∫ π/2

0

√
x′(θ)2 + y′(θ)2 dθ = 4

∫ π/2

0

√
(−3 sin θ + 3 sin 3θ)2 + (3 cos θ + 3 cos 3θ)2 dθ

=

∫ π/2

0

12
√

(sin θ + sin 3θ)2 + (cos θ + cos 3θ)2 dθ

=

∫ π/2

0

12
√

sin2 θ + 2 sin θ sin 3θ + sin2 3θ + cos2 θ + 2 cos θ cos 3θ + cos2 3θ dθ

=

∫ π/2

0

12
√

2 + 2 sin θ sin 3θ + 2 cos θ cos 3θdθ (since sin2 θ + cos2 θ = sin2 3θ + cos2 3θ = 1)

=

∫ π/2

0

12
√

2 + 2 cos 2θ dθ (since cos 2θ = cos(3θ − θ) = cos 3θ cos θ + sin 3θ sin θ)

=

∫ π/2

0

12
√

4 cos2 θ dθ =

∫ π/2

0

24 cos θ dθ =
[
24 sin θ

]π/2
0

= 24 .



5: Consider the polar curve r =
3

2− cos θ
.

(a) Sketch the curve, showing all horizontal and vertical points.

Solution: We have x = r cos θ =
3 cos θ

2− cos θ
so

x′(θ) =
(−3 sin θ)(2− cos θ)− (3 sin θ)(sin θ)

(2− cos θ)2
=
−6 sin θ

(2− cos θ)2
,

and we have y = r sin θ =
3 sin θ

2− cos θ
and so

y′(θ) =
(3 cos θ)(2− cos θ)− (3 sin θ)(sin θ)

(2− cos θ)2
=

6 cos θ − 3 cos2 θ − 3 sin2 θ

(2− cos θ)2
=

3(2 cos θ − 1)

(2− cos θ)2
.

The curve is horizontal when y′(θ) = 0, that is when cos θ = 1
2 or when θ = ±π3 + 2πk with k ∈ Z, and the

curve is vertical when x′(θ) = 0, that is when sin θ = 0, that is θ = πk with k ∈ Z. We make a table of values
(r, θ) and plot the curve on a polar grid.

θ r

0 3
π/3 2
π/2 3/2
2π/3 6/5
π 1

etc.

(b) Find the Cartesian equation of this curve.

Solution: Note that 2− cos θ ≥ 1 so r ≤ 3 hence 3 + r cos θ ≥ 0, so we have

r =
3

2− cos θ
⇐⇒ r (2− cos θ) = 3 ⇐⇒ 2 r = 3 + r cos θ

⇐⇒ 4 r2 = (3 + r cos θ)2 ⇐⇒ 4(x2 + y2) = (3 + x)2

so the Cartesian equation is 4(x2 + y2) = (3 + x)2.

Remark: we can rewrite the above Cartesian equation as follows

4(x2 + y2) = (3 + x)2 ⇐⇒ 4x2 + 4y2 = 9 + 6x+ x2 ⇐⇒ 3x2 − 6x+ 4y2 = 9

⇐⇒ 3(x− 1)2 + 4y2 = 12 ⇐⇒ (x− 1)2

4
+
y2

3
= 1

which shows that the curve is an ellipse.



6: Consider the polar curve r =
2π

θ
.

(a) Sketch the portion of the curve with π
2 ≤ θ ≤ 4π.

Solution: We make a table of values and sketch the curve.

θ r
π
2 4

π 2
3π
2

4
3

2π 1
5π
2

4
5

3π 2
3

7π
2

4
7

4π 1
2

(b) Find the arclength of the portion of the curve with π ≤ θ ≤ 2π.

Solution: The arclength of the portion of the curve with π ≤ θ ≤ 2π is

L =

∫ 2π

θ=π

√
r(θ)2 + r′(θ)2 dθ =

∫ 2π

π

√(
2π

θ

)2

+

(
−2π

θ2

)2

dθ =

∫ 2π

π

2π

√
1

θ2
+

1

θ4
dθ =

∫ 2π

π

2π
√
θ2 + 1

θ2
dθ .

Let tanφ = θ so that secφ =
√

1 + θ2 and sec2 φdφ = dθ. Then

L =

∫ 2π

θ=π

2π sec3 φdφ

tan2 φ
=

∫ 2π

θ=π

2π dφ

cosφ sin2 φ
=

∫ 2π

θ=π

2π cosφdφ

(1− sin2 φ) sin2 φ
.

Now let u = sinφ so that du = cosφdφ. Then we have

L = 2π

∫ 2π

θ=π

du

(1− u2)u2
= 2π

∫ 2π

θ=π

1
2

1 + u
+

1
2

1− u
+

1

u
du = 2π

[
1
2 ln |1 + u| − 1

2 ln |1− u| − 1

u2

]2π
θ=π

= 2π

[
1
2 ln

∣∣∣∣1 + u

1− u

∣∣∣∣− 1

u2

]2π
θ=π

= 2π

[
1
2 ln

(
1 + sinφ

1− sinφ

)
− 1

sinφ

]2π
θ=π

= 2π

[
1
2 ln

(
(1 + sinφ)2

cos2 φ

)
− 1

sinφ

]2π
θ=π

= 2π

[
ln

(
1 + sinφ

cosφ

)
− 1

sinφ

]2π
θ=π

= 2π

[
ln (tanφ+ secφ)− cscφ

]2π
θ=π

= 2π

[
ln
(
θ +

√
θ2 + 1

)
−
√
θ2 + 1

θ

]2π
θ=π

= 2π ln

(
2π +

√
4π2 + 1

π +
√
π2 + 1

)
−
√

4π2 + 1 + 2
√
π2 + 1 .



7: Consider the two the polar curves r = 3 sin θ and r = 1 + cos 2θ.

(a) Sketch both polar curves on the same grid, showing all points of intersection.

Solution: To find the points of intersection, note that 3 sin θ = 1 + cos 2θ ⇐⇒ 3 sin θ = 1 + (1− 2 sin2 θ) ⇐⇒
2 sin2 θ + 3 sin θ − 2 = 0 ⇐⇒ (2 sin θ − 1)(sin θ + 2) = 0 ⇐⇒ sin θ = 1

2 ⇐⇒ θ = · · · , π6 ,
5π
6 , · · ·. Now we

make a table of values and plot the curves.

θ 3 sin θ 1 + cos 2θ

0 0 2
π
6

3
2

3
2

π
3

3
√
3

2
1
2

π
2 3 0
2π
3

3
√
3

2
1
2

5π
6

3
2

3
2

π 0 2

(b) Find the area of the region which lies inside both curves.

Solution: The area is

A = 2

(∫ π/6

0

1
2 (3 sin θ)2 dθ +

∫ π/2

π/6

1
2 (1 + cos 2θ)2 dθ

)

=

∫ π/6

0

9 sin2 θ dθ +

∫ π/2

π/6

1 + 2 cos 2θ + cos2 2θ dθ

=

∫ π/6

0

9
2 −

9
2 cos 2θ dθ +

∫ π/2

π/6

1 + 2 cos 2θ + 1
2 + 1

2 cos 4θ dθ

=
[
9
2 θ −

9
4 sin 2θ

]π/6
0

+
[
3
2 θ + sin 2θ + 1

8 sin 4θ
]π/2
π/6

=
(

3π
4 −

9
√
3

8

)
+
(
3π
4

)
−
(
π
4 +

√
3
2 +

√
3

16

)
= 5π

4 −
27
√
3

16 .



8: Let R be the region which lies inside the polar curve r = 1+cos θ, and let S be the solid obtained by revolving
R about the x-axis.

(a) Find the volume of S.

Solution: We have x(θ) = r(θ) cos θ = (1 + cos θ) cos θ = cos θ+ cos2 θ and y(θ) = r(θ) sin θ = (1 + cos θ) sin θ.
Also x′(θ) = − sin θ − 2 sin θ cos θ = −(1 + 2 cos θ) sin θ. Using the substitution u = cos θ so du = − sin θ dθ,
the volume is

V = −
∫ π

θ=0

π y(θ)2x′(θ) dθ

=

∫ π

θ=0

π(1 + cos θ)2(sin θ)2(1 + 2 cos θ) sin θ dθ

=

∫ −1
u=1

−π(1 + u)2(1− u2)(1 + 2u) du

=

∫ 1

−1
π(1 + 2u+ u2)(1 + 2u− u2 − 2u3) du

=

∫ 1

−1
π(1 + 4u+ 4u2 − 2u3 − 5u4 − 2u5) du

= π
[
u+ 2u2 + 4

3u
3 − 1

2u
4 − u5 − 1

3u
6
]1
−1

= π
( (

1 + 2 + 4
3 −

1
2 − 1− 1

3

)
−
(
−1 + 2− 4

3 −
1
2 + 1− 1

3

) )
= 8π

3 .

(b) Find the surface area of S.

Solution: Using the substitution u = 1 + cos θ so du = − sin θ dθ, the surface area is

A =

∫ π

0

2π y(θ)
√
r(θ)2 + r′(θ)2 dθ

=

∫ π

0

2π (1 + cos θ)(sin θ)
√

1 + 2 cos θ + cos2 θ + sin2 θ dθ

=

∫ π

0

2π (1 + cos θ)
√

2 + 2 cos θ sin θ dθ

=

∫ π

0

2
√

2π (1 + cos θ)
√

1 + cos θ sin θ dθ

=

∫ 0

u=2

−2
√

2π u3/2 du

=
[
− 4
√
2π
5 u5/2

]0
2

= 32π
5 .



9: (a) Show that our two methods for finding areas in polar coordinates yield the same value, as follows: Let r(θ)
be differentiable for θ ∈ [θ1, θ2]. Let x(θ) = r(θ) cos θ and y(θ) = r(θ) sin θ, and for k = 1, 2 write xk = x(θk)
and yk = y(θk). Show that ∫ θ2

θ1

1
2r(θ)

2 dθ +

∫ θ2

θ1

y(θ)x′(θ) dθ = 1
2 (x2y2 − x1y1) .

Solution: Note that ∫
y(θ)x′(θ) dθ =

∫
r(θ) sin θ(r′(θ) cos θ − r(θ) sin θ) dx

=

∫
r(θ)r′(θ) sin θ cos θ dθ −

∫
r(θ)2 sin2 θ dθ

,

and using Integration by Parts with u = sin θ cos θ, du = (cos2 θ− sin2 θ)dθ = (1− 2 sin2 θ)dθ, v = 1
2r(θ)

2 and
dv = r(θ)r′(θ) dθ gives∫

r(θ)r′(θ) sin θ cos θ dθ = 1
2r(θ)

2 sin θ cos θ −
∫

1
2r(θ)

2(1− 2 sin2 θ)dθ

= 1
2x(θ)y(θ)−

∫
1
2r(θ)

2 dθ +

∫
r(θ) sin2 θ dθ

and so

∫
y(θ)x′(θ) dθ = 1

2x(θ)y(θ)−
∫

1
2r(θ)

2 dθ. Putting in the endpoints θ1, θ2 yields the desired result.

(b) For a point p = (a, b) ∈ R2 and a continuous curve α(t) = (a, b) +
(
x(t), y(t)

)
with α(t) 6= p for any

t, we define the winding number W(α, p) of α about p as follows. We write α(t) parametrically in polar
coordinates as α(t) = (a, b) + r(t)

(
cos θ(t), sin θ(t)

)
where r(t) and θ(t) are continuous with r(t) > 0 and

θ(a) ∈ [0, 2π). Then
W(α, p) = 1

2π

(
θ(b)− θ(a)

)
.

Suppose that x(t), y(t), r(t) and θ(t) are all differentiable and their derivatives ar continuous. Show that

W(α, p) = 1
2π

∫ b

a

x(t)y′(t)− y(t)x′(t)

x(t)2 + y(t)2
dt.

Solution: Write α in polar coordinates as α(t) = (a, b) + r(t)
(

cos θ(t), sin θ(t)
)
, that is write x = r cos θ and

y = r sin θ where r = r(t) and θ = θ(t) are continuous with r(t) > 0 for all t ∈ [a, b] and θ(a) ∈ [0, 2π). Then∫ b

a

x y′ − y x′

x2 + y2
dt =

∫ b

a

(r cos θ)
(
r′ sin θ + r cos θ θ′

)
− (r sin θ)

(
r′ cos θ − r sin θ θ′

)
r2 cosθ +r2 sin2 θ

dt

=

∫ b

a

r2 cos2 θ θ′ + r2 sin2 θ θ′

r2
dt =

∫ b

a

θ′ dt

= θ(b)− θ(a) = 2πW(α, p).



(c) Let α(t) = (cos t, sin t)+2(cos 3t, sin 3t) with 0 ≤ t ≤ 2π. Sketch the loop α, then use the sketch (intuitively)
to find the winding number of α about each of the points (0, 0), (2, 0), (4, 0) and (0, 2).

Solution: To sketch the loop by hand, it helps to treat the terms 2(cos 3t, sin 3t) and (cos t, sin t) separately:
choose values of t (say multiples of π

12 ), then for each value of t find the point 2(cos 3t, sin 3t) (which lies on
the circle r = 2) then add the unit vector (cos t, sin t) to the point.

With the help of the picture we find that W(α, 0) = 3, W(α, 2) = 1, W(α, 4) = 0 and W(α, 2i) = 2.


