MATH 148 Calculus 2, Solutions to the Exercises for Chapter 4

: Consider the parametric curve (z,y) = (t3 +2t2 — 4t 12 + t) with —3 <t < 2.

(a) Sketch the curve showing all of the horizontal and vertical points.

Solution: We have 2/ = 3t? + 4t —4 = (3t —2)(t +2) so 2’ =0 <= z = —2,%, and we have y =2t + 1 so
Yy =0 < t= —%. Thus the curve is horizontal when ¢t = —% and vertical when t = —2, % We make a

table of values and plot the curve.

~1
1 19 1
32 8 1
o 0 0 /
2 _44 10
3 27 9
S
2 8 6 0 z

(b) Find the equation of the tangent line at the point where ¢ = 1.

Solution: When ¢ = 1 we have (z,y) = (£3+2t2 —4t,t>+t) = (—1,2) and (2/,y') = (32 +4t—4,2t+1) = (3,3)
dy _y

so == 1. Thus the equation of the tangent line is y — 2 = 1(z + 1) or equivalently y = x + 3.
x T

d*y
(c¢) Find ) at the point where ¢ = 1.
x

d (') d 2t+1
Solution: We have dz—y _ (g/(t)> _ <3t2—ﬁt_4) _ QEE - - 2+ (6 +4) and so when
’ de?2 —  2/(t) 324+ 4t—4 (32 + 4t — 4)3 ’
d? 2-3-3-10
tZI,Wehaved—;ng:—

(d) Eliminate the parameter to find an implicit cartesian equation for the curve.

©|oo

Solution: We have
y=t"+t

x =134+ 2% — 4t

y =t 4263 142

xy =t° + 3t1 — 23 — 4t>

x? =15 + 45 — 4t* — 16t% + 16t°
=10 435 + 31 43

and so
Y3 —a? = 5 + 1t + 17 — 162

10t* 4+ 153 — 20¢2
v — 2% + zy — 10y% = -5t — 30t2
y® — 2% + xy — 10y 4 5z = —20t% — 20t = —20y

yg—xQ—l—xy

and so the curve satisfies the Cartesian equation y® — 22 + zy — 10y? + 5z + 20y = 0



2: (a) Sketch the curve (x,y) = (cost,sin 2t), showing all horizontal and vertical points.

Solution: We have 2'(t) = —sint and y'(¢) = 2cos2¢. The curve is horizontal when y/(t) = 0, that is when
t =% + Tk with k£ € Z, and the curve is vertical when /() = 0, that is when ¢ = 7k with k£ € Z. We make a

table of values and sketch the curve.
Yy
t T Y

0 1 0
/6 V32  V3/2
/4 V22 1

/3 1/2 V3/2
/2 0 0

2r/3  —1/2  —/3/2 r
/4 —v2/2 —1

51/6 —v/3/2 —/3/2
s -1 0

etc

(b) Find the angle inside the loop at the origin.

Solution: The curve passes through the origin when ¢ = 7 and then again when ¢ = 37” We have 2’/ (g) =-1
and 7’ (g) = —2, so the slope of the tangent line at ¢t = 7 is equal to 2. The angle from the positive z-axis to
this tangent line is @ = tan~!'2 = sin™* % = cos™! % By symmetry, the angle inside the loop at the origin
is =2a=2tan"12. Since 0 < 6 < 7 and cosf = cos2a = cos? o — sin® o = % = % = —%, we can also write

the angle as @ = cos™! ( — g)

(c) Find the total area of the enclosed region.
1
Solution: The total area is 4 times the area of the portion in the first quadrant, so A = 4 / ydx. To find

=0
this we use x = cost so dx = —sintdt and y = sin 2t = 2sintcost. Then ’

1 0 /2
A:4/ ydac:4/ (2sinxcosx)(—sinx)dac:/ 8sin’ x cos x d.
z=0 t=m/2 0
Now we use u = sint so du = costdt to get
/2 1 1
/ 85in2tcostdt:/ 8u? du = {%u?’} = %.
t=0 u=0 0
(d) Find an implicit cartesian equation for this curve.
Solution: If 2 = cost and y = sin 2t then z? = cos®t and y? = 4sin® t cos®> t = 4cos? t(1 —cos? t) = 4z (1 —22).
This shows that the parametric curve is contained in the implicit cartesian curve y? = 422(1 — z2).

Let us verify not that our parametric curve is not only contained in the implicit curve y? = 422(1 — 2?)
but is in fact equal to that implicit curve. Suppose that y? = 422(1—x2). Then we have y = +-22v/1 — 22 with
—1 <2 <1. Ify =221 — 22 then we can let t = cos™! x € [0, 7], and then cost = z and, since sint > 0,

sin2t = 2sint cost = 2costVsin?t = 2costy/1 — cos2t = 2x\/1 — 22 = y.
If y = —22v/1 — 22 then we can let t = —cos™! x € [~7,0], and then cost = z and, since sint < 0,

sin2t = 2sintcost = —2costVsin?t = —2cost\/1 — cos?t = —2z\/1 — 22 =y.

This shows that the implicit curve is contained in the parametric curve.



3: (a) Sketch the curve (z,y) = (3t2,3t — t?), showing all horizontal and vertical points.
Solution: We have 2/(t) = 6t and y/(t) = 3 — 3t> = —3(t — 1)(¢t + 1). The curve is horizontal when y'(t) = 0,
that is when ¢ = £1, and the curve is vertical when a’(t) = 0, that is when ¢t = 0. We make a table of values
and sketch the curve.

y
t x Y
-2 12 2
-3 9 0
-1 3 =2
0 0 0 T
1 3 2
V3 9 0
2 12 -2

(b) Find the arclength of the loop in this curve.
Solution: The total arclength of the loop is equal to twice the arclength of the portion above the x-axis, so we

have

V3 V3 V3
L= 2/ V()2 +y' ()2 dt = / 24/(6t)2 + (3 — 3t2)2 dt = / 6+/(2t)2 4+ (1 —t2)%2dt
t=0 0 0
V3 V3 V3
:/ 6\/1+2t2+t4dt:/ 6(1+t2)dt:{6t+2t3}0 = 6v3+2-3V3 = 12V3.
0 0

(c) Find the area of the surface obtained by revolving the loop about the z-axis.

Solution: The surface is obtained by revolving the portion of the curve with 0 <t < v/3 about the z-axis. As
shown above, we have \/z/(t)2 + y/(t)2 = 3(1 + t?) and so the area is

V3 V3 V3
A= 2my(t) /2! (t)2 + ¢/ (t)? dt = / 21 (3t — %) - 3(1 +t2) = 7r/ 18t + 12t% — 6t° dt
0 0

t=0

V3
:w[9t2+3t4—t5]0 = 7(27 + 27— 27) = 2Tnr.



4: A circular hoop of radius 1, initially centered at (3,0), rolls without slipping once, counterclockwise, around
a circular hoop of radius 2 which remains stationary, centered at (0,0). Consider the curve which is followed
by the point on the moving hoop which is initially at the position (4,0).

(a) Show that the curve is given parametrically by (z,y) = (3 cos 0 + cos 360, 3sin 0 4 sin 39), with 0 < 6 < 2m.

Solution: When the center of the small hoop rotates through an angle 6, the hoop must spin through an angle
36 in order to roll without slipping. (This can be seen with the help of the following picture, in which the green
arcs all have length 26). After rotating through an angle 0, the center of the small hoop is at (3 cos 6, 3sinf),
so the point labeled by X is at (3 cos®,3sin#) + (sin 36, cos 36).

(b) Find the area enclosed by the curve.
Solution: Using the identity 2sin Asin B = cos(4A — B) — cos(A + B) with A = 30 and B = 0, we get
2 sin 0 sin 30 = cos 20 — cos 40, so the area is
/2 /2 /2
A= 4/ ly(0)z'(0)|d6 = —4/ y(0)2'(0) do = —4/ (3sin 6 + sin 30)(—3sin 6 — 3sin 36) db
0 0 0

=0

/2
:/ 36 sin 6 + 48 sin 0 sin 360 + 12 sin? 36 d6
0

/2
= / (18 — 18 cos 26) + 24(cos 20 — cos46) + (6 — 6 cos 66) db
0

2

/2
:/ 24+600529724cos407600560d0:{249+351n207651n4ﬂfsin69} —12r.
0

™
0
(c) Find the distance travelled by the point on the moving hoop.

Solution: The distance travelled by the point is the arclenth of the curve, which is

/2 /2
L:4/ Va'(0)2 4+ y'(0)? d9:4/ V/(=3sin 6 + 3sin 36)2 + (3 cos @ + 3cos 30)2 db
0 0

/2
= / 124/ (sin 6 4 sin 30)2 + (cos 6 + cos 30)2 df
0

/2
= / 12\/sin2 6 + 2sin 6 sin 36 + sin? 30 + cos2 @ + 2 cos 0 cos 30 + cos2 30 d
0

/2
= / 12v/2 4 25sinfsin 30 + 2 cos @ cos 30df  (since sin? § + cos? f = sin® 30 + cos? 30 = 1)
0

/2
= / 12v/2 +2cos20 df  (since cos 20 = cos(30 — 0) = cos 30 cos § + sin 36 sin )
0

/2 /2 /2
- / 12V cos? 6 df = / 24 cosf df = {24sin0}0 —24.
0 0



3

5: Consider the polar curve r = ———.
2 —cosf

(a) Sketch the curve, showing all horizontal and vertical points.

Solution: We have z = rcosf = _3cosh SO
2 —cosd
") (—3sind)(2 — cosf) — (3sinb)(sin b) —6sind
x = =
(2 — cos 6)? (2 —cos )2’
. 3sinf
and we have y = rsinf = ——— and so
2 —cosf
"0) = (3cos6)(2 — cosf) — (3sinf)(sinf)  6cos —3cos® — 3sin®0  3(2cosf — 1)
S = (2 — cos )2 N (2 — cos )2  (2—cosh)?

The curve is horizontal when y'(f) = 0, that is when cosf = 3 or when 6 = +% + 2nk with k € Z, and the
curve is vertical when /() = 0, that is when sin§ = 0, that is = 7k with k € Z. We make a table of values
(r,0) and plot the curve on a polar grid.

0 r
0 3
/3 2
/2 3/2
2r/3 6/5
T 1

etc.

(b) Find the Cartesian equation of this curve.

Solution: Note that 2 —cosf > 1 so r < 3 hence 3 + rcosf > 0, so we have
3
r=——— <= r(2—cosf) =3 < 2r=3+rcosf
2 —cost

> 472 = (3+7rcosh)? < 4(z* +9?) = (3+2)?
so the Cartesian equation is 4(22 + y2) = (3 + z)2.

Remark: we can rewrite the above Cartesian equation as follows
42 +y*) =B+ 2)? <= 42? +4° =9+ 62+ 27 <= 32 —6r+4y* =9
(-1 ¢

— 3z -1’ +4° =12 = Y t3 !

which shows that the curve is an ellipse.



2
6: Consider the polar curve r = g

(a) Sketch the portion of the curve with 7 < 6 < 4.

Solution: We make a table of values and sketch the curve.

m‘g‘ [_\_\‘Jm‘;"’ = I ST RN

~N W
A5

(V]

NI NI Wi Gl =Wl DN &~ 3
/ﬁ

e
3

(b) Find the arclength of the portion of the curve with 7 < 6 < 27.
Solution: The arclength of the portion of the curve with 7 < 6 < 27 is

27 ) ) 271'2 2
\/ 2+ /( de—/\/ il —;;) de—/ ,/ de—/ ”6 VL

Let tan ¢ = 6 so that sec ¢ = /1 + 62 and sec2 ¢d¢p = df. Then

I /2’r 2rsec® odp [T 2rdy [T 27 cos¢de
- Joor  tan?¢  Jy_.cososin®d  Jo—n (1 —sin® ¢)sin ¢
Now let u = sin ¢ so that du = cos ¢ d¢. Then we have
27 27 1 1 27
du 5 5 1 1
L=2 _— =2 2 2 —du=2r|iln1 — I —u-=
FAZW(17U2)U2 F/9=ﬁ1+u+1fu+u u 77[2 n|l+ul—zmnfl—u uZ |,
r 1 1 27 1 L 1 2 1 - 2 1 27
_on éln‘ +u _2] :2#[%111( +b?ﬂ¢)_ . } =27r{$ln<( +512n¢) )_ . }
| 1—u u? | 1 —sing sing |,_. cos? ¢ sing |,_.
r 1 . 1 27 2m
=27|Iln tsingl - = 27 | In (tan ¢ + sec ) — csc @
| cos ¢ sing | ,_. O—r
I VOZ 117" 27 + VArZ +
— o ln<0+\/02+1>— + ] —opn [ 2EEVAT ERV/TCIE N AT
L 9 O=m T+ V7T2




7: Consider the two the polar curves r = 3sinf and r = 1 4 cos 26.

(a) Sketch both polar curves on the same grid, showing all points of intersection.

Solution: To find the points of intersection, note that 3sinf = 1+ cos20 <= 3sinf = 1+ (1 —2sin’f) <=
2sin”0 + 3sinf — 2 =0 <= (2sinf — 1)(sinf+2) =0 <> sinf =3 < 6=---,% 3 ... Now we

6
make a table of values and plot the curves.

3sinf 1+ cos260

3 offwlf ol wh ol ©
5 e

O W N [JUNN) Niw O
S e

B ojw = O NI N

(b) Find the area of the region which lies inside both curves.

/6 /2
A= </O %(SSinﬁ)QdO—i—/ §(1+cos29)2d9>

Solution: The area is

/6

w/6 /2
:/ 9sin29d9+/ 1+ 2c0s 260 + cos? 20 do

0 w/6
/6 /2
:/ %—%COSQQ d0—|—/ 1+2C0820+%+%COS49 do
0 /6

9 9 . /6 3 . 1. /2
= 59—Zsm29}0 +{§0+Sln20+§sm49L/6

[
~(F-2)+ - (34 8)



8: Let R be the region which lies inside the polar curve r = 1+cos 6, and let S be the solid obtained by revolving
R about the z-axis.

(a) Find the volume of S.

Solution: We have x() = () cos 6 = (1 + cos ) cos ) = cos 0 + cos?  and y() = () sin§ = (1 + cos ) sin 6.
Also 2/(0) = —sinf — 2sinfcosf = —(1 + 2cosf)sinf. Using the substitution v = cosf so du = —sinf db,
the volume is

_ " T 2:17/
V= Lﬂ y(0)22(0) df

:/ 7(1 + cos 0)?(sin §)*(1 + 2 cos @) sin 6 df
0

:/ Cr(1 4 w21 — u?)(1+ 2u) du

:/ (14 2u +u?)(1 + 2u — u? — 2u®) du

1
:/ (1 + du + 4u® — 2u® — 5u* — 2u°) du

1

=7|u+2u? + 2ud — Lyt — b — Ly
3 2 Al

:w(@+2+§—§—1—§)—@4+2—§—%+1—§U

(b) Find the surface area of S.

Solution: Using the substitution © = 1 + cos so du = —sin 6 df, the surface area is
A= / 2w y(0)\/r(0)% + r'(0)? d
0

= / 27 (1 +cos€)(sin0)\/1 +2cosf + cos? 0 +sin? 6 db
0

:/ 27 (1 4+ cos8)vV2 + 2cosf sinf df
0
:/ 227 (14 cos )1 + cos 0 sin 6 df

0
0
= / —2V2 71 u? du
u=2

!

2
327
e



9: (a) Show that our two methods for finding areas in polar coordinates yield the same value, as follows: Let r(6)
be differentiable for 6 € [01,02]. Let 2(0) = r(0) cos @ and y(8) = r(0)sind, and for k = 1,2 write x = ()
and y, = y(0x). Show that

92 02
/ %7‘(9)2 do + / y(0) 2’ (0) d = %(chyg — x1Y1) -
01 91
Solution: Note that
/y(H)x'(G) df = /7“(9) sin §(r’(6) cos @ — r(0) sin 6) dx
= /7‘(9)7"(0) sin# cos 6 df — /7‘(9)2Sin29 do

and using Integration by Parts with u = sin cos§, du = (cos? @ —sin® 0)df = (1 — 2sin® 6)df, v = r(0)? and
dv = r(0)r'(6) df gives

/r(@)r’(@) sinf cos6 df = $r(6)?sinf cosd — / 1r(0)%(1 — 2sin® 0)do

s2(0)y(0) — / 37(6)% do + /7‘(9) sin? 0 d
and so /y(@)x’(@) do = z(0)y(0) — / 1r(#)*df. Putting in the endpoints 61, 6, yields the desired result.

(b) For a point p = (a,b) € R? and a continuous curve a(t) = (a,b) + (x(t),y(t)) with a(t) # p for any
t, we define the winding number W(a,p) of o about p as follows. We write «(t) parametrically in polar
coordinates as a(t) = (a,b) + r(t)(cosf(t),sinf(t)) where r(t) and 6(t) are continuous with r(¢) > 0 and
6(a) € [0,27). Then

W(a,p) = 5= (0(b) — 0(a)).

Suppose that x(t), y(¢), r(t) and 0(t) are all differentiable and their derivatives ar continuous. Show that

1 [Ty () —y2' (1)
W(a,p) = 2ﬂ/a P OEESOE dt.

Solution: Write av in polar coordinates as a(t) = (a,b) + 7(t)(cos6(t),sinf(t)), that is write 2 = r cos and
y = rsin® where r = r(t) and 0 = 0(t) are continuous with r(¢t) > 0 for all ¢ € [a,b] and 6(a) € [0,27). Then
/b zy —ya' gt — /b (rcosf)(r'sin@ + rcosf6') — (rsind)(r' cosf — rsin6¢’)

dt
22 + y?

r2 cos? +12 sin® 0

/br2C08200’+r281n209’dt/bo,dt

0(b) — 0(a) = 2m W(a, p).



(c) Let a(t) = (cost,sint)+2(cos 3t,sin 3t) with 0 < ¢ < 27. Sketch the loop «, then use the sketch (intuitively)
to find the winding number of a about each of the points (0,0), (2,0), (4,0) and (0, 2).

Solution: To sketch the loop by hand, it helps to treat the terms 2(cos 3t,sin 3t) and (cost,sint) separately:
choose values of ¢ (say multiples of {5 ), then for each value of ¢ find the point 2(cos 3t,sin3t) (which lies on
the circle r = 2) then add the unit vector (cost,sint) to the point.

With the help of the picture we find that W(«,0) = 3, W(«,2) =1, W(a,4) = 0 and W(q, 2i) = 2.



