MATH 148 Calculus 2, Solutions to the Exercises for Chapter 3

1: (a) Find the area of the region given by 0 < « < 27 and 1 — % sin2x <y <sinz.

Solution: First sketch the graphs of y =sinz and y =1 — % sin 2.
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From the graph (or by doing a little algebra) we see that the points of intersection are at z = § and x =

and that the curve y = sinz lies above the other curve between the points of intersection. So the area is
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(b) Find the area of the region which is bounded by the curves z = y® — 3y and z = y? — y.

Solution: First make a sketch.

o

From the graph (or by doing some algebra) we can see the points of intersection, and we can see which curve
is greater (farther to the right). The area is given by
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(c) Find the area of the region between the curve y = z(z — 2) with z > 0 and the curve x = y(y — 2) with
y > 0.

Solution: First we sketch the region.

We note that the region is symmetric in the line y = = so the area is twice the area of the region which lies

3 3 3
under y = z and over y = z(x —2): A:2/ r—x(r—2) dx:/ 6x —22% dr = [3;32—%303]0 =27-18=0.
0 0

(d) Find the area of the region bounded by the z-axis, the graph of y = Inz, and by the tangent line to
1y = Inx which passes through the origin.

Solution: The equation of the tangent line to y = Inz at the point (a,Ina) is y —Ina = %(m — a). Putting in
(z,y) = (0,0) gives —Ina = —1 so that a = e, and so the tangent line which passes through the origin is the
tangent line at the point (e, 1) and it has equation y = %x Now we can sketch the region.

To find the area, it is convenient to treat y as the variable, so the region lies to the left of x = e¥ and to the

1 1
right of x = ey. TheareaisA:/ eV —eydy = [ey—gyz}oz(e—g)—lzg—l.
y=0



2: (a) Let R be the region given by 0 < 2 < m and 0 < y < sin?z. Find the volume of the solid obtained by

revolving R about the z-axis, and find the volume of the solid obtained by revolving R about the y-axis.

Solution: The volume of the solid obtained by revolving R about the z-axis is
s s s
V:/ 7rsin4xdx:7r/ (%—%cos2x)2dx=7r/ (3 — L cos2z + 1 cos? 2z) du
0 0 0
T T
=7T/ i—%cost—i—i(%—l—%cosélx) d$=7T/ %—%cost—l—écosﬁlxdx
0 0

3 T _ 32
=T x—fsm2x—|— sm4m] =<2
[8 1 0 8
The volume of the solid obtained by revolving R about the y-axis is
s s
V= 27Ta:sin2xdx=7r/ z-2sin’z da.
0 0

We integrate by parts using u = x, du = dzx, v = — 5 sin 2z and dv = (1 — cos 2z)dz = 2sin”® z dz to get

V:’/T/ x-2sin’xdr = [x(xésian) f/xf%sirﬂx d:c]
0

:W[I2*%I81H2I7l$2* lcos2x};rzw((7r2f%WQfl) - (-1 = %3

T
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(b) Let R be the region 1 < <2, 0<y< Find the volume of the solid obtained by revolving

1
V72 + 2x

R about the z-axis, and find the volume of the solid obtained by revolving R about the y-axis.

Solution: Using cross-sections, the volume of the solid obtained by revolving R about the z-axis is

2 2 2
dx dx
d = _— _
V= / (z x2+2$> v 7T/1 x2(z2 4 2x) 7r/1 3(r +2)

1 C D
To get W E + — :1:2 + = s + peorr S need Az?(z +2) + Bz(z +2) + C(x + 2) + D2® = 1. Equate
coeflicients to get A+d=0,2A+ B =0,2B+ C =0 and 2C = 1. Solve these to get C = %, B = —i A=1
and D = —%. Thus we have

2

21 1 1 1 1 1
_ 8 1 2 8
1 1 11 11, 3
:W((§1n2+%—ﬁ—éln4)—(z—z—éln?’)) 7 (f+imd).
Using cylindrical shells, the volume of the solid obtained by revolving R about the y-axis is
2 2
1 21 dx
R (P R L Ry
z=1 v 4 2z 1 Va?+ 2z
Note that 22 4+ 2z = (x + 1)? — 1. Make the substitution sec = z + 1, tan = /22 + 2z, sec§ tan 6 df to get
21 dx 27 sec § tan 6 df
= 2 0do
Va2 + 2z tan 0 / e
=2mIn|secl + tanf| + c = 2rIn|(z + 1) + Va2 + 2z| + ¢

1

and so

2 ordx : 2
":/1 Trrgs =2 (e )+ Va4 20) || = 2m (I3 + VE) ~ (2 + VB)



3: (a) Let R be the (infinitely long) region given by 0 < z < oo and 0 < y < (22 + 1)~%/2. Find the area of the
region R, and find the volume of the solid obtained by revolving R about the y-axis.
dx

@119 Let tanf = x so secf = V22 + 1 and sec?0df = dx.
:E

Solution: The area is given by A = /

Then we have

> d ™/2 sec2 0 df /2 /2
A:/ 27“’:/ L:/ cos@df = [sinf] = lim sing=1,
o (22 +1)3/2 0 sec? 0 0 0 0—m /2~

* 2rxd
The volume is V = 27m:7x Let u = 22 + 1 so du = 2z dx. Then we have
(22 +1)3/2
27rmdac *® mdu > 3 o0
=/ == -3/2 :[_ —1/2} = i (_ —1/2) =
ve [ @i = = et [T i (ot oo

2

(b) Let R be the (infinitely long) region 0 <z < 00,0 <y < 1 fQ. Find the area of R and find the volume
x

of the solid obtained by revolving R about the z-axis.

< 2
A_/ VT e
o 4+
Make the substitution v = /z, u? = x, 2udu = dx to get
A*/OO 2u~2udui/OO 4u? du
C Jumo A+ut Jo (w2 —2u+2)(u? + 2u +2)
:/ i u B u du:/ (u-—1D+1 (u+t1)-1 du
0o ur—2u+2 u?+2u+2 0o u2—2u+2 u?+2u+2

/°° u—1 1 u+1 1
= - + du
0

Solution: The area is

2—2u—4—2Jr w2 —2u+2 wr42u+2 uw2+2u+2

[élnu —2u+2)+tan ' (u—1) — L In(u® + 2u+2) + tan" ! (u + 1)
0
u® —2u+2 _q 1 o

[ In (u2+2u+2>+tan (u—1) 4+ tan (u—l—l)}
0+3+3)—(0-3+3%)=m.

Using cross-sections, the volume is

V:/ 2f dx—/ _Amx
=0 4+ o (4+22)2

Make the substitution 2tanf = x, 2sec = v/4 + x2, 2secf tan 6 df to get
1% /”/2 47 - 2tan @ - 2sec? 0 d /”/2 tan 6 /”/2 sec 6 tan 6 df
= =TT [ — -

6=0 16 S€C4 0 0 0

Make the substitution u = sec, du = secf tan 0 df to get

> du 11"

0

sec3 0



4: (a) Let S be the solid 0 < x <2, —z <y <z, 0<z<a?—y% Find the volume of S.

Solution: We provide two solutions. The cross-section at x perpendicular to the z-axis is shaped like the
region in the yz-plane given by —z <y < z, 0 < z < 2 — y2. The area of this cross-section is

A(zx) = / 22—y dy = [a:z — %y‘?’] wi = (2% - %x?’) (=2 + %x?’) = %3:3,
Y x

2 2 9
V= / A(x)dx = / 308 do = Bmﬂ =18,
x=0 0 0

The cross-section at y perpendicular to the y-axis is shaped like the region in the zz-plane given by
ly] <2 <2,0<2z<2?—y2% The area of this cross-section is

and so the volume is

2 2
A(y)=/ Hx —y?de = [f2® —y wL_M:(%—?yz)—( vlyl = ylyl) = § — 20 + 3¢yl
y -
and so the volume is
2 2 2
vz/ §—2y2+%yzly|dy:/ %—2y2=§y3dy+/§—2y2+§y3dy
y=—2 y=—2 0

2
_ |8 2,3 _ 1,4 8 2,3, 1,4|" _ 16 , 16 _ 8 16 16 , 8\ _ 16

= [§?J—§I‘/ —ay} +{§—§y +éy}0__(_?"'?_5)"'(?_?"'5)_?'

(b) A scoop is in the shape of the parabolic surface —1 <z < 1, y = 22, 0 < 2z < 2, with one end covered by
the region —1 <z <1, x? < y <1, z=0. How much water can the scoop hold?

X

Solution: We provide 3 solutions. The cross-section at x perpendicular to the z-axis is a triangle With base
1 — z? and height 2 — 222, so the area of the cross-section is A(z) = 3(1 — 2?)(2 — 22%) = 1 — 22% + z*. The
volume is
1 1 1
— _ 2 4 g _ 2.3 15| _ 2, 1) _ 16
V_2/0 A(m)dx—?/o 1-2z° 42 dx—?{x—gx +zx ]0—2(1—54—5) = 2.
The cross-section at y perpendicular to the y-axis is a rectangle with base 2,/y and height 2 — 2y, so the

1/2 _ 443/2 and hence the volume is

=s(4-p =1

The cross- section at z perpendicular to the z-axis is the region which lies between the parabola y = «
and the line y =1 — fz so the area of the cross-section is

/\/m

0

area of the cross-section is A(y) = 4y

1 1
v :/ A2 — 4432 dy = 8{%3/3/2 _ %ys/z}o
0

2

(1-1z) -2 dx=2[(1— %z)gg—%m}m: (1—%2)3/2.

A(z) =2 .

Wl

Thus the volume is
2 3/2 0 1
4 1 8 3/2 812 16

where we made the substitution u =1 — %z



5: (a) Find the length of the curve y = V4z — 22 with 0 <z < 3.

Solution: We have y' = so the arclength is given by

2—x
Vaxr — x2

3 2 3 3 3
22—z 4 — 4x + 22 4 2dzx
L= i+ 4———7(m:/,h+4————wx:/,L——fw:/‘———f.
/0 \/ (\/490 —CL‘2> 0 4o — a2 o Vdx—a? o Vix — x?

Note that 4z — 22 = 4 — (z — 2)%. Let 2sinf = x — 2 so that 2cos = v/4r — 22 and 2cos 0 df = dz. Then

2d /6 4cosOdo /6 /6
L &:/ 2a0 = [20]" —z4m=tr.

o Vaz — a2 —xs2 2cosf )2 —r/2 3
(b) Find the length of the curve 0 < z < 8, y = 322/3.
Solution: We have ¢y’ = 22~ 1/3, so the arclength is given by
/ V14 (26-1/3)2 de = / /1 x2/3 \/:rzi?;g
Let u = 2%/3 + 4 so that du = 2 2~ 1/3 dx, that is ?2’ du = 1—/3 dx. Then we have

8 /r2/3 8
:/0 zx1/3+ :z:*/ Vu - dU*/ 7u1/2dU* [u3/2}4:16\/§—8.

(¢) Find the length of the curve 0 <z <In2, y = €*.

In2
Solution: Since 3’ = e*, the length is L = V1+e2® de. Let u?2 = 1+ e*®, 2udu = 2e**dx, and
z=0
V5 24 V5 1 V5 1 1
de = — dy = — 2 dutogetL:/ g:/ 14 du:/ 1+ —2— - 2 _du
e u? — vau?—1 V2 u? —1 V3 u—1 u+1l
V5
1
— 1 1 _ 1 _
~fut i HH{ VB4 i (42) —va- i () = vE—va+in (4L,

(d) Find the length of the curve y = Inz with 1 < 2 < /3.
Solution: We have y' = % so the length is

\/§ \/g 2
/ 1 v 1
z=1 €T 1 z

Make the substitution tanf = x, secd = Va2 + 1, secf df = dx, and then make the substitution u = secf,
du = secftan 0 df to get

7r/3 39 7\'/3 20 2 2d 2 1
L:/ = dH:/ #sec@tan@dﬂz/ #:/ 14+ —— du
g—r /4 tand x4 sec?0 —1 u=y3 u? —1 V3 u? —1

2 1 1 2
_ 2 2 _ 1. u—1 1 ;_( 1 \/571)
_/\/51+u—1 P du = [u—|— lnu+1} (2—1—21n3) \/§—|—21n\/§+1

V2
— V2+1
=2—-+v2+1n 75




6: (a) Find the area of the surface which is obtained by revolving the curve y = tanx with 0 < x < & about the

x-axis.
/6

Solution: We have 3’ = sec?z and so the surface area is A = / 27 tanx v/ 1 + sect*z dx. We solve this
integral by making the following sequence of substitutions: first, %ve let u = secx so du = sec x tan x dx; then
we let v = u? so dv = 2udu; next we let tan = v so secf = /1 4+ v2 and sec? 0 df = dv; and finally we let
w = sec so dw = secftanfdh. (All of this could be accomplished in a single step by making the substitution
w = v/1+sectx). Also note that when 6 = tan™ 3, we have sec = % (as can be seen using a right-angled
triangle with sides of lengths 3, 4 and 5). We have

/6 /6 9\ /1 4
A:/ 21 tanx \/1 + sect x dx:/ wsecxtanxdx
0 0

secx

2/‘f27r 1—|—u4 2/\/§7T\/1—|—u4 43 11T+ 02
— du= TQudu: —dv
1

v

1 1

/ o w _/tanl(“/‘”’)mwmﬁcl@_/““l“/””ec” sec tan 01 do
/4 w/4 /4

tané tan26 sec2f —1
5/3 5/3 1 5/3 1 1
5 :/ 7r<1+ 5 >dw/ <1+ —i )dw
Vz W — V3 w* — 1 V3 -1 w+1
5/3 w—1\1%/3
7T|:’LU—|—11H —1)—§ln(w+1)] —7T|:’LU+ ln()}
V2 w+1 V2

W im - (vErim ) =n (- vEem(4)).
1
14—

: 1 _ V2—1\ _ 1 V2—1 V241 _ 1 1 _
since 5 In —In2 and — ln<\/§+1> = ln(\fﬂ \/511) ——an<m> =In(v2+1).
(b) Find the area of the surface which is obtained by revolving the curve —Z < z < Z_ y = cosx about the
x-axis.
Solution: We have ¥’ = —sinz. By symmetry, the surface area is given by

/2 w/2 1
A:2/ 27rcosx\/1+sin2xdx:/ 47rcosx\/1+sin2xdm:/ dm\/1+u?du,
0 0

0
where © = sinz so du = cosz dz. Now let tan = u so that secd = /1 + u2 and sec? 0 df = du. Then

m/4 w/4
A= / 4 sec® 0 dh = [Qﬁ(secﬁtanﬂ + In(sec § + tan@))}o =2r(v2+In(v2+1)).
0

(c) The curve 9y? = x(x — 3)? has a loop in it. Find the area of the surface obtained by rotating the loop

about the x-axis.
3
0 TR AN
A

1/2 _ %x3/2

Solution: First we make a sketch.

The equation of the top half of the loop is y = +\/z(3—z) =z and y' = 1z —1/2 _ %x1/2 =

2z’
1—2)2 1
So we have dL = /1 + Q dr = e dx. The surface area is

4 2\/z

3 3 3
A:/27rydL:§/(3fx)(1+x)dx:%/ 342z — 2% do
0 0 0



7: Let S = {u € R*||u| = R} be the sphere of radius R centered at the origin in R,

(a) Find the area of a slice of thickness h on the surface of the sphere S (that is the area of the portion of the
sphere which lies between two parallel planes separated by a distance of h).

Solution: We take the two planes to be perpendicular to the z-axis, say with one plane at x = a and the other

at x = b with —R < a < b < R, so the thickness of the slice is h = b — a. The portion of the sphere between

the planes is obtained by revolving the curve z = vV R? — 22 (in the x2-plane) with a < z < b about the z-axis.
! x :

We have 2’ = TR 50 the area is

b b 2 b
A= [ oV R = [ %mmm:/a 9 R = 2nR(D — a) = 20 Eh

We remark that it might be surprising to see that the area only depends on the thickness h = b — a and not
on the position of the slice (that is not on the value of a). We also remark that the entire sphere is a slice of
thickness h = 2R so its area is A = 47 R.

(b) Find the circumference of, and the area inside, a spherical circle of radius r on S (the spherical circle of
radius r centred at the point u € S is the set of points v € S such that Rf = r where 6 is the angle between

the vectors u,v € R? which is given by 6 = cos™! 7&"'5‘ )

Solution: Rotate the sphere so that w (the center of the disc) is at (R, 0, 0).

R r = RO

R cos 6 (R,0,0)

-

The spherical disc is the slice between the planes x = a and x = b with ¢ = Rcosf and b = R, and the
spherical circle is an ordinary Euclidean circle, in the plane z = a, of Euclidean radius » = Rsin 6, and so the
circumference and area are given by

C =2mRsinf = 2msin 1

A =2rh=2r(b—a)=2r(R— Rcosf) =2rR(1 — cos ).

(¢) Find the area of a spherical triangle with interior angles a, 8 and ~ (given three non-coplanar points
u,v,w € S, the spherical triangle with vertices at u,v,w € S has three spherical edges; the spherical edge
through u and v is the set of points on S which lie on the plane through the origin which contains u and v,
and similarly for the other two edges; the angle at u in the spherical triangle is the angle between the two
spherical edges at u, which is the same as the angle between the corresponding planes through the origin).

Solution: Let T" be the spherical triangle with vertices at u, v and w with angles o, 5 and . Let H, be
the hemisphere which contains u whose boundary is the line through v and w, and let —H, be the opposite
hemisphere. Define Hg, —Hpg, H, and —H,, similarly. Let W, = (HgN H,) U (— HgN—H.,), and define Wp
and W, similarly. By looking at the sphere with the vector u pointing towards us, we can see that the double
wedge W, covers < of the entire sphere and so its area is A, = = - 47R? = 4R%«. Similarly the areas of the
double wedges W3 and W, are equal to Ag = 4R*B and A, = 4R%y. Notice that when we shade each of the
double wedges W, Wg and W, the triangle 7" and its opposite triangle —T" are each shaded three times while
the rest of the sphere is shaded once. It follows that if we let O = 47 R be the area of the entire sphere and
we let A be the area of the triangle T' (which is equal to the area of the opposite triangle —7') then we have
Ao+ Ag+ Ay = O +4A, that is 4R?a + 4R?B + 4R%*y = 4wR? + 4T, hence T = ((a + B +v) — 7) R2.



8: (a) A tank, shaped like a lower hemisphere of radius R, is filled with a liquid of density p.
Find the work done when the tank is emptied by pumping the liquid to the level of the top of the tank.

Solution: Choose the z-axis to point downwards with the origin at the center of the top of the hemisphere.
The cross-section at z is a circle of radius r(x) = v R? — 22 and the cross-ssectional area is
A(z) = mr(z)? = 7(R* — r?)

A thin slice of thickness Az has volume AV = A(z) Az and mass AM = p A(z) Az. The work done to lift
the liquid in this slice to the top of the tank (where x = 0) is AW = gx AM = pgx A(x) Ax. The total work
done is

R R R
Wz/ pgx A(z)de = / ngx(R2—x2)dx:7rpg/ Rz — 2% dx
0 0 0

R
:ﬂpg{%R2x2—%x4}0 = 7pg (%R‘lfiR‘l) = %ﬂ'pgR‘l.

(b) A chain, of length 7 and mass M, lies in the zy-plane. Find the work required to lift the chain and lie it
along the top half of the circle z =0, y? + (2 — 1)? = 1.

Solution: Let 6 be as shown below. For a thin slice of the chain (when it is lying on the top half of the circle) at
position 0 of thickness A6, the mass of the slice is AM = %A@, and the height of the slice above the zy-plane

is z = 1+ sinf, so the work done in lifting the slice from the xy-plane is AW = gzAM = %(1 + sin §)A6.
The total work is

O=m
W= %(Hsma)dezﬂ[o—coso}

™

:%(W—FQ).

s

6=0 6=0




9: (a) A trough, in the shape of the bottom half of a cylinder, of radius r and length [, lying on its side, is filled
with a liquid of density p. Find the force exerted by the liquid on each of the two semi-circular ends of the
tank, and find the outward force exerted by the liquid on the semi-cylindrical base of the tank.

Solution: Choose the z-axis to point downwards with the origin at the center of the top of one of the semi-
circulsr ends of the tank. Consider a thin horizontal strip along one of the ends of the tank at a depth =z
of thickness Axz. The pressure at all points at a depth = is P = pgz, and the area of the strip is AA =
2v/12 — 22 Az, and so the force exerted by the liquid on this strip is

AF = PAA =2pgx\/1%2 — 22Ax.
The total force on the end of the trough is

F:/ 2pgx\/r2—xde:pg[—%(TQ—:EQ)g’/Z]O:%pgrg.
=0

(If you cannot solve the integral /m\/ r2 — 22 dx by inspection, then try the substitution u = r% — 22, or try

the substitution rsinf = x)

Now, let 6 be the angle as shown below. Consider a thin horizontal strip along the semi-cylindrical
wall of the tank, at a depth x = rsinf, and of thickness rAf. The pressure at all points at this depth is
P = pgx = pgrsinf, and the area of the strip is AA = IrAf, and so the outward force exerted by the liquid
on this strip is

AF = PAA = pglr?sinf Af .

The total outward force is

F= / pglr?sin® dh = pglr? [ — cos 0} = 2pglr? .
0=0 0




(b) A flat circular disc of radius v/5 lies in the y-plane in the region 22 +y? < 5, 2 = 0. The disc has varying

density. The planar density (mass per unit area) at points which lie a distance r from the center is given by

p(r) = 35,2 A small object of mass m lies above the disc at the point (0,0,2). Find the gravitational force
T

exerted by the disc on the object.

Solution: By symmetry, the horizontal component of the force is zero, so we only consider the vertical com-
ponent of the force. Consider a thin ring (annulus) of radius r and thickness Ar. The area of the ring is

AA = 27rAr so its mass is AM = p(r)AA = 25 Ar. The distance from all points along this ring to the small

object is d = v/4 + r2 and the angle 6, between a line from a point on the ring to the object and the vertical

axis, is given by cosf = %, so the contribution made by the points on the ring to the vertical component of

the force is AF = G";?M cosf = M%Ar. The total force is

P /\/g AdrGmrdr
 Jrmo 3472412327
Make the substitution v = v4 + 12, u2 = 4 + 72, 2udu = 2r dr to get

3 3 3
G d 2d 2 2
po [0 mGmudu o 2 22
e (= 1) w2 (1= D)(u + i e =1
3 3
1 1 2 -1 2
=21Gm —— —  qu=27Gm |In 2 + -
w=a b—1 u+1 u? u+1 7% .

:27TGTTL(1H%+%—IH%71) :27er(ln%f%) .



10: In many situations, we can find a length or an area or a volume either by integrating with respect to one
variable, say x, or by integrating with respect to another variable, say y. We expect to obtain the same answer
using either method. Let us show that our expectation is justified in a few circumstances. Let f : [a,b] — [¢, d]
be strictly decreasing with f(a) = d and f(b) =c, and let g = f~! : [c,d] — [a, b].

(a) Suppose f and g are differentiable and consider the area of the region a < z < b, ¢ <y < f(z). Use
Substitution and Integration by Parts to show that

/:_a (f(z) —c)dz = /yd (9(y) —a)dy

(:c

Solution: Making the substitution y = f(x) and then integrating by parts using u = ¢ — a and dv = f'(z) dx
we have

d g(d) a
[ 6w -ady= [ (g7 - a)f @) de - / @-af @

=g(c)

el . owa-sm e
= —ac+/ f(z —/x cwdm+/ f(z dw—/x:a(f(x)—c)dm.

(b) Suppose f and g are differentiable and consider the length of the curve a <z < b, y = f(x). Show that
b d
/ \/1+f’(x)2dx:/ V1+g'(y)?dy.
r=a y=c

Solution: This is on Assignment 3.

(c) Suppose f and g are differentiable and consider the volume of the solid obtained by revolving the region
a<xz<b, ¢<y< f(x) about the z-axis. Show that

b d
/ W(f(l’)2 - 02) dr = / 2Ty (g(y) — a) dy.

—a =c
Solution: This is on Assignment 3

(d) Suppose f and g are continuous and consider the area of the region a < z < b, ¢ < y < f(z). Use
properties of the Riemann integral to prove that

[ @9 [ -aa

Solution: This is on Assignment 3



11: We defined the length of the curve y = f(z) on [a,b] only in the case that f is differentiable. In fact we can

give a more general definition. Let f : [a,b] — R be any function. For a partition X = (xg,xl, e ,xn) of
[a, ], define

L(f, X) = g V= )+ Jan)—F@n )

and define the length of the curve y = f(z) on [a,b] to be
L(f) =sup {L(f, X) |X is a partition of [a, b}}
(note that the supremum can be infinite). We say that f is rectifiable when L(f) is finite.

(a) Show that if f is C! (which means that f is differentiable and f’ is continuous on [a, b]) then f is rectifiable

and
b
L(f) = /_ V1T (@) de.

Solution: Suppose that f is C!. Given a partition X = (zg, 21, -+, x,) of [a,b], by the MVT (the Mean Value
Theorem) we can choose ¢ € [rg—1, k] such that (f(xg) — f(xr—1) = f'(ck)(xr — zk—1) and then, letting
M = max {|f'(z)|| = € [a,b]}, we have

n

L(faX):kf: Vi(wy —ze—1)? + (f(ar) — flar—1))? = Z V(g —zp—1)2 + f/(cr)? (g — 2p—1)2

0= I

T F/(en)? (xp — 1) fj JIF (e )2 Mgz < Z MAgz = M(b—a).
k k=1

It follows that L(f) = sup {L(ﬁX) | X is a partition of [a, b] } < M(b—a), so f is rectifiable.

Let X = (29,21, -,%,) be a partition of [a,b], and let Y be a partition which is obtained by adding
one more point, say Y = (zg, 21, ", Tk—1,Y, Tk, -+, Zn). Recall that for a triangle in the plane with side
lengths a, b and c, if 8 is the angle opposite the side of length a, then by the Law of Cosines we have
a? = b? 4 c® — 2bccos ) < b2 + ¢ +2bc = (b4 ¢)? so that a < b+ c. Applying this to the triangle with vertices
at (ve—1, f(wr-1)), (y, f(y)) and (zk, f(zx)) we obtain

Viwg —op-1)2 4+ (flzr) — flar—1)? < V(ex —9)2 + (f(zx) — f

(v))?
and hence that L(f, X) < L(f,Y). Since L(f, X) < L(f,Y ) L(f) whenever Y is obtained by adding one
point to X, it follows (by induction) that if Z is any partition with X C Z we have
)-

L(f,X) < L(f,2) < L(f

Let € > 0. Since f’(z) is continuous, the function /1 + f/(x)? is continuous, hence integrable. Choose
d > 0 so that for every partition X of [a,b] with |X| < ¢ and for all sample ponts t;, € [zr_1,z)] we have

b "
‘/ V14 fl(x)? dszzlx/lJrf’(tk)Q Apx

Choose a partition X3 with | X;| < d, and choose a partition Xs such that L(f)— £ < L(f, X2) < L(f), and let
X = X1UX,. Since X1 € X we have | X| < 0 and since Xp C X we have L(f)—§ < L(f, X2) < L(f, X) < L(f).

1

2+ V(Y — ze-1)? + (f(y) — f@r—1)?

€
<3

M\m

Say X = (xg, 1, -, %,) and choose sample points ¢ € [Tg_1, Tk] using the Mean Value Theorem, as above,
so that f(z) — f(zk—1) = f'(ck)Arz. As shown above, we have L(f, X \/1 + f'(ck)? Az, and so

1+ f/(Ck)2

- [ VIT PP da

‘ — > V14 fier)? Agz| +
E—1

+

//de

< = €.

oo
l\')\m



(b) Define f : [0,1] = R by f(0) =0 and f(x) = * cos % when = # 0. Show that f is differentiable on [0, 1]
but not rectifiable on [0, 1].
271'

Solution: When x # 0, f is differentiable at = with f’(z) = 2z cos & — < sin

the derivative) we have
f(0) = lim f@) = 10 lim z cos 75 =0

x—0 r—0 x—0

and (from the definition of

z27

by the Squeeze Theorem (since |z cos % | < |x| — 0 as & — 0). Thus f is differentiable everywhere.
Let n € ZT and let X be the partition X = (zg, 21, x,) with g = 0 and z = ﬁ that is

+17
O g dr ).

We have f(xy) = — k+1 cos(n—k+1)w % for 1 < k <n, and hence

X =

|f Ik) - f(zk_1>| = |n—k+1 + n—k+2} Z n—i’+2 for 2 S k S n.

Letting j = n—k+2 we have

L(f, X) = él V@r — e )2+ (F@n) — Flan )2 > éz £ () — flan1)| >

M:

Q\w

k

2

n
But note that we can choose n to make the sum . £ arbitrarily large, indeed when n = 2™ we have

j=

2
J

N

n
S22 G Gt D (Gt ) bt (bt )
i=

2%+2.%+4.%+8.%+...+2m*1.2%:m’

and so L(f) = sup {L(f.X) | X is a partition of [0,1]} = occ.



12: Tonelli’s version of Fubini’s Theorem implies that when f : (a,b) X (¢,d) — [0,00) is continuous, where the
endpoints a, b, ¢, d can be finite or infinite, we have

[ ( /;Cf@,y)dy) w- [ ( A:af<x,y>dx) i

(so we can calculate the volume of the solid given by a<z<b, c<y<d, 0<z< f(z,y), either by integrating
the cross-sectional area A(x f f(z,y)dy or by integrating the cross-sectional area A(y f flx,y) dx,
and the two calculations w111 yield the same value for the volume). Assuming that Tonelh s Theorem is true
(we have not developed the machinery needed to prove it) and assuming that elementary functions f(x,y) are
continuous, evaluate each of the following improper integrals.

® tan~!2r —tan"lx ,
(a) / " dz (hint: use f(z,y) = ﬁ)
; :

Solution: We have

/OC tan"12z — tan~' x
dr =
=0 x

2

tan~! zt (3 1
anw} dx:/ (/ “dy)dx
z y=1 =0 y:11+x Yy

2 o 2 -1 e o] 2
1 t
y=1 \Jz=0 T7Y y=1 Y 2=0 y=12Y

2
= {glny}l =Z5In2.

a\
I

(b) /01 xln_xl dz (hint: use f(z,y) = a¥).

Solution: We have

1 _ 1 y 11 1 1 1 1
/ x ldx:/ [x} dx:/ (/ xydy)dx:/ (/ xyd;v>dy
2=0 Inz =0 Inx y=0 =0 y=0 y=0 =0

(c) / 51230 dx (hint: use f(z,y) = e *¥sinz).
0

Solution: For y € (0,00), let I(y) = /e_“’y sinx dx. Integrate by parts twice, first using u; = e¢™*Y and

v1 = —cosz, and then again using us = ye~"¥ and vy = sinx, to get

I(y) = /efxy sinz doe = —e "Y cosz — /ye*zy cosz dx

=—e "Wcosx — (ye‘wy sinx + /y2e_’“'y sinz dx)

= —e "(cosx + ysinz) — v2I(y)

e ™ ( cosx + ysin x) Thus, using Tonelli’s Theorem, we have

o0 . o0 Ty
/ ey / [_esmx} dx = / / “"sinx dydx
z=0 L x =0 Jy=0
/ / “®Weinz drdy = / {I(y)ro dy
y=0 z=0

oo

y(cosx + ysinx)}
=0




