
MATH 148 Calculus 2, Solutions to the Exercises for Chapter 3

1: (a) Find the area of the region given by 0 < x < 2π and 1− 1√
3

sin 2x ≤ y ≤ sinx.

Solution: First sketch the graphs of y = sinx and y = 1− 1√
3

sin 2x.

From the graph (or by doing a little algebra) we see that the points of intersection are at x = π
6 and x = π

2 ,
and that the curve y = sinx lies above the other curve between the points of intersection. So the area is

A =

∫ π/2

π/6

sinx− 1 + 1√
3

sin 2x dx =
[
− cosx− x− 1

2
√

3
cos 2x

]π/2
π/6

= −
(
0 + π

2 −
1

2
√

3

)
+ (
√

3
2 + π

6 + 1
4
√

3

)
= 3
√

3
4 −

π
3 .

(b) Find the area of the region which is bounded by the curves x = y3 − 3y and x = y2 − y.

Solution: First make a sketch.

From the graph (or by doing some algebra) we can see the points of intersection, and we can see which curve
is greater (farther to the right). The area is given by

A =

∫ 0

−1

(y3 − 3y)− (y2 − y) dy +

∫ 2

0

(y2 − y)− (y3 − 3y) dy

=

∫ 0

−1

y3 − y2 − 2y dy +

∫ 2

0

−y3 + y2 + 2y dy

=
[

1
4y

4 − 1
3y

3 − y2
]0
−1

+
[
− 1

4y
4 + 1

3y
3 + y2

]2
0

= −
(

1
4 + 1

3 + 1
)

+
(
− 4 + 8

3 + 4
)

= 5
12 + 8

3 = 37
12 .



(c) Find the area of the region between the curve y = x(x − 2) with x ≥ 0 and the curve x = y(y − 2) with
y ≥ 0.

Solution: First we sketch the region.

We note that the region is symmetric in the line y = x so the area is twice the area of the region which lies

under y = x and over y = x(x−2): A = 2

∫ 3

0

x−x(x−2) dx =

∫ 3

0

6x−2x2 dx =
[
3x2− 2

3 x
3
]3

0
= 27−18 = 9.

(d) Find the area of the region bounded by the x-axis, the graph of y = lnx, and by the tangent line to
y = lnx which passes through the origin.

Solution: The equation of the tangent line to y = lnx at the point (a, ln a) is y − ln a = 1
a (x− a). Putting in

(x, y) = (0, 0) gives − ln a = −1 so that a = e, and so the tangent line which passes through the origin is the
tangent line at the point (e, 1) and it has equation y = 1

e x. Now we can sketch the region.

To find the area, it is convenient to treat y as the variable, so the region lies to the left of x = ey and to the

right of x = e y. The area is A =

∫ 1

y=0

ey − e y dy =
[
ey − e

2 y
2
]1

0
=
(
e− e

2

)
− 1 = e

2 − 1.



2: (a) Let R be the region given by 0 ≤ x ≤ π and 0 ≤ y ≤ sin2 x. Find the volume of the solid obtained by
revolving R about the x-axis, and find the volume of the solid obtained by revolving R about the y-axis.

Solution: The volume of the solid obtained by revolving R about the x-axis is

V =

∫ π

0

π sin4 x dx = π

∫ π

0

(
1
2 −

1
2 cos 2x

)2
dx = π

∫ π

0

(
1
4 −

1
2 cos 2x+ 1

4 cos2 2x
)
dx

= π

∫ π

0

1
4 −

1
2 cos 2x+ 1

4

(
1
2 + 1

2 cos 4x
)
dx = π

∫ π

0

3
8 −

1
2 cos 2x+ 1

8 cos 4x dx

= π
[

3
8 x−

1
4 sin 2x+ 1

32 sin 4x
]π

0
= 3π2

8 .

The volume of the solid obtained by revolving R about the y-axis is

V =

∫ π

0

2π x sin2 x dx = π

∫ π

0

x · 2 sin2 x dx.

We integrate by parts using u = x, du = dx, v = x− 1
2 sin 2x and dv = (1− cos 2x)dx = 2 sin2 x dx to get

V = π

∫ π

0

x · 2 sin2 x dx =

[
x
(
x− 1

2 sin 2x
)
−
∫
x− 1

2 sin 2x dx

]π
0

= π
[
x2 − 1

2 x sin 2x− 1
2 x

2 − 1
4 cos 2x

]π
0

= π
((
π2 − 1

2π
2 − 1

4

)
−
(
− 1

4

))
= π3

2 .

(b) Let R be the region 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

x
√
x2 + 2x

. Find the volume of the solid obtained by revolving

R about the x-axis, and find the volume of the solid obtained by revolving R about the y-axis.

Solution: Using cross-sections, the volume of the solid obtained by revolving R about the x-axis is

V =

∫ 2

x=1

π

(
1

x
√
x2 + 2x

)2

dx = π

∫ 2

1

dx

x2(x2 + 2x)
= π

∫ 2

1

dx

x3(x+ 2)
.

To get
1

x2(x+ 2)
=
A

x
+
B

x2
+
C

x3
+

D

x+ 2
we need Ax2(x + 2) + Bx(x + 2) + C(x + 2) + Dx3 = 1. Equate

coefficients to get A+ d = 0, 2A+B = 0, 2B+C = 0 and 2C = 1. Solve these to get C = 1
2 , B = − 1

4 , A = 1
8

and D = − 1
8 . Thus we have

V = π

∫ 2

1

1
8

x
−

1
4

x2
+

1
2

x3
−

1
8

x+ 2
dx = π

[
1
8 lnx+

1

4x
− 1

4x2
− 1

8 ln(x+ 2)

]2

1

= π
( (

1
8 ln 2 + 1

8 −
1
16 −

1
8 ln 4

)
−
(

1
4 −

1
4 −

1
8 ln 3

) )
= π

(
1
16 + 1

8 ln 3
2

)
.

Using cylindrical shells, the volume of the solid obtained by revolving R about the y-axis is

V =

∫ 2

x=1

2π x

(
1

x
√
x2 + 2x

)
dx =

∫ 2

1

2π dx√
x2 + 2x

.

Note that x2 + 2x = (x+ 1)2 − 1. Make the substitution sec θ = x+ 1, tan θ =
√
x2 + 2x, sec θ tan θ dθ to get∫

2π dx√
x2 + 2x

=

∫
2π sec θ tan θ dθ

tan θ
=

∫
2π sec θ dθ

= 2π ln
∣∣ sec θ + tan θ

∣∣+ c = 2π ln
∣∣(x+ 1) +

√
x2 + 2x

∣∣+ c

and so

V =

∫ 2

1

2π dx√
x2 + 2x

= 2π
[

ln
(
(x+ 1) +

√
x2 + 2x

)]2
1

= 2π
(

ln(3 +
√

8)− ln(2 +
√

3)
)
.



3: (a) Let R be the (infinitely long) region given by 0 ≤ x <∞ and 0 ≤ y ≤ (x2 + 1)−3/2. Find the area of the
region R, and find the volume of the solid obtained by revolving R about the y-axis.

Solution: The area is given by A =

∫ ∞
0

dx

(x2 + 1)3/2
. Let tan θ = x so sec θ =

√
x2 + 1 and sec2 θ dθ = dx.

Then we have

A =

∫ ∞
0

dx

(x2 + 1)3/2
=

∫ π/2

0

sec2 θ dθ

sec3 θ
=

∫ π/2

0

cos θ dθ =
[

sin θ
]π/2−

0
= lim
θ→π/2−

sin θ = 1 .

The volume is V =

∫ ∞
0

2πx dx

(x2 + 1)3/2
. Let u = x2 + 1 so du = 2x dx. Then we have

V =

∫ ∞
0

2πx dx

(x2 + 1)3/2
=

∫ ∞
1

π du

u3/2
=

∫ ∞
1

π u−3/2 du =
[
− 2π u−1/2

]∞
1

= lim
u→∞

(
−2π u−1/2

)
+ 2π = 2π .

(b) Let R be the (infinitely long) region 0 ≤ x <∞, 0 ≤ y ≤ 2
√
x

4 + x2
. Find the area of R and find the volume

of the solid obtained by revolving R about the x-axis.

Solution: The area is

A =

∫ ∞
0

2
√
x

4 + x2
dx .

Make the substitution u =
√
x, u2 = x, 2u du = dx to get

A =

∫ ∞
u=0

2u · 2u du
4 + u4

=

∫ ∞
0

4u2 du

(u2 − 2u+ 2)(u2 + 2u+ 2)

=

∫ ∞
0

u

u2 − 2u+ 2
− u

u2 + 2u+ 2
du =

∫ ∞
0

(u− 1) + 1

u2 − 2u+ 2
− (u+ 1)− 1

u2 + 2u+ 2
du

=

∫ ∞
0

u− 1

u2 − 2u+ 2
+

1

u2 − 2u+ 2
− u+ 1

u2 + 2u+ 2
+

1

u2 + 2u+ 2
du

=

[
1
2 ln(u2 − 2u+ 2) + tan−1(u− 1)− 1

2 ln(u2 + 2u+ 2) + tan−1(u+ 1)

]∞
0

=

[
1
2 ln

(
u2 − 2u+ 2

u2 + 2u+ 2

)
+ tan−1(u− 1) + tan−1(u+ 1)

]∞
0

=
(
0 + π

2 + π
2

)
−
(
0− π

4 + π
4

)
= π .

Using cross-sections, the volume is

V =

∫ ∞
x=0

π

(
2
√
x

4 + x2

)2

dx =

∫ ∞
0

4π x

(4 + x2)2
dx .

Make the substitution 2 tan θ = x, 2 sec θ =
√

4 + x2, 2 sec θ tan θ dθ to get

V =

∫ π/2

θ=0

4π · 2 tan θ · 2 sec2 θ dθ

16 sec4 θ
= π

∫ π/2

0

tan θ

sec2 θ
dθ = π

∫ π/2

0

sec θ tan θ dθ

sec3 θ

Make the substitution u = sec θ, du = sec θ tan θ dθ to get

V = π

∫ ∞
u=1

du

u3
= π

[
−1

2u2

]∞
1

= π
2 .



4: (a) Let S be the solid 0 ≤ x ≤ 2, −x ≤ y ≤ x, 0 ≤ z ≤ x2 − y2. Find the volume of S.

Solution: We provide two solutions. The cross-section at x perpendicular to the x-axis is shaped like the
region in the yz-plane given by −x ≤ y ≤ x, 0 ≤ z ≤ x2 − y2. The area of this cross-section is

A(x) =

∫ x

y=−x
x2 − y2 dy =

[
x2y − 1

3y
3
]x
y=−x

=
(
x3 − 1

3x
3
)
−
(
−x3 + 1

3x
3
)

= 4
3 x

3 ,

and so the volume is

V =

∫ 2

x=0

A(x) dx =

∫ 2

0

4
3x

3 dx =
[

1
3x

4
]2

0
= 16

3 .

The cross-section at y perpendicular to the y-axis is shaped like the region in the xz-plane given by
|y| ≤ x ≤ 2, 0 ≤ z ≤ x2 − y2. The area of this cross-section is

A(y) =

∫ 2

x=|y|
x2 − y2 dx =

[
1
3x

3 − y2x
]2
x=|y|

=
(

8
3 − 2y2

)
−
(

1
3y

2|y| − y2|y|
)

= 8
3 − 2y2 + 2

3y
2|y| ,

and so the volume is

V =

∫ 2

y=−2

8
3 − 2y2 + 2

3y
2|y| dy =

∫ 2

y=−2

8
3 − 2y2 = 2

3y
3 dy +

∫ 2

0

8
3 − 2y2 + 2

3y
3 dy

=
[

8
3y −

2
3y

3 − 1
6y

4
]0
−2

+
[

8
3 −

2
3y

3 + 1
6y

4
]2

0
= −

(
− 16

3 + 16
3 −

8
3

)
+
(

16
3 −

16
3 + 8

3

)
= 16

3 .

(b) A scoop is in the shape of the parabolic surface −1 ≤ x ≤ 1, y = x2, 0 ≤ z ≤ 2, with one end covered by
the region −1 ≤ x ≤ 1, x2 ≤ y ≤ 1, z = 0. How much water can the scoop hold?

y
z

x

Solution: We provide 3 solutions. The cross-section at x perpendicular to the x-axis is a triangle with base
1− x2 and height 2− 2x2, so the area of the cross-section is A(x) = 1

2 (1− x2)(2− 2x2) = 1− 2x2 + x4. The
volume is

V = 2

∫ 1

0

A(x) dx = 2

∫ 1

0

1− 2x2 + x4 dx = 2
[
x− 2

3x
3 + 1

5x
5
]1

0
= 2
(
1− 2

3 + 1
5

)
= 16

5 .

The cross-section at y perpendicular to the y-axis is a rectangle with base 2
√
y and height 2− 2y, so the

area of the cross-section is A(y) = 4y1/2 − 4y3/2, and hence the volume is

V =

∫ 1

0

4y1/2 − 4y3/2 dy = 8
[

1
3y

3/2 − 1
5y

5/2
]1

0
= 8
(

1
3 −

1
5

)
= 16

15 .

The cross-section at z perpendicular to the z-axis is the region which lies between the parabola y = x2

and the line y = 1− 1
2z, so the area of the cross-section is

A(z) = 2

∫ √1−z/2

0

(
1− 1

2z
)
− x2 dx = 2

[(
1− 1

2z
)
x− 1

3x
3
]√1−z/2

0
= 4

3

(
1− 1

2z
)3/2

.

Thus the volume is

V =

∫ 2

0

4
3

(
1− 1

2z
)3/2

dx = − 8
3

∫ 0

1

u3/2 du = 8
3

[
2
5u

5/2
]1

0
= 16

15 ,

where we made the substitution u = 1− 1
2z.



5: (a) Find the length of the curve y =
√

4x− x2 with 0 ≤ x ≤ 3.

Solution: We have y′ =
2− x√
4x− x2

so the arclength is given by

L =

∫ 3

0

√
1 +

(
2− x√
4x− x2

)2

dx =

∫ 3

0

√
1 +

4− 4x+ x2

4x− x2
dx =

∫ 3

0

√
4

4x− x2
dx =

∫ 3

0

2 dx√
4x− x2

.

Note that 4x− x2 = 4− (x− 2)2. Let 2 sin θ = x− 2 so that 2 cos θ =
√

4x− x2 and 2 cos θ dθ = dx. Then

L =

∫ 3

0

2 dx√
4x− x2

=

∫ π/6

−π/2

4 cos θ dθ

2 cos θ
=

∫ π/6

−π/2
2 dθ =

[
2θ
]π/6
−π/2

= π
3 + π = 4π

3 .

(b) Find the length of the curve 0 ≤ x ≤ 8, y = 3x2/3.

Solution: We have y′ = 2x−1/3, so the arclength is given by

L =

∫ 8

0

√
1 + (2x−1/3)2 dx =

∫ 8

0

√
1 +

4

x2/3
dx =

∫ 8

0

√
x2/3 + 4

x1/3
dx .

Let u = x2/3 + 4 so that du = 2
3 x
−1/3 dx, that is 3

2 du =
1

x1/3
dx. Then we have

L =

∫ 8

0

√
x2/3 + 4

x1/3
dx =

∫ 8

4

√
u · 3

2 du =

∫ 8

4

3
2 u

1/2 du =
[
u3/2

]8
4

= 16
√

2− 8 .

(c) Find the length of the curve 0 ≤ x ≤ ln 2, y = ex.

Solution: Since y′ = ex, the length is L =

∫ ln 2

x=0

√
1 + e2x dx. Let u2 = 1 + e2x, 2u du = 2e2x dx, and

dx =
u

e2x
du =

u

u2 − 1
du to get L =

∫ √5

u=
√

2

u2 du

u2 − 1
=

∫ √5

√
2

1 +
1

u2 − 1
du =

∫ √5

√
2

1 +
1
2

u− 1
−

1
2

u+ 1
du

=

[
u+ 1

2 ln

∣∣∣∣u− 1

u+ 1

∣∣∣∣ ]
√

5

√
2

=
√

5 + 1
2 ln

(√
5−1√
5+1

)
−
√

2− 1
2 ln

(√
2−1√
2+1

)
=
√

5−
√

2 + ln
( √

5−1
2(
√

2−1)

)
.

(d) Find the length of the curve y = lnx with 1 ≤ x ≤
√

3.

Solution: We have y′ = 1
x so the length is

L =

∫ √3

x=1

√
1 +

1

x2
dx =

∫ √3

1

√
x2 + 1

x
dx .

Make the substitution tan θ = x, sec θ =
√
x2 + 1, sec θ dθ = dx, and then make the substitution u = sec θ,

du = sec θ tan θ dθ to get

L =

∫ π/3

θ=π/4

sec3 θ

tan θ
dθ =

∫ π/3

π/4

sec2 θ

sec2 θ − 1
sec θ tan θ dθ =

∫ 2

u=
√

2

u2 du

u2 − 1
=

∫ 2

√
2

1 +
1

u2 − 1
du

=

∫ 2

√
2

1 +
1
2

u− 1
−

1
2

u+ 1
du =

[
u+ 1

2 ln
u− 1

u+ 1

]2

√
2

=
(
2 + 1

2 ln 1
3

)
−
(√

2 + 1
2 ln

√
2−1√
2+1

)
= 2−

√
2 + ln

√
2+1√

3
.



6: (a) Find the area of the surface which is obtained by revolving the curve y = tanx with 0 ≤ x ≤ π
6 about the

x-axis.

Solution: We have y′ = sec2 x and so the surface area is A =

∫ π/6

0

2π tanx
√

1 + sec4 x dx. We solve this

integral by making the following sequence of substitutions: first, we let u = secx so du = secx tanx dx; then
we let v = u2 so dv = 2u du; next we let tan θ = v so sec θ =

√
1 + v2 and sec2 θ dθ = dv; and finally we let

w = sec θ so dw = sec θ tan θ dθ. (All of this could be accomplished in a single step by making the substitution
w =

√
1 + sec4 x). Also note that when θ = tan−1 4

3 , we have sec θ = 5
3 (as can be seen using a right-angled

triangle with sides of lengths 3, 4 and 5). We have

A =

∫ π/6

0

2π tanx
√

1 + sec4 x dx =

∫ π/6

0

2π
√

1 + sec4 x

secx
secx tanx dx

=

∫ 2/
√

3

1

2π
√

1 + u4

u
du =

∫ 2/
√

3

1

π
√

1 + u4

u2
2u du =

∫ 4/3

1

π
√

1 + v2

v
dv

=

∫ tan−1(4/3)

π/4

π sec θ · sec2 θ dθ

tan θ
=

∫ tan−1(4/3)

π/4

π sec3 θ tan θ dθ

tan2 θ
=

∫ tan−1(4/3)

π/4

π sec2 θ

sec2 θ − 1
sec θ tan θ dθ

=

∫ 5/3

√
2

π w2

w2 − 1
dw =

∫ 5/3

√
2

π

(
1 +

1

w2 − 1

)
dw =

∫ 5/3

√
2

π

(
1 +

1
2

w − 1
−

1
2

w + 1

)
dw

= π

[
w + 1

2 ln(w − 1)− 1
2 ln(w + 1)

]5/3

√
2

= π

[
w + 1

2 ln

(
w − 1

w + 1

)]5/3

√
2

= π
( (

5
3 + 1

2 ln 1
4

)
−
(√

2 + 1
2 ln

√
2−1√
2+1

))
= π

(
5
3 −
√

2 + ln
(√

2+1
2

))
,

since 1
2 ln 1

4 = − ln 2 and − 1
2 ln

(√
2−1√
2+1

)
= − 1

2 ln
(√

2−1√
2+1
·
√

2+1√
2+1

)
= − 1

2 ln
(

1
(
√

2+1)2

)
= ln(

√
2 + 1).

(b) Find the area of the surface which is obtained by revolving the curve −π2 ≤ x ≤ π
2 , y = cosx about the

x-axis.

Solution: We have y′ = − sinx. By symmetry, the surface area is given by

A = 2

∫ π/2

0

2π cosx
√

1 + sin2 x dx =

∫ π/2

0

4π cosx
√

1 + sin2 x dx =

∫ 1

0

4π
√

1 + u2 du ,

where u = sinx so du = cosx dx. Now let tan θ = u so that sec θ =
√

1 + u2 and sec2 θ dθ = du. Then

A =

∫ π/4

0

4π sec3 θ dθ =
[
2π
(

sec θ tan θ + ln(sec θ + tan θ)
)]π/4

0
= 2π

(√
2 + ln(

√
2 + 1)

)
.

(c) The curve 9y2 = x(x − 3)2 has a loop in it. Find the area of the surface obtained by rotating the loop
about the x-axis.

Solution: First we make a sketch.

The equation of the top half of the loop is y = 1
3

√
x(3− x) = x1/2− 1

3x
3/2, and y′ = 1

2x
−1/2− 1

2x
1/2 =

1− x
2
√
x

.

So we have dL =

√
1 +

(1− x)2

4x
dx =

1 + x

2
√
x
dx. The surface area is

A =

∫ 3

0

2πy dL = π
3

∫ 3

0

(3− x)(1 + x) dx = π
3

∫ 3

0

3 + 2x− x2 dx

= π
3

[
3x+ x2 − 1

3x
3
]3

0
= π

3

(
9 + 9− 9

)
= 3π .



7: Let S =
{
u ∈ R3

∣∣ |u| = R
}

be the sphere of radius R centered at the origin in R3.

(a) Find the area of a slice of thickness h on the surface of the sphere S (that is the area of the portion of the
sphere which lies between two parallel planes separated by a distance of h).

Solution: We take the two planes to be perpendicular to the x-axis, say with one plane at x = a and the other
at x = b with −R ≤ a ≤ b ≤ R, so the thickness of the slice is h = b− a. The portion of the sphere between
the planes is obtained by revolving the curve z =

√
R2 − x2 (in the xz-plane) with a ≤ x ≤ b about the x-axis.

We have z′ = x√
R2−x2

so the area is

A =

∫ b

x=a

2πz(x)
√

1 + z′(x)2 dx =

∫ b

a

2π
√
R2 − x2

√
1 +

x2

R2 − x2
dx =

∫ b

a

2πRdx = 2πR(b− a) = 2πRh.

We remark that it might be surprising to see that the area only depends on the thickness h = b− a and not
on the position of the slice (that is not on the value of a). We also remark that the entire sphere is a slice of
thickness h = 2R so its area is A = 4πR.

(b) Find the circumference of, and the area inside, a spherical circle of radius r on S
(
the spherical circle of

radius r centred at the point u ∈ S is the set of points v ∈ S such that Rθ = r where θ is the angle between
the vectors u, v ∈ R3 which is given by θ = cos−1 u. v

|u| |v|
)
.

Solution: Rotate the sphere so that u (the center of the disc) is at (R, 0, 0).

R r = Rθ

θ
R cos θ (R, 0, 0)

The spherical disc is the slice between the planes x = a and x = b with a = R cos θ and b = R, and the
spherical circle is an ordinary Euclidean circle, in the plane x = a, of Euclidean radius r = R sin θ, and so the
circumference and area are given by

C = 2πR sin θ = 2π sin r
R

A = 2πh = 2π(b− a) = 2π(R−R cos θ) = 2πR
(
1− cos r

R

)
.

(c) Find the area of a spherical triangle with interior angles α, β and γ
(
given three non-coplanar points

u, v, w ∈ S, the spherical triangle with vertices at u, v, w ∈ S has three spherical edges; the spherical edge
through u and v is the set of points on S which lie on the plane through the origin which contains u and v,
and similarly for the other two edges; the angle at u in the spherical triangle is the angle between the two
spherical edges at u, which is the same as the angle between the corresponding planes through the origin

)
.

Solution: Let T be the spherical triangle with vertices at u, v and w with angles α, β and γ. Let Hα be
the hemisphere which contains u whose boundary is the line through v and w, and let −Hα be the opposite
hemisphere. Define Hβ , −Hβ , Hγ and −Hγ similarly. Let Wα =

(
Hβ ∩Hγ

)
∪
(
−Hβ ∩−Hγ

)
, and define Wβ

and Wγ similarly. By looking at the sphere with the vector u pointing towards us, we can see that the double
wedge Wα covers α

π of the entire sphere and so its area is Aα = α
π · 4πR

2 = 4R2α. Similarly the areas of the
double wedges Wβ and Wγ are equal to Aβ = 4R2β and Aγ = 4R2γ. Notice that when we shade each of the
double wedges Wα, Wβ and Wγ , the triangle T and its opposite triangle −T are each shaded three times while
the rest of the sphere is shaded once. It follows that if we let O = 4πR be the area of the entire sphere and
we let ∆ be the area of the triangle T (which is equal to the area of the opposite triangle −T ) then we have
Aα +Aβ +Aγ = O + 4∆, that is 4R2α+ 4R2β + 4R2γ = 4πR2 + 4T , hence T =

(
(α+ β + γ)− π

)
R2.



8: (a) A tank, shaped like a lower hemisphere of radius R, is filled with a liquid of density ρ.
Find the work done when the tank is emptied by pumping the liquid to the level of the top of the tank.

Solution: Choose the x-axis to point downwards with the origin at the center of the top of the hemisphere.
The cross-section at x is a circle of radius r(x) =

√
R2 − x2 and the cross-ssectional area is

A(x) = π r(x)2 = π(R2 − r2)

A thin slice of thickness ∆x has volume ∆V = A(x) ∆x and mass ∆M = ρA(x) ∆x. The work done to lift
the liquid in this slice to the top of the tank (where x = 0) is ∆W = gx∆M = ρgxA(x) ∆x. The total work
done is

W =

∫ R

0

ρg xA(x) dx =

∫ R

0

πρg x(R2 − x2) dx = πρg

∫ R

0

R2x− x3 dx

= πρg
[

1
2 R

2x2 − 1
4 x

4
]R

0
= πρg

(
1
2 R

4 − 1
4 R

4
)

= 1
4 πρg R

4 .

(b) A chain, of length π and mass M , lies in the xy-plane. Find the work required to lift the chain and lie it
along the top half of the circle x = 0, y2 + (z − 1)2 = 1.

Solution: Let θ be as shown below. For a thin slice of the chain (when it is lying on the top half of the circle) at
position θ of thickness ∆θ, the mass of the slice is ∆M = M

π ∆θ, and the height of the slice above the xy-plane

is z = 1 + sin θ, so the work done in lifting the slice from the xy-plane is ∆W = gz∆M = gM
π (1 + sin θ)∆θ.

The total work is

W =

∫ θ=π

θ=0

gM
π (1 + sin θ) dθ = gM

π

[
θ − cos θ

]π
θ=0

= gM
π (π + 2) .

z

θ

y



9: (a) A trough, in the shape of the bottom half of a cylinder, of radius r and length l, lying on its side, is filled
with a liquid of density ρ. Find the force exerted by the liquid on each of the two semi-circular ends of the
tank, and find the outward force exerted by the liquid on the semi-cylindrical base of the tank.

Solution: Choose the x-axis to point downwards with the origin at the center of the top of one of the semi-
circulsr ends of the tank. Consider a thin horizontal strip along one of the ends of the tank at a depth x
of thickness ∆x. The pressure at all points at a depth x is P = ρgx, and the area of the strip is ∆A =
2
√
r2 − x2 ∆x, and so the force exerted by the liquid on this strip is

∆F = P∆A = 2ρg x
√
r2 − x2∆x .

The total force on the end of the trough is

F =

∫ r

x=0

2ρg x
√
r2 − x2 dx = ρg

[
− 2

3 (r2 − x2)3/2
]r

0
= 2

3 ρgr
3 .

(
If you cannot solve the integral

∫
x
√
r2 − x2 dx by inspection, then try the substitution u = r2 − x2, or try

the substitution r sin θ = x
)
.

Now, let θ be the angle as shown below. Consider a thin horizontal strip along the semi-cylindrical
wall of the tank, at a depth x = r sin θ, and of thickness r∆θ. The pressure at all points at this depth is
P = ρgx = ρgr sin θ, and the area of the strip is ∆A = lr∆θ, and so the outward force exerted by the liquid
on this strip is

∆F = P∆A = ρglr2 sin θ∆θ .

The total outward force is

F =

∫ π

θ=0

ρglr2 sin θ dθ = ρglr2
[
− cos θ

]π
0

= 2ρglr2 .

θ

x



(b) A flat circular disc of radius
√

5 lies in the xy-plane in the region x2 + y2 ≤ 5, z = 0. The disc has varying
density. The planar density (mass per unit area) at points which lie a distance r from the center is given by

ρ(r) =
1

3 + r2
. A small object of mass m lies above the disc at the point (0, 0, 2). Find the gravitational force

exerted by the disc on the object.

Solution: By symmetry, the horizontal component of the force is zero, so we only consider the vertical com-
ponent of the force. Consider a thin ring (annulus) of radius r and thickness ∆r. The area of the ring is
∆A = 2πr∆r so its mass is ∆M = ρ(r)∆A = 2πr

3+r2 ∆r. The distance from all points along this ring to the small

object is d =
√

4 + r2 and the angle θ, between a line from a point on the ring to the object and the vertical
axis, is given by cos θ = 2

d , so the contribution made by the points on the ring to the vertical component of

the force is ∆F = Gm∆M
d2 cos θ = 4πGmr

(3+r2)(4+r2)3/2
∆r. The total force is

F =

∫ √5

r=0

4πGmr dr

(3 + r2)(4 + r2)3/2
.

Make the substitution u =
√

4 + r2, u2 = 4 + r2, 2u du = 2r dr to get

F =

∫ 3

u=2

4πGmudu

(u2 − 1)u3
= 2πGm

∫ 3

u=2

2 du

(u− 1)(u+ 1)u2
= 2πGm

∫ 3

u=2

2

u2 − 1
− 2

u2
du

= 2πGm

∫ 3

u=2

1

u− 1
− 1

u+ 1
− 2

u2
du = 2πGm

[
ln

(
u− 1

u+ 1

)
+

2

u

]3

u=2

= 2πGm
(
ln 1

2 + 2
3 − ln 1

3 − 1
)

= 2πGm
(
ln 3

2 −
1
3

)
.



10: In many situations, we can find a length or an area or a volume either by integrating with respect to one
variable, say x, or by integrating with respect to another variable, say y. We expect to obtain the same answer
using either method. Let us show that our expectation is justified in a few circumstances. Let f : [a, b]→ [c, d]
be strictly decreasing with f(a) = d and f(b) = c, and let g = f−1 : [c, d]→ [a, b].

(a) Suppose f and g are differentiable and consider the area of the region a ≤ x ≤ b, c ≤ y ≤ f(x). Use
Substitution and Integration by Parts to show that∫ b

x=a

(
f(x)− c

)
dx =

∫ d

y=c

(
g(y)− a

)
dy

.

Solution: Making the substitution y = f(x) and then integrating by parts using u = x− a and dv = f ′(x) dx
we have∫ d

y=c

(g(y)− a) dy =

∫ g(d)

x=g(c)

(
g(f(x))− a

)
f ′(x) dx =

∫ a

x=b

(
x− a)f ′(x) dx

=
[
(x− a)f(x)

]a
x=b
−
∫ a

x=b

f(x) dx = −(b− a)f(b) +

∫ b

x=a

f(x) dx

= −(b− a)c+

∫ b

x=a

f(x) dx = −
∫ b

x=a

cx dx+

∫ b

x=a

f(x) dx =

∫ b

x=a

(f(x)− c) dx.

(b) Suppose f and g are differentiable and consider the length of the curve a ≤ x ≤ b, y = f(x). Show that∫ b

x=a

√
1 + f ′(x)2 dx =

∫ d

y=c

√
1 + g′(y)2 dy.

Solution: This is on Assignment 3.

(c) Suppose f and g are differentiable and consider the volume of the solid obtained by revolving the region
a ≤ x ≤ b, c ≤ y ≤ f(x) about the x-axis. Show that∫ b

x=a

π
(
f(x)2 − c2

)
dx =

∫ d

y=c

2π y
(
g(y)− a

)
dy.

Solution: This is on Assignment 3

(d) Suppose f and g are continuous and consider the area of the region a ≤ x ≤ b, c ≤ y ≤ f(x). Use
properties of the Riemann integral to prove that∫ b

x=a

(
f(x)− c

)
dx =

∫ d

y=c

(
g(y)− a

)
dy

.

Solution: This is on Assignment 3



11: We defined the length of the curve y = f(x) on [a, b] only in the case that f is differentiable. In fact we can
give a more general definition. Let f : [a, b] → R be any function. For a partition X =

(
x0, x1, · · · , xn

)
of

[a, b], define

L(f,X) =
n∑
k=1

√
(xk−xk−1)2 + (f(xk)−f(xk−1))2

and define the length of the curve y = f(x) on [a, b] to be

L(f) = sup
{
L(f,X)

∣∣X is a partition of [a, b]
}

(note that the supremum can be infinite). We say that f is rectifiable when L(f) is finite.

(a) Show that if f is C1 (which means that f is differentiable and f ′ is continuous on [a, b]) then f is rectifiable
and

L(f) =

∫ b

x=a

√
1 + f ′(x)2 dx.

Solution: Suppose that f is C1. Given a partition X = (x0, x1, · · · , xn) of [a, b], by the MVT (the Mean Value
Theorem) we can choose ck ∈ [xk−1, xk] such that (f(xk) − f(xk−1) = f ′(ck)(xk − xk−1) and then, letting
M = max

{
|f ′(x)|

∣∣x ∈ [a, b]
}

, we have

L(f,X)=
n∑
k=1

√
(xk − xk−1)2 + (f(xk)− f(xk−1))2 =

n∑
k=1

√
(xk − xk−1)2 + f ′(ck)2(xk − xk−1)2

=
n∑
k=1

√
1 + f ′(ck)2 (xk − xk−1) =

n∑
k=1

√
1 + f ′(ck)2 ∆kx ≤

n∑
k=1

M∆kx = M(b− a).

It follows that L(f) = sup
{
L(f,X)

∣∣X is a partition of [a, b]
}
≤M(b− a), so f is rectifiable.

Let X = (x0, x1, · · · , xn) be a partition of [a, b], and let Y be a partition which is obtained by adding
one more point, say Y = (x0, x1, · · · , xk−1, y, xk, · · · , xn). Recall that for a triangle in the plane with side
lengths a, b and c, if θ is the angle opposite the side of length a, then by the Law of Cosines we have
a2 = b2 + c2− 2bc cos θ ≤ b2 + c2 + 2bc = (b+ c)2 so that a ≤ b+ c. Applying this to the triangle with vertices
at (xk−1, f(xk−1)), (y, f(y)) and (xk, f(xk)) we obtain√

(xk − xk−1)2 + (f(xk)− f(xk−1)2 ≤
√

(xk − y)2 + (f(xk)− f(y))2 +
√

(y − xk−1)2 + (f(y)− f(xk−1)2

and hence that L(f,X) ≤ L(f, Y ). Since L(f,X) ≤ L(f, Y ) ≤ L(f) whenever Y is obtained by adding one
point to X, it follows (by induction) that if Z is any partition with X ⊆ Z we have

L(f,X) ≤ L(f, Z) ≤ L(f).

Let ε > 0. Since f ′(x) is continuous, the function
√

1 + f ′(x)2 is continuous, hence integrable. Choose
δ > 0 so that for every partition X of [a, b] with |X| < δ and for all sample ponts tk ∈ [xk−1, xk] we have∣∣∣∣ ∫ b

a

√
1 + f ′(x)2 dx−

n∑
k=1

√
1 + f ′(tk)2 ∆kx

∣∣∣∣ < ε
2 .

Choose a partition X1 with |X1| < δ, and choose a partition X2 such that L(f)− ε
2 < L(f,X2) ≤ L(f), and let

X = X1∪X2. Since X1⊆X we have |X| < δ and since X2⊆X we have L(f)− ε
2 < L(f,X2) ≤ L(f,X) ≤ L(f).

Say X = (x0, x1, · · · , xn) and choose sample points ck ∈ [xk−1, xk] using the Mean Value Theorem, as above,

so that f(xk)− f(xk−1) = f ′(ck)∆kx. As shown above, we have L(f,X) =
n∑
k=1

√
1 + f ′(ck)2 ∆kx, and so∣∣∣∣L(f)−

∫ b

a

√
1 + f ′(x)2 dx

∣∣∣∣ ≤ ∣∣∣∣L(f)−
n∑
k=1

√
1 + f ′(ck)2 ∆kx

∣∣∣∣+

∣∣∣∣ n∑
k=1

√
1 + f ′(ck)2 ∆kx−

∫ b

a

√
1 + f ′(x)2 dx

∣∣∣∣
< ε

2 + ε
2 = ε.



(b) Define f : [0, 1]→ R by f(0) = 0 and f(x) = x2 cos π
x2 when x 6= 0. Show that f is differentiable on [0, 1]

but not rectifiable on [0, 1].

Solution: When x 6= 0, f is differentiable at x with f ′(x) = 2x cos π
x2 − 2π

x sin π
x2 , and (from the definition of

the derivative) we have

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim
x→0

x cos π
x2 = 0

by the Squeeze Theorem (since
∣∣x cos π

x2

∣∣ ≤ |x| → 0 as x→ 0). Thus f is differentiable everywhere.

Let n ∈ Z+ and let X be the partition X = (x0, x1, · · ·xn) with x0 = 0 and xk = 1√
n−k+1

, that is

X =
(
0, 1√

n
, 1√

n−1
, · · · , 1√

3
, 1√

2
, 1
)
.

We have f(xk) = 1
n−k+1 cos(n−k+1)π = (−1)n−k+1

n−k+1 for 1 ≤ k ≤ n, and hence∣∣f(xk)− f(xk−1)
∣∣ =

∣∣ 1
n−k+1 + 1

n−k+2

∣∣ ≥ 2
n−k+2 for 2 ≤ k ≤ n.

Letting j = n−k+2 we have

L(f,X) =
n∑
k=1

√
(xk − xk−1)2 + (f(xk)− f(xk−1))2 ≥

n∑
k=2

∣∣f(xk)− f(xk−1)
∣∣ ≥ n∑

k=2

2
n−k+2 =

n∑
j=2

2
j .

But note that we can choose n to make the sum
n∑
j=2

2
j arbitrarily large, indeed when n = 2m we have

n∑
j=2

2
j = 2

2 +
(

2
3 + 2

4

)
+
(

2
5 + · · ·+ 2

8

)
+
(

2
9 + · · ·+ 2

16

)
+ · · ·+

(
2

2m−1+1 + · · ·+ 2
2m

)
≥ 2

2 + 2 · 2
4 + 4 · 2

8 + 8 · 2
16 + · · ·+ 2m−1 · 2

2m = m,

and so L(f) = sup
{
L(f.X)

∣∣X is a partition of [0, 1]
}

=∞.



12: Tonelli’s version of Fubini’s Theorem implies that when f : (a, b) × (c, d) → [0,∞) is continuous, where the
endpoints a, b, c, d can be finite or infinite, we have∫ b

x=a

(∫ d

y=c

f(x, y) dy

)
dx =

∫ d

y=c

(∫ b

x=a

f(x, y) dx

)
dy

(so we can calculate the volume of the solid given by a<x<b, c<y<d, 0≤z≤f(x, y), either by integrating

the cross-sectional area A(x) =
∫ d
c
f(x, y) dy or by integrating the cross-sectional area A(y) =

∫ b
a
f(x, y) dx,

and the two calculations will yield the same value for the volume). Assuming that Tonelli’s Theorem is true
(we have not developed the machinery needed to prove it) and assuming that elementary functions f(x, y) are
continuous, evaluate each of the following improper integrals.

(a)

∫ ∞
0

tan−1 2x− tan−1 x

x
dx
(
hint: use f(x, y) = 1

1+x2y2

)
.

Solution: We have∫ ∞
x=0

tan−1 2x− tan−1 x

x
dx =

∫ ∞
x=0

[
tan−1 xt

x

]2

y=1

dx =

∫ ∞
x=0

(∫ 2

y=1

1

1 + x2y2
dy

)
dx

=

∫ 2

y=1

(∫ ∞
x=0

1

x2y2
dx

)
dy =

∫ 2

y=1

[
tan−1 xy

y

]∞
x=0

dy =

∫ 2

y=1

π

2y
dy

=
[
π
2 ln y

]2
1

= π
2 ln 2 .

(b)

∫ 1

0

x− 1

lnx
dx
(
hint: use f(x, y) = xy

)
.

Solution: We have∫ 1

x=0

x− 1

lnx
dx =

∫ 1

x=0

[
xy

lnx

]1

y=0

dx =

∫ 1

x=0

(∫ 1

y=0

xy dy

)
dx =

∫ 1

y=0

(∫ 1

x=0

xy dx

)
dy

=

∫ 1

y=0

[
xy+1

y + 1

]1

x=0

dy =

∫ 1

y=0

1

y + 1
dy =

[
ln(y + 1)

]1
0

= ln 2 .

(c)

∫ ∞
0

sinx

x
dx
(
hint: use f(x, y) = e−xy sinx

)
.

Solution: For y ∈ (0,∞), let I(y) =

∫
e−xy sinx dx. Integrate by parts twice, first using u1 = e−xy and

v1 = − cosx, and then again using u2 = ye−xy and v2 = sinx, to get

I(y) =

∫
e−xy sinx dx = −e−xy cosx−

∫
ye−xy cosx dx

= −e−xy cosx−
(
ye−xy sinx+

∫
y2e−xy sinx dx

)
= −e−xy

(
cosx+ y sinx

)
− y2I(y)

and so I(y) = − 1

1 + y2
e−xy

(
cosx+ y sinx

)
. Thus, using Tonelli’s Theorem, we have∫ ∞

x=0

sinx

x
dx =

∫ ∞
x=0

[
−e
−xy sinx

x

]∞
y=0

dx =

∫ ∞
x=0

∫ ∞
y=0

e−xy sinx dy dx

=

∫ ∞
y=0

∫ ∞
x=0

e−xy sinx dx dy =

∫ ∞
y=0

[
I(y)

]∞
x=0

dy

=

∫ ∞
y=0

[
− 1

1 + y2
e−xy

(
cosx+ y sinx

)]∞
x=0

=

∫ ∞
y=0

dy

1 + y2
=
[

tan−1 y
]∞

0
= π

2 .


