MATH 148 Calculus 2, Solutions to the Exercises for Chapter 1

8
: (a) Let f(x) = 2;; and let X be the partition of [0, 2] into 6 equal-sized subintervals. Find the Riemann sum
for f on X which uses the right endpoints of the subintervals.

Solution: The six intervals are of size Az = ng = % and the right endpoints are the points xx = 0+k Ax = %,
that is the points %, %, 1, %,% and 2. We have

2
We remark that by using Integration by Parts, one can show that /0 f(z)dx = 22}1(_13112%3 .

1

(b) Let f(x) = = and let X be the partition of [£, 2] into 6 equal-sized subintervals. Find the Riemann sum
x

for f on X which uses the midpoints of the subintervals.

13 __ 1

Solution: The subintervals are of size Ax = b*T" =S = %, and the endpoints are x; = a + b*T“ k= % + % k
so that xg,z1,x0, - - xg = é, %, %, cee 15—3, and the midpoints of the subintervals are ¢, = % so that
C1,C2,C3,++,C6 = %,%,g,---,%. We have
6
D flewdz = (fler) + flea) + -+ fles)) (3)
k=1
_2(p(2 4 12
=3(fG)+ 15+ £(F))
_2(5 .55 5
=:G+i+E+ o+ n)
=1+i4+3+3+5+3%
_ 60430-+20+15+12+410 _ 147 _ 49
= 60 =60 — 20
13/5
We remark that / f(z)dx =1n13.
1/5

(c) Let f(z) = 4°°% and let X = {0.%,%, 2, 7, %’T, 3% 5% 2r}. Find the average of the upper and lower
Riemann sums for f on X.

Solution: Note that cosz (and hence f(x)) is decreasing on [0, 7] and increasing on [r.27] and that cosz
(hence f(z)) and the partition X are both symmetric about 7, and so

LX) =2(f0) 5+ (3) 5+ (3) -3+ (%) 3)

— ™ ™ ™ 1 . m\ _

and

L0 =2(F(5) 5+ £ (5) 5+ () §+7(5)
=22 FLE g FHEog)=0m

and so the average of the upper and lower Riemann sums is 3.



2: (a) Suppose that f is increasing on [a, b]. Show that f is integrable on [a, b].

Solution: Suppose that f is increasing (and hence bounded, below by f(a) and above by f (b)) on [a, b]. Notice
that since f is increasing we have My, = f(zy) and my = f(xg—1), where My = sup {f(t)|t € [xk,l,xk]} and

myi = inf { f(t)|t € [wx—1, 7]}, and so i (M, —my) = él (f(zr) = f(zr—1)) = f(zn) — f(x0) = f(b) — f(a).

Now let € > 0. Choose a partition X = {zg, 21, -, Zn} of [a,b] with | X| < 777ty LThen
U(f, X Z MDAz =Y mplgz =Y (M — mg) Ay
k=1 k=1 k=1

< S (M —mi) X] = (f(b) — F(@)[X] <.

k=1
Thus f is integrable on [a, ] (by Part 2 of Theorem 1.16).

(b) Suppose that f(z) = 0 for all but finitely many points = € [a,b]. Show that f is integrable on [a, b].
Solution: Suppose that f(x) = 0 except possibly at some of the points pg, p1, pe, - - -, Pn, Where we have
a=py<p1<--<p=b.
Let M = max {|f(py)||0 <k <(¢}. Let e > 0 be arbitrary. Choose § > 0 so that § < 357 and so that
§ < BBl (so that pp—1 +0 < pp —6) forall k =1,2,---,£. Let X be the partition
X ={po,po+6,p1 — 6, p1 +6,p2 — 8, p2+ 0, -+, pe—1 — 6, pe—1+ 0, pe — 6, pe } -

For each k = 0,1,--- ¢ let M}, = max{f(pr),0} and let my = min{f(px),0}. Note that My —my = |f(pr)l,
and we have

Uf,X)=My-6+0+M;-204+0+My-254+0+---+My_1-26+0+M;-6
L(f,X)=mog-6+04+mq-204+0+mo-204+0+---+my_1-20+0+my-4.
Thus
U(f,X)—L(f,X)=(Moy—mp) -6+ (M1 —mq) -2+ -+ (Mp—1 —myp_1) - 20 + (My —my) - §

o)l + 21 (p) 421 £ (p2)| + -+ + 2 (pe-)] + [£(o)]) -6
<2M <e.
(c) Define f : [0,1] — R as follows. Let f(0) = f(1) = 0. For « € (0,1) with « ¢ Q, let f(z) = 0. For

r € (0,1) with x € Q, write x = § where 0 < a,b € Z with gcd(a,b) = 1, and then let f(z) = . Show that f
is integrable in [0, 1].

1
i

Solution: Let € > 0 be arbitrary. Choose an mteger N > 0 so that §; < §. Note that there are only
finitely many points z € [0,1] such that f(z) > & (indeed the only such points are the points » = ¢ with
0 <a<beZwith b < N). Say these points are pl,pg, -+, pe—1 where

O=po<p1 <pa<---<ppr_1<pe=1.
Choose § > 0 so that § < 55 and so that § < 2Z2=25=1 for all k = 1,2,---,£. Let X be the partition

X={0p1—52?1+5102—5292+5"'ape 1 —0,pe—1+6,1}

Note that L(f, X) = 0 and since f(z) < & for all z # pi, and f(pg) < § for all k=1,2,---,£ — 1, we have
U(f.X)< 5o =)+ f(m) 20+ (pz—p1—25)+f(102) 25+"'+f(m—1)'25+ﬁ(1—m—1—5)
=21 =2(t=1)8) + (f(p1) + f(p2) + "'+f(pZ—1))'25
<t+52w<tHli<s+S=¢



b
3: (a) Let f be continuous with f > 0 on [a,b]. Show that if/ f=0then f =0 on [a,b].

Solution: Suppose that f # 0 on [a,b]. Choose ¢ € [a,b] so that f(c) # 0. Note that f(c) > 0 since f > 0.
Either ¢ € [a,b) or ¢ € (a,b]. Let us suppose that ¢ € [a,b) (the case ¢ € (a,b] is similar). By the continuity
of f we can choose ¢ > 0 with § < b — ¢ so that for all = € [a, b] we have

2 —c] <6 = |f(z) - f(c)] < I = 1 < f(a) < 22

Then by Additivity and Comparison we have
b c c+6 b
[r=[s] 1+ s
a c+6
/ 0+ / / 0
5

@5+0>0

(b) Find ¢'(1) where g(x / V14 t3dt.
3x—3

Solution: Let u(z) = 22 + 1 and let v(z) = 3z — 3. Also, let f(t) = v/1+t3 and let F(u / V14 t3dt so

that F'(u) = f(u), by the FTC. Then
3x—3

z +1
g(z V1+itddt = L/ V1+t3dt— V1+3dt = F(u(z)) — F(v(z))

3z—3
and so ¢'(z) = F'(u(z))u'( F'(v(z))v(x ) ( (x ))(2:10) — f(v(2))(3) =2z f(z* +1) — 3 f(3z — 3). Put
1na:—1t0getg(1) 2f(2) 3f(0) =21 3v1+0=6-3=3.
(c) Find lim i 1
¢ n—mm._17l+—f
Solution: Let f(z) = 1+7x and let X, be the partition of [0, 1] into n equal-sized subintervals so z,, 1 = E and
Ap = % By recognizing a limit of Riemann sums as an integral, then applying the FTC, we have

n

ﬁi L_ 5if Ar= [ 10| = me
—mw%: %'5—ng;hl@mw kel = 01+x—[n(+xﬂd—n~

lim
n— o0
k=




4: (a) Let 0 < a < b. From the definition, show that f(z) = z? is integrable on [a, b] with / f=30%—a).

Solution: Let € > 0 be arbitrary. Choose 6 = Wh—ay- et X be any partition of [a,b] with |X]| < 4.

Let tx € [zg— 1,xk] be any sample points. Let s = \/% (xg—12 + Tp_17 + T82) € [TR_1,78]. Note that

n

Zf Sk Ak.’b = Z (xk 1+ T 12k + Tk ) (:Ek — xkfl) = Z %(mkﬁ _ 1’1@713) = %(b?) — a,3)’ S0

k=1 k=1
n n n
Z (ti)Apz — 5(b Z (tw Akﬂf—Zf sk)Apr| < Z|f(tk)—f(8k)|Ak$
k= k= k=1 k=1
= Z ’tk2 — sk2|Akx = Z |tk + Sk”tk — Sk|Ak$ < ZQb(SAkJJ =e€.
k=1 k=1 k=1

7
z,ifzeqQ. 3

Solution: First we shall show that U(f) = 3. To do this, we must show that for every partition X of [1,2] we
have 3 < U(f, X), and also that for every € > 0 we can find a partition X of [1,2] such that U(f, X) — 3 < e.
Let X = {xo,1, -+, 2, } be any partition of [1,2]. Let My = sup {f(t)|t € [wx—1,21]}. Note that M = 2,
(since we can choose t € [zy_1, z] arbitrarily close to x with ¢ € Q so that f(t) = 2t), so we have

22 ifrdQ .
(b) Define f : [1,2] = R by f(z) = 5 From the definition, show that U(f) = 3 and L(f) = %

n n n n
= ZMkAk«T = ZQSUk(SEk —xp—1) > Y (T + zp—1)(Tk — Tp—1) Z T — 21’
k=1 k=1
=z, —202=22-12=3,
n

since the sum Z (a:k2 — xk_12) is a telescoping sum. Now let € > 0 be arbitrary. Choose a partition

k=1
X ={wo, 21, -+, xn} with |X| < e. Let My =sup {f(t)|f(t) € [vx—1,xk]} Note, as above, that M = 2z, and

n

that Z(xk + xp—1)(xk — Tr—1) = 3, S0 we have

k=1
n n n n n
U(f,X)-3= ZkaAkm — Z(mk + xp_1)Apz = Z(xk —xp_1) Ak < Z | X|Agx < ZeAkx =e€.
k=1 k=1 k=1 k=1 k=1
To show that L(f, X) = ;, we must show that for any partltlon X of [1,2], we have L(f, X) < %, and also
that given any € > 0 there exists a partition X of [1,2] such that L(f,X) <e Let X = {zg, 1, ", Tn}

be any partition of [1,2]. Let sx = \/% (xp—12 + Tp_178 + TE2). Note that, as shown in Part (a), we have

n
ZstAkm = % (23 — 13) = % Let my = inf{f(t)|t € [wk,l,xk]}. Note that my = ;12 (since we can
choose t € [xk—1,xr] arbitrarily close to zx_1 with t ¢ Q), and so
n n n
X) = kaAka' = Z:I,’k_12Ak$ § Z SkQAkl‘ = % .
k=1 k=1 k=1

Now let € > 0 be arbitrary. Choose a partition X = {zo, 21, -, 2.} of [1,2] with |X| < 5. As above, let

S = \/% (xk—12 + zp_12p + %2) so that Zsszkx = %, and let my, = inf{f(t)}t € [xk_l,ask]} = 112

k=1
Then
T-L(f.X)= Z st ApT — ZxkqQAkm = Z (51> — zp—1”) Az < Z (z1® — z-1?) Apa
k=1 k=1 k=1 k=1
- 2 2 € . 2 2y _ € (92 _ 12y _
Skzl(mk Th—1 )|X‘<3;(£Ek Th—1 )—3(2 1 )



b
5: (a) Find / 2% dz by evaluating the limit of a sequence of Riemann sums.
a

Solution: Let f(r) =23 and let X,, = (xn,07$n,1, e ,xmn) where z, 1 = a + =2k so Ay = na. Then
b n
3 T
[ atde =t 3 fna) A
@ k=1
i S b—a 1.\3 (b—a

- lim (a + 3a? k+3a( ) k% + ( ) kg) (M)

7’L—>OO n

:nhﬁrr;oZ(a3 Zl+3a( ) Zk+3a( ) Zkz ( ) Zk4>

k=1

i (o (52) 3 ()" 0 3 () i) | 1y i

n—00 n
= a(b—a) + 3a(b— o) + alb — @)} + 1 (b — )
=1(b—a)(4a® + 6a*(b— a) + 4a(b — a)? + (b — a)?)
= 1(b— a)(4a® + 6ab® — 6a® + 4ab® — 8a®b + 4a® + b* — 3ab® + 3a%b — a?)
= 1 (b—a)(a® + a®b + ab® + b®)
Lt —at).

8
(b) Find / ¢x dx by evaluating the limit of a sequence of Riemann sums.
0

Solution: Let f(z) = ¢/ and let X,, = (In,o, Tn,1, s xnn) where z,, ;, = (27—1“)3 We have

Ak = T — Tnp1 = (2)° = (@)3 = Bk~ (k—1)%) = S(3k2 —3k+1).

n

Note that 3k — 3k + 1 is increasing for k > 1 (since g(z) = 32% — 3z + 1 is increasing for z > —%) and so we
have | X, | = A, 2 = %(3n® —3n+1) = 0 as n — oo. Thus

3 T
/0 \/E dr = nh—>ngo ’; f(xn,k)An,kx

— 2kY (8 2 _
—nlgr;o’;(n)(ns)(% 3k +1)

= lim (%Zk3+%2k2+$2k)
k=1 = =

n—oo

7L2 n 2 n(n n n(n
= lim_ (% (+1)® _ 48 ntntD@n+l) 4 16 (2+1))

__ 48
=8 _040
= 12.



2
1
6: (a) Find / — dz by evaluating the limit of a sequence of Riemann sums.
1T

Solution: Let f(z) = L and let X,, = (25,0, Zn,1, "+, Tnn) With 5, = 2¥/". Note that
Ay kT =T g — T g = 28/ — 2k=1)/n — ok/n (1- 2—1/") .

Since 2¥/" is increasing with k, we have | Xn| =Appz =2 (1 — 2’1/”) — 0 as n — 0o, and so

2 n n
1 _ T _ 1 —k/n ok/n —1/n
-/1 Edm—nl;rréo;f(xnyk)An,kx—nlgrr;OQQ 2 (1—2 )

n 1—2-n
= Tim (1-277") 50 = lim (1-27")n = lim —5—
n—roo k=1 n—oo n—oo E
1—-277 In2.27%
= lim = lim - by 'Hospital’s Rule
x—0 x x—0 1

2
(b) Find / Inz dx by evaluating the limit of a sequence of Riemann sums.
1

Solution: We shall need a formula for S = Y kr*. We have
k=1

S=1r+2r2+3r3+---nr"” and
rS = 17“2+27“3+-~-+(n— 1)r"™ + ettt
so that

n+1l _ n+2 _ n+1 _ .n+l _
TS—SZTL’I“H—H—(T+T2+T3+-~'+Tn):nr"+1—r r:nr nr r r

r—1 r—1 ’
and hence
Zn: krk = 9 = nr"t2 — (n 4+ 1)rntt — o
k=1 (r—1)2
Now let f(z) =Inz and let X,, = (xn,o,xml, . ,xnm) with ,, ;, = ek n2/n — 9k/n a5 above. Then

2 n n
/ Inz dx = ILm Zf(xn,k)Amk = ILm Z (%) (2k/”) (1 — 271/”)

=l (82) (1- 27 85k (20"

n—oo

In2 2Y/n—1 2V/n (p20ntD/n— (n 4+ 1)2+1)

= . . n k
= lim — ST U 1) , by the formula for kZ::1 kr
= |lim n "/ — lim n n
n— 00 21/n 1 n— oo 21/n _ 1
. 222" —1)-1) . 1
= lim e =In2(2— lim —2—
n— oo 21/n _ 1 nooo 21/n _ 1

. T . 1 , -
=1In2 (2—}:% 7 1) =1In2 (2—:113%) 1112.21;) , by 'Hospital’s Rule
=In2(2- ;) =2mIh2-1.



7: (a) Find / sinz dr by evaluating the limit of a sequence of Riemann sums.

Solution: Let f(x) = sinz and let X,, be the partition of [0, 7] into n equal-sized subintervals, so z,, , = ”Tk
and A, yx = =. Then we have
n
/ sinz dr = hﬁm Zf T k) A T = lgn Z% sin(’%).
To find a formula for the sum Z sin (’%’)7 let o = ™™ s0 sin ’% = Im(a*). Note that o™ = —1 and aa = 1,
k=1
so we have
n n —
- i a(l —a™) 2 2a(1 — @)
3in 28 =1 =Im|{— | =1 =Im | ——————
S sin k2 m<za> m( o w(120) =i (22000
k=1 k=1
 Im 2(a — aq) ) —tm a—1 _ Im(a) _ sin 7 .
1 —2Re() + a@ 1 — Re(w) I —Re(a) 1-—cosT
Thus we have
T ™ gin (E2) = 1 wsin®  wsinx
/0 51nxd—nh_>n;o;n ”) _nh—{golfcos% _o}:lg%)lfcosx
= lim w , by 'Hospital’s Rule
z—0 sSinx
= lim 2% reosT— rsmT , by 'Hospital’s Rule again
z—0 cosx
=2.
1
(b) Find / V1 — 22 dx by evaluating the limit of a sequence of Riemann sums.
0
Solution: Let f(z) = v1 —22. Let X,, = {Zn,0,%n,1,"*; Tn,n} where z, ; = sin (2—“) We have
A, kr = sin (gg) — sin (L_l)ﬁ)
= sin (’;—2) —sin (52) oS ( ) + cos (g”) sin (12%)
. km km
= sin (57) (1 = cos (37)) + cos (57) sin (57) -
n .
sin *
Note that [ X,,| < A, xz < 1—cos 5~ +sin - — 0 asn — oco. Using the formula Z sin ’% = 17”7” which
—cos ™
k=1 n
we derived in the solution to Part (a), and the formula Z cos ’%r =-1 (Which could be derived in the same
k=1
way as the previous formula, but can also be seen immediately using the symmetry cos & ’” = —cos (n=h)m k)” ),

we have

_ / k
/\/1—.’172d$ 7}1_}11;02 1 — sin? 2—" "kx_nli,n;oz cos2 (sm—(l—cosz)+cos2"sm2n)

ZHILII;OZG&n—(l—COSQ—) %(14—005 )sm%)

k=1
1 & k = 1 =
— 1 101 _ s in kr lgin =
= i (§ (1 cos 55) 52 sin 7+ Jsin g 5 1+ Jin £ 3 cos )
: us
sin X
— T 1 _ my_""n 1 in T Llgi, ™
fnlgrgo <2 (1 CcoSs 2n) T cosE + 5n sin o 2stn)
n

=0+ % —0= 7 , where we used I'Hopital’s Rule.



8: (a) Show that if f is integrable on [a,b] then f? is integrable on [a, b].

Solution: Suppose that f is integrable on [a,b]. Then we know that |f| is also integrable on [a, b]. Let M be an
upper bound for |f|. Let € > 0 be arbitrary. Choose a partition X of [a,b] so that U(|f|, X) — L(| f|, X) < 557
Note that My, (f?) = My(]f|)? and my(f?) = m(|f])? so we have

My(f%) = mi(f?) = Mi(1f1)* — ma (| £])?
= (Mi(I£1) = mn (D) (M (I£]) + mi (1 £])) -
< (Mi(If1) = ma(|fD) - 2M
Thus

[
NE

U(f?,X) = L(f* X) (M (f?) = m(f%)) Aga

e
|
—

M:

(Mi(If1) = mur(If])) - 2M - Ay

[
=0
I

(b) Show that if f and g are both integrable on [a, ], then fg is integrable on [a, b].

Solution: Suppose that f and g are both integrable on [a, b]. Then, by linearity, (f + g) is also integrable and
so f2, g* and (f + g)? are all integrable by part (a). Since fg = 3((f + g)* — f? — ¢*), it is integrable too, by
linearity.
(c) Show that if f is integrable and non-negative on [a,b], then /f is integrable on [a, b].
Solution: Suppose that f is integrable and non-negative on [a,b]. When X = {zg, 21, -, z,} is a partition of
[a,b], let us write My, (v/f) = sup {/f(t)|t € [wh—1,2x]} and My(f) = sup { f(t)|t € [wr—1, 1]}, and similarly
for my(v/f) and my(f). Note that My (f) = My(\/f)? and my(f) = mi(v/f)?, and so we have

My(f) = mi(f) = (M (V) = mi(V/ 1)) (M (V) + mi (V1)) -
For any constant ¢ > 0, when My (y/f) < ¢ we have My(\/f) — mi(V/f) < ¢, and when My(\/f) > ¢ we

have My, (v/F) +my(v/F) > ¢ so that My, (f) —mi(f) > (Mr(v/F) = mi(V/)) ¢, that is My (V/F) — mp(V/F) <
%(Mk(f) —my (f)) Thus for any partition X and any constant ¢ > 0 we have

Z (Mk(\/?) —mk(\/?)) Agr < ZcAkx:c(b—a) , and

k such that My (v/f) <c k=1

S MR V) A < 3L (M)~ milf)) Aee = 1 (UL X) — L(f.X)).
k such that My (\/f) > ¢ k=1

Now, let € > 0. Set ¢ = 2(b6_ ) and choose a partition X of [a,b] such that U(f, X) — L(f, X) < 4(;_ )
Then
UWFX) = LX) = Y (M) = mi(V/ ) A
k=1
= > Mi(Vf) —mi(\/F)) Arz + > (My(\VF) = mi(\/F)) A
k with My, (v/F) < ¢ k with My, (v/F) > ¢
€ 2b—a) €&
< 2(b—a)(bia)Jr € 4(b—a)_€'

Thus +/f is integrable on [a, b].



9: Determine (with proof) which of the following statements are true.

(a) If f: [a,b] — [c,d] is integrable on [a,b] and g : [¢,d] — R is integrable on [c,d] then the composite g o f
must be integrable on [a, b].

Solution: This is false. Indeed let f : [0,1] — [0, 1] be an integrable function with f(z) > 0 whenever z € Q
and f(z) = 0 whenever z ¢ Q, such as the function f(z) from Problem 2(c), and let g : [0,1] — [0,1] be
the map given by ¢(0) = 0 and g(x) = 1 for x > 0. We know that g is integrable on [0, 1] by Problem 2(b).
But the composite function g o f is not integrable on [0, 1], indeed we have g(f(z)) = 0 whenever z ¢ Q and
g(f(z)) = 1 whenever z € Q, and we have seen (in Example 1.4) that this function is not integrable.

(b) If f(x) = 0 for all but countably many « € [a,b] and f(x) = 1 for countably many x € [a, b], then f cannot
be integrable on [a, b].
Solution: This is false. Indeed, let

£ )_{1ifx:1—21nforsomeintegern>17

0 otherwise .

We shall show that f is integrable on [0,1]. Let € > 0. We shall find a partition X of [a,b] such that
U(f,X)—L(f,X) < e. Choose n so that %L < ¢ (we can do this since le ntl — 0, by ’'Hoptal’s Rule). For
n—oo

2” 271,
k:1,2,~~,nletxk:1—%—ﬁ andykzl—%—i—zn%. Thenyk—xk:%, and rp — Yp_1 = %—%,
so for k < n we have zp > yp_1 and we have z,, = y,_1 and y, = 1 — 2% Let X be the partition
{0, T1, Y1, T2, Y2y s X1y Yn-1 = Ty Yn, 1}. On every subinterval, the minimum value of f is equal to 0, and

so L(f,X) = 0. On each of the subintervals [z, yx], and also in the final subinterval [y,,1], the maximum
value of f is equal to 1, while in all the other subintervals, the maximum value of f is 0, and so
U(va) :O+(y1 —m1)+0+(y2 _x2)+0++0+(yn71 _xnfl)"’_(yn_xn)"_(l_yn))

o 1 1 n+1
—nﬁ+2n+1 < on < €.

Thus U(f, X) — L(f, X) < € as required.

(c) If f is integrable on [a,b] and the function F(x) = / f(¢) dt is differentiable with F’ = f on [a, b] then f
is continuous on [a, b]. ‘

Solution: This is false. To find a counterexample, consider the function G given by G(x) = ? Sin% when
z # 0 and G(0) = 0. Note that G is differentiable. Let f(z) = G/(x) for x € [—2, 1], so we have f(z) =
2zsind —cos L for z # 0 and f(0) = 0. Since f is continuous except at 0, f is integrable by part (a). We

know, from the Fundamental Theorem, that the function F(x) = / f(t)dt is continuous on [ — 1, 1] and

—1/m
is differentiable with F'(z) = f(z) for all x # 0. For z < 0 we have/ F' = f =G so F =G+ ¢ for some
constant ¢;. Since F (—1) =0 = G (—1), we must have ¢; = 0, and so F(z) = G(z) for all < 0. Since F
and G are both continuous at 0, we also have have F(0) = G(0) = 0. For z > 0 we again have F' = f = G’ so
F = G + ¢y for some constant ¢p. Since F' and G are both continuous at 0 with F(0) = G(0), we must have
¢ =0 and so F(z) = G(z) for all z. Thus F is differentiable with F’ = f for all z (including 0), but f is not
continuous at 0.



