

MATH 148 Calculus 2, Solutions to the Exercises for Chapter 1

1: (a) Let $f(x) = \frac{8x}{2^{3x}}$ and let X be the partition of $[0, 2]$ into 6 equal-sized subintervals. Find the Riemann sum for f on X which uses the right endpoints of the subintervals.

Solution: The six intervals are of size $\Delta x = \frac{2-0}{6} = \frac{1}{3}$ and the right endpoints are the points $x_k = 0 + k \Delta x = \frac{k}{3}$, that is the points $\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \frac{5}{3}$ and 2. We have

$$\begin{aligned} \sum_{k=1}^n f(x_i) \Delta x &= (f\left(\frac{1}{3}\right) + f\left(\frac{2}{3}\right) + f(1) + f\left(\frac{4}{3}\right) + f\left(\frac{5}{3}\right) + f(2)) \left(\frac{1}{3}\right) \\ &= \left(\frac{8 \cdot 1}{3 \cdot 2} + \frac{8 \cdot 2}{3 \cdot 4} + \frac{8 \cdot 3}{3 \cdot 8} + \frac{8 \cdot 4}{3 \cdot 16} + \frac{8 \cdot 5}{3 \cdot 32} + \frac{8 \cdot 6}{3 \cdot 64}\right) \left(\frac{1}{3}\right) \\ &= \left(\frac{4}{3} + \frac{4}{3} + \frac{3}{3} + \frac{2}{3} + \frac{5}{12} + \frac{3}{12}\right) \left(\frac{1}{3}\right) \\ &= \left(\frac{15}{3}\right) \left(\frac{1}{3}\right) \\ &= \frac{5}{3}. \end{aligned}$$

We remark that by using Integration by Parts, one can show that $\int_0^2 f(x) dx = \frac{21-2 \ln 2}{24(\ln 2)^2}$.

(b) Let $f(x) = \frac{1}{x}$ and let X be the partition of $[\frac{1}{5}, \frac{13}{5}]$ into 6 equal-sized subintervals. Find the Riemann sum for f on X which uses the midpoints of the subintervals.

Solution: The subintervals are of size $\Delta x = \frac{b-a}{n} = \frac{\frac{13}{5} - \frac{1}{5}}{6} = \frac{2}{5}$, and the endpoints are $x_k = a + \frac{b-a}{n} k = \frac{1}{5} + \frac{2}{5} k$ so that $x_0, x_1, x_2, \dots, x_6 = \frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \dots, \frac{13}{5}$, and the midpoints of the subintervals are $c_k = \frac{x_k + x_{k-1}}{2}$ so that $c_1, c_2, c_3, \dots, c_6 = \frac{2}{5}, \frac{4}{5}, \frac{6}{5}, \dots, \frac{12}{5}$. We have

$$\begin{aligned} \sum_{k=1}^6 f(c_k) \Delta x &= (f(c_1) + f(c_2) + \dots + f(c_6)) \left(\frac{2}{5}\right) \\ &= \frac{2}{5} (f\left(\frac{2}{5}\right) + f\left(\frac{4}{5}\right) + \dots + f\left(\frac{12}{5}\right)) \\ &= \frac{2}{5} \left(\frac{5}{2} + \frac{5}{4} + \frac{5}{6} + \dots + \frac{5}{12}\right) \\ &= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} \\ &= \frac{60+30+20+15+12+10}{60} = \frac{147}{60} = \frac{49}{20}. \end{aligned}$$

We remark that $\int_{1/5}^{13/5} f(x) dx = \ln 13$.

(c) Let $f(x) = 4^{\cos x}$ and let $X = \{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, 2\pi\}$. Find the average of the upper and lower Riemann sums for f on X .

Solution: Note that $\cos x$ (and hence $f(x)$) is decreasing on $[0, \pi]$ and increasing on $[\pi, 2\pi]$ and that $\cos x$ (hence $f(x)$) and the partition X are both symmetric about π , and so

$$\begin{aligned} U(f, X) &= 2 \left(f(0) \cdot \frac{\pi}{3} + f\left(\frac{\pi}{3}\right) \cdot \frac{\pi}{6} + f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{6} + f\left(\frac{2\pi}{3}\right) \cdot \frac{\pi}{3} \right) \\ &= 2 \left(4 \cdot \frac{\pi}{3} + 2 \cdot \frac{\pi}{6} + 1 \cdot \frac{\pi}{6} + \frac{1}{2} \cdot \frac{\pi}{3} \right) = 4\pi \end{aligned}$$

and

$$\begin{aligned} L(f, X) &= 2 \left(f\left(\frac{\pi}{3}\right) \cdot \frac{\pi}{3} + f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{6} + f\left(\frac{2\pi}{3}\right) \cdot \frac{\pi}{6} + f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{3} \right) \\ &= 2 \left(2 \cdot \frac{\pi}{3} + 1 \cdot \frac{\pi}{6} + \frac{1}{2} \cdot \frac{\pi}{6} + \frac{1}{4} \cdot \frac{\pi}{3} \right) = 2\pi \end{aligned}$$

and so the average of the upper and lower Riemann sums is 3π .

2: (a) Suppose that f is increasing on $[a, b]$. Show that f is integrable on $[a, b]$.

Solution: Suppose that f is increasing (and hence bounded, below by $f(a)$ and above by $f(b)$) on $[a, b]$. Notice that since f is increasing we have $M_k = f(x_k)$ and $m_k = f(x_{k-1})$, where $M_k = \sup \{f(t) \mid t \in [x_{k-1}, x_k]\}$ and $m_k = \inf \{f(t) \mid t \in [x_{k-1}, x_k]\}$, and so $\sum_{k=1}^n (M_k - m_k) = \sum_{k=1}^n (f(x_k) - f(x_{k-1})) = f(x_n) - f(x_0) = f(b) - f(a)$. Now let $\epsilon > 0$. Choose a partition $X = \{x_0, x_1, \dots, x_n\}$ of $[a, b]$ with $|X| < \frac{\epsilon}{f(b) - f(a)}$. Then

$$\begin{aligned} U(f, X) - L(f, X) &= \sum_{k=1}^n M_k \Delta_k x - \sum_{k=1}^n m_k \Delta_k x = \sum_{k=1}^n (M_k - m_k) \Delta_k x \\ &\leq \sum_{k=1}^n (M_k - m_k) |X| = (f(b) - f(a)) |X| < \epsilon. \end{aligned}$$

Thus f is integrable on $[a, b]$ (by Part 2 of Theorem 1.16).

(b) Suppose that $f(x) = 0$ for all but finitely many points $x \in [a, b]$. Show that f is integrable on $[a, b]$.

Solution: Suppose that $f(x) = 0$ except possibly at some of the points $p_0, p_1, p_2, \dots, p_n$, where we have

$$a = p_0 < p_1 < \dots < p_\ell = b.$$

Let $M = \max \{|f(p_k)| \mid 0 \leq k \leq \ell\}$. Let $\epsilon > 0$ be arbitrary. Choose $\delta > 0$ so that $\delta < \frac{\epsilon}{2\ell M}$ and so that $\delta < \frac{p_k - p_{k-1}}{2}$ (so that $p_{k-1} + \delta < p_k - \delta$) for all $k = 1, 2, \dots, \ell$. Let X be the partition

$$X = \{p_0, p_0 + \delta, p_1 - \delta, p_1 + \delta, p_2 - \delta, p_2 + \delta, \dots, p_{\ell-1} - \delta, p_{\ell-1} + \delta, p_\ell - \delta, p_\ell\}.$$

For each $k = 0, 1, \dots, \ell$ let $M_k = \max\{f(p_k), 0\}$ and let $m_k = \min\{f(p_k), 0\}$. Note that $M_k - m_k = |f(p_k)|$, and we have

$$\begin{aligned} U(f, X) &= M_0 \cdot \delta + 0 + M_1 \cdot 2\delta + 0 + M_2 \cdot 2\delta + 0 + \dots + M_{\ell-1} \cdot 2\delta + 0 + M_\ell \cdot \delta \\ L(f, X) &= m_0 \cdot \delta + 0 + m_1 \cdot 2\delta + 0 + m_2 \cdot 2\delta + 0 + \dots + m_{\ell-1} \cdot 2\delta + 0 + m_\ell \cdot \delta. \end{aligned}$$

Thus

$$\begin{aligned} U(f, X) - L(f, X) &= (M_0 - m_0) \cdot \delta + (M_1 - m_1) \cdot 2\delta + \dots + (M_{\ell-1} - m_{\ell-1}) \cdot 2\delta + (M_\ell - m_\ell) \cdot \delta \\ &= \left(|f(p_0)| + 2|f(p_1)| + 2|f(p_2)| + \dots + 2|f(p_{\ell-1})| + |f(p_\ell)| \right) \cdot \delta \\ &\leq 2\ell M \delta < \epsilon. \end{aligned}$$

(c) Define $f : [0, 1] \rightarrow \mathbb{R}$ as follows. Let $f(0) = f(1) = 0$. For $x \in (0, 1)$ with $x \notin \mathbb{Q}$, let $f(x) = 0$. For $x \in (0, 1)$ with $x \in \mathbb{Q}$, write $x = \frac{a}{b}$ where $0 < a, b \in \mathbb{Z}$ with $\gcd(a, b) = 1$, and then let $f(x) = \frac{1}{b}$. Show that f is integrable in $[0, 1]$.

Solution: Let $\epsilon > 0$ be arbitrary. Choose an integer $N > 0$ so that $\frac{1}{N} < \frac{\epsilon}{2}$. Note that there are only finitely many points $x \in [0, 1]$ such that $f(x) > \frac{1}{N}$ (indeed the only such points are the points $x = \frac{a}{b}$ with $0 < a < b \in \mathbb{Z}$ with $b < N$). Say these points are $p_1, p_2, \dots, p_{\ell-1}$ where

$$0 = p_0 < p_1 < p_2 < \dots < p_{\ell-1} < p_\ell = 1.$$

Choose $\delta > 0$ so that $\delta < \frac{\epsilon}{2\ell}$ and so that $\delta < \frac{p_k - p_{k-1}}{2}$ for all $k = 1, 2, \dots, \ell$. Let X be the partition

$$X = \{0, p_1 - \delta, p_1 + \delta, p_2 - \delta, p_2 + \delta, \dots, p_{\ell-1} - \delta, p_{\ell-1} + \delta, 1\}$$

Note that $L(f, X) = 0$ and since $f(x) \leq \frac{1}{N}$ for all $x \neq p_k$, and $f(p_k) \leq \frac{1}{N}$ for all $k = 1, 2, \dots, \ell - 1$, we have

$$\begin{aligned} U(f, X) &\leq \frac{1}{N}(p_1 - \delta) + f(p_1) \cdot 2\delta + \frac{1}{N}(p_2 - p_1 - 2\delta) + f(p_2) \cdot 2\delta + \dots + f(p_{\ell-1}) \cdot 2\delta + \frac{1}{N}(1 - p_{\ell-1} - \delta) \\ &= \frac{1}{N}(1 - 2(\ell-1)\delta) + (f(p_1) + f(p_2) + \dots + f(p_{\ell-1})) \cdot 2\delta \\ &< \frac{1}{N} + \frac{\ell-1}{2} \cdot 2\delta < \frac{1}{N} + \ell\delta < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

3: (a) Let f be continuous with $f \geq 0$ on $[a, b]$. Show that if $\int_a^b f = 0$ then $f = 0$ on $[a, b]$.

Solution: Suppose that $f \neq 0$ on $[a, b]$. Choose $c \in [a, b]$ so that $f(c) \neq 0$. Note that $f(c) > 0$ since $f \geq 0$. Either $c \in [a, b]$ or $c \in (a, b]$. Let us suppose that $c \in [a, b]$ (the case $c \in (a, b]$ is similar). By the continuity of f we can choose $\delta > 0$ with $\delta < b - c$ so that for all $x \in [a, b]$ we have

$$|x - c| < \delta \implies |f(x) - f(c)| < \frac{f(c)}{2} \implies \frac{f(c)}{2} < f(x) < \frac{3f(c)}{2}.$$

Then by Additivity and Comparison we have

$$\begin{aligned} \int_a^b f &= \int_a^c f + \int_c^{c+\delta} f + \int_{c+\delta}^b f \\ &\geq \int_a^c 0 + \int_c^{c+\delta} \frac{f(c)}{2} + \int_{c-\delta}^b 0 \\ &= 0 + \frac{f(c)}{2} \delta + 0 > 0. \end{aligned}$$

(b) Find $g'(1)$ where $g(x) = \int_{3x-3}^{x^2+1} \sqrt{1+t^3} dt$.

Solution: Let $u(x) = x^2 + 1$ and let $v(x) = 3x - 3$. Also, let $f(t) = \sqrt{1+t^3}$ and let $F(u) = \int_0^u \sqrt{1+t^3} dt$ so that $F'(u) = f(u)$, by the FTC. Then

$$g(x) = \int_{3x-3}^{x^2+1} \sqrt{1+t^3} dt = \int_0^{x^2+1} \sqrt{1+t^3} dt - \int_0^{3x-3} \sqrt{1+t^3} dt = F(u(x)) - F(v(x))$$

and so $g'(x) = F'(u(x))u'(x) - F'(v(x))v'(x) = f(u(x))(2x) - f(v(x))(3) = 2x f(x^2 + 1) - 3 f(3x - 3)$. Put in $x = 1$ to get $g'(1) = 2f(2) - 3f(0) = 2\sqrt{1+8} - 3\sqrt{1+0} = 6 - 3 = 3$.

(c) Find $\lim_{n \rightarrow \infty} \sum_{i=1}^n \frac{1}{n+i}$.

Solution: Let $f(x) = \frac{1}{1+x}$ and let X_n be the partition of $[0, 1]$ into n equal-sized subintervals so $x_{n,k} = \frac{k}{n}$ and $\Delta_{n,k}x = \frac{1}{n}$. By recognizing a limit of Riemann sums as an integral, then applying the FTC, we have

$$\lim_{n \rightarrow \infty} \sum_{k=1}^n \frac{1}{n+k} = \lim_{n \rightarrow \infty} \sum_{k=1}^n \frac{1}{1+\frac{k}{n}} \cdot \frac{1}{n} = \lim_{n \rightarrow \infty} \sum_{k=1}^n f(x_{n,k}) \Delta_{n,k}x = \int_0^1 \frac{dx}{1+x} = \left[\ln(1+x) \right]_0^1 = \ln 2.$$

4: (a) Let $0 \leq a < b$. From the definition, show that $f(x) = x^2$ is integrable on $[a, b]$ with $\int_a^b f = \frac{1}{3}(b^3 - a^3)$.

Solution: Let $\epsilon > 0$ be arbitrary. Choose $\delta = \frac{\epsilon}{2b(b-a)}$. Let X be any partition of $[a, b]$ with $|X| < \delta$.

Let $t_k \in [x_{k-1}, x_k]$ be any sample points. Let $s_k = \sqrt{\frac{1}{3}(x_{k-1}^2 + x_{k-1}x_k + x_k^2)} \in [x_{k-1}, x_k]$. Note that

$$\sum_{k=1}^n f(s_k) \Delta_k x = \sum_{k=1}^n \frac{1}{3}(x_{k-1}^2 + x_{k-1}x_k + x_k^2)(x_k - x_{k-1}) = \sum_{k=1}^n \frac{1}{3}(x_k^3 - x_{k-1}^3) = \frac{1}{3}(b^3 - a^3), \text{ so}$$

$$\begin{aligned} \left| \sum_{k=1}^n f(t_k) \Delta_k x - \frac{1}{3}(b^3 - a^3) \right| &= \left| \sum_{k=1}^n f(t_k) \Delta_k x - \sum_{k=1}^n f(s_k) \Delta_k x \right| \leq \sum_{k=1}^n |f(t_k) - f(s_k)| \Delta_k x \\ &= \sum_{k=1}^n |t_k^2 - s_k^2| \Delta_k x = \sum_{k=1}^n |t_k + s_k| |t_k - s_k| \Delta_k x < \sum_{k=1}^n 2b \delta \Delta_k x = \epsilon. \end{aligned}$$

(b) Define $f : [1, 2] \rightarrow \mathbb{R}$ by $f(x) = \begin{cases} x^2, & \text{if } x \notin \mathbb{Q} \\ 2x, & \text{if } x \in \mathbb{Q} \end{cases}$. From the definition, show that $U(f) = 3$ and $L(f) = \frac{7}{3}$.

Solution: First we shall show that $U(f) = 3$. To do this, we must show that for every partition X of $[1, 2]$ we have $3 \leq U(f, X)$, and also that for every $\epsilon > 0$ we can find a partition X of $[1, 2]$ such that $U(f, X) - 3 < \epsilon$. Let $X = \{x_0, x_1, \dots, x_n\}$ be any partition of $[1, 2]$. Let $M_k = \sup \{f(t) | t \in [x_{k-1}, x_k]\}$. Note that $M_k = 2x_k$ (since we can choose $t \in [x_{k-1}, x_k]$ arbitrarily close to x_k with $t \in \mathbb{Q}$ so that $f(t) = 2t$), so we have

$$\begin{aligned} U(f, X) &= \sum_{k=1}^n M_k \Delta_k x = \sum_{k=1}^n 2x_k(x_k - x_{k-1}) \geq \sum_{k=1}^n (x_k + x_{k-1})(x_k - x_{k-1}) = \sum_{k=1}^n (x_k^2 - x_{k-1}^2) \\ &= x_n^2 - x_0^2 = 2^2 - 1^2 = 3, \end{aligned}$$

since the sum $\sum_{k=1}^n (x_k^2 - x_{k-1}^2)$ is a telescoping sum. Now let $\epsilon > 0$ be arbitrary. Choose a partition $X = \{x_0, x_1, \dots, x_n\}$ with $|X| < \epsilon$. Let $M_k = \sup \{f(t) | f(t) \in [x_{k-1}, x_k]\}$. Note, as above, that $M_k = 2x_k$ and that $\sum_{k=1}^n (x_k + x_{k-1})(x_k - x_{k-1}) = 3$, so we have

$$U(f, X) - 3 = \sum_{k=1}^n 2x_k \Delta_k x - \sum_{k=1}^n (x_k + x_{k-1}) \Delta_k x = \sum_{k=1}^n (x_k - x_{k-1}) \Delta_k x \leq \sum_{k=1}^n |X| \Delta_k x < \sum_{k=1}^n \epsilon \Delta_k x = \epsilon.$$

To show that $L(f, X) = \frac{7}{3}$, we must show that for any partition X of $[1, 2]$, we have $L(f, X) \leq \frac{7}{3}$, and also that given any $\epsilon > 0$ there exists a partition X of $[1, 2]$ such that $\frac{7}{3} - L(f, X) < \epsilon$. Let $X = \{x_0, x_1, \dots, x_n\}$ be any partition of $[1, 2]$. Let $s_k = \sqrt{\frac{1}{3}(x_{k-1}^2 + x_{k-1}x_k + x_k^2)}$. Note that, as shown in Part (a), we have $\sum_{k=1}^n s_k^2 \Delta_k x = \frac{1}{3}(2^3 - 1^3) = \frac{7}{3}$. Let $m_k = \inf \{f(t) | t \in [x_{k-1}, x_k]\}$. Note that $m_k = x_{k-1}^2$ (since we can choose $t \in [x_{k-1}, x_k]$ arbitrarily close to x_{k-1} with $t \notin \mathbb{Q}$), and so

$$L(f, X) = \sum_{k=1}^n m_k \Delta_k x = \sum_{k=1}^n x_{k-1}^2 \Delta_k x \leq \sum_{k=1}^n s_k^2 \Delta_k x = \frac{7}{3}.$$

Now let $\epsilon > 0$ be arbitrary. Choose a partition $X = \{x_0, x_1, \dots, x_n\}$ of $[1, 2]$ with $|X| < \frac{\epsilon}{3}$. As above, let $s_k = \sqrt{\frac{1}{3}(x_{k-1}^2 + x_{k-1}x_k + x_k^2)}$ so that $\sum_{k=1}^n s_k^2 \Delta_k x = \frac{7}{3}$, and let $m_k = \inf \{f(t) | t \in [x_{k-1}, x_k]\} = x_{k-1}^2$. Then

$$\begin{aligned} \frac{7}{3} - L(f, X) &= \sum_{k=1}^n s_k^2 \Delta_k x - \sum_{k=1}^n x_{k-1}^2 \Delta_k x = \sum_{k=1}^n (s_k^2 - x_{k-1}^2) \Delta_k x \leq \sum_{k=1}^n (x_k^2 - x_{k-1}^2) \Delta_k x \\ &\leq \sum_{k=1}^n (x_k^2 - x_{k-1}^2) |X| < \frac{\epsilon}{3} \sum_{k=1}^n (x_k^2 - x_{k-1}^2) = \frac{\epsilon}{3} (2^2 - 1^2) = \epsilon. \end{aligned}$$

5: (a) Find $\int_a^b x^3 dx$ by evaluating the limit of a sequence of Riemann sums.

Solution: Let $f(x) = x^3$ and let $X_n = (x_{n,0}, x_{n,1}, \dots, x_{n,n})$ where $x_{n,k} = a + \frac{b-a}{n} k$ so $\Delta_{n,k}x = \frac{b-a}{n}$. Then

$$\begin{aligned}
\int_a^b x^3 dx &= \lim_{n \rightarrow \infty} \sum_{k=1}^n f(x_{n,k}) \Delta_{n,k}x \\
&= \lim_{n \rightarrow \infty} \sum_{k=1}^n \left(a + \frac{b-a}{n} k \right)^3 \left(\frac{b-a}{n} \right) \\
&= \lim_{n \rightarrow \infty} \sum_{k=1}^n \left(a^3 + 3a^2 \left(\frac{b-a}{n} \right) k + 3a \left(\frac{b-a}{n} \right)^2 k^2 + \left(\frac{b-a}{n} \right)^3 k^3 \right) \left(\frac{b-a}{n} \right) \\
&= \lim_{n \rightarrow \infty} \sum_{k=1}^n \left(a^3 \left(\frac{b-a}{n} \right) \sum_{k=1}^n 1 + 3a^2 \left(\frac{b-a}{n} \right)^2 \sum_{k=1}^n k + 3a \left(\frac{b-a}{n} \right)^3 \sum_{k=1}^n k^2 + \left(\frac{b-a}{n} \right)^4 \sum_{k=1}^n k^4 \right) \\
&= \lim_{n \rightarrow \infty} \left(a^3 \left(\frac{b-a}{n} \right) n + 3a^2 \left(\frac{b-a}{n} \right)^2 \frac{n(n+1)}{2} + 3a \left(\frac{b-a}{n} \right)^3 \frac{n(n+1)(2n+1)}{6} + \left(\frac{b-a}{n} \right)^4 \frac{n^2(n+1)^2}{4} \right) \\
&= a^3(b-a) + \frac{3}{2}a^2(b-a)^2 + a(b-a)^3 + \frac{1}{4}(b-a)^4 \\
&= \frac{1}{4}(b-a)(4a^3 + 6a^2(b-a) + 4a(b-a)^2 + (b-a)^3) \\
&= \frac{1}{4}(b-a)(4a^3 + 6ab^2 - 6a^3 + 4ab^2 - 8a^2b + 4a^3 + b^3 - 3ab^2 + 3a^2b - a^3) \\
&= \frac{1}{4}(b-a)(a^3 + a^2b + ab^2 + b^3) \\
&= \frac{1}{4}(b^4 - a^4).
\end{aligned}$$

(b) Find $\int_0^8 \sqrt[3]{x} dx$ by evaluating the limit of a sequence of Riemann sums.

Solution: Let $f(x) = \sqrt[3]{x}$ and let $X_n = (x_{n,0}, x_{n,1}, \dots, x_{n,n})$ where $x_{n,k} = \left(\frac{2k}{n} \right)^3$. We have

$$\Delta_{n,k}x = x_{n,k} - x_{n,k-1} = \left(\frac{2k}{n} \right)^3 - \left(\frac{2(k-1)}{n} \right)^3 = \frac{8}{n^3} (k^3 - (k-1)^3) = \frac{8}{n^3} (3k^2 - 3k + 1).$$

Note that $3k^2 - 3k + 1$ is increasing for $k \geq 1$ (since $g(x) = 3x^2 - 3x + 1$ is increasing for $x \geq -\frac{1}{2}$) and so we have $|X_n| = \Delta_{n,n}x = \frac{8}{n^3} (3n^2 - 3n + 1) \rightarrow 0$ as $n \rightarrow \infty$. Thus

$$\begin{aligned}
\int_0^\infty \sqrt[3]{x} dx &= \lim_{n \rightarrow \infty} \sum_{k=1}^n f(x_{n,k}) \Delta_{n,k}x \\
&= \lim_{n \rightarrow \infty} \sum_{k=1}^n \left(\frac{2k}{n} \right) \left(\frac{8}{n^3} \right) (3k^2 - 3k + 1) \\
&= \lim_{n \rightarrow \infty} \left(\frac{48}{n^4} \sum_{k=1}^n k^3 + \frac{48}{n^4} \sum_{k=1}^n k^2 + \frac{16}{n^4} \sum_{k=1}^n k \right) \\
&= \lim_{n \rightarrow \infty} \left(\frac{48}{n^4} \frac{n^2(n+1)^2}{4} - \frac{48}{n^4} \frac{n(n+1)(2n+1)}{6} + \frac{16}{n^4} \frac{n(n+1)}{2} \right) \\
&= \frac{48}{4} - 0 + 0 \\
&= 12.
\end{aligned}$$

6: (a) Find $\int_1^2 \frac{1}{x} dx$ by evaluating the limit of a sequence of Riemann sums.

Solution: Let $f(x) = \frac{1}{x}$ and let $X_n = (x_{n,0}, x_{n,1}, \dots, x_{n,n})$ with $x_{n,k} = 2^{k/n}$. Note that

$$\Delta_{n,k}x = x_{n,k} - x_{n,k-1} = 2^{k/n} - 2^{(k-1)/n} = 2^{k/n} (1 - 2^{-1/n}).$$

Since $2^{k/n}$ is increasing with k , we have $|X_n| = \Delta_{n,n}x = 2 (1 - 2^{-1/n}) \rightarrow 0$ as $n \rightarrow \infty$, and so

$$\begin{aligned} \int_1^2 \frac{1}{x} dx &= \lim_{n \rightarrow \infty} \sum_{k=1}^n f(x_{n,k}) \Delta_{n,k}x = \lim_{n \rightarrow \infty} \sum_{k=1}^n 2^{-k/n} 2^{k/n} (1 - 2^{-1/n}) \\ &= \lim_{n \rightarrow \infty} (1 - 2^{-1/n}) \sum_{k=1}^n = \lim_{n \rightarrow \infty} (1 - 2^{-1/n}) n = \lim_{n \rightarrow \infty} \frac{1 - 2^{-1/n}}{\frac{1}{n}} \\ &= \lim_{x \rightarrow 0} \frac{1 - 2^{-x}}{x} = \lim_{x \rightarrow 0} \frac{\ln 2 \cdot 2^{-x}}{1} \quad \text{by l'Hospital's Rule} \\ &= \ln 2. \end{aligned}$$

(b) Find $\int_1^2 \ln x dx$ by evaluating the limit of a sequence of Riemann sums.

Solution: We shall need a formula for $S = \sum_{k=1}^n k r^k$. We have

$$\begin{aligned} S &= 1r + 2r^2 + 3r^3 + \dots + nr^n \text{ and} \\ rS &= 1r^2 + 2r^3 + \dots + (n-1)r^n + nr^{n+1} \end{aligned}$$

so that

$$rS - S = nr^{n+1} - (r + r^2 + r^3 + \dots + r^n) = nr^{n+1} - \frac{r^{n+1} - r}{r - 1} = \frac{nr^{n+2} - nr^{n+1} - r^{n+1} + r}{r - 1},$$

and hence

$$\sum_{k=1}^n k r^k = S = \frac{nr^{n+2} - (n+1)r^{n+1} - r}{(r-1)^2}.$$

Now let $f(x) = \ln x$ and let $X_n = (x_{n,0}, x_{n,1}, \dots, x_{n,n})$ with $x_{n,k} = e^{k \ln 2/n} = 2^{k/n}$, as above. Then

$$\begin{aligned} \int_1^2 \ln x dx &= \lim_{n \rightarrow \infty} \sum_{k=1}^n f(x_{n,k}) \Delta_{n,k}x = \lim_{n \rightarrow \infty} \sum_{k=1}^n \left(\frac{k \ln 2}{n} \right) (2^{k/n}) (1 - 2^{-1/n}) \\ &= \lim_{n \rightarrow \infty} \left(\frac{\ln 2}{n} \right) (1 - 2^{-1/n}) \sum_{k=1}^n k (2^{1/n})^k \\ &= \lim_{n \rightarrow \infty} \frac{\ln 2}{n} \cdot \frac{2^{1/n} - 1}{2^{1/n}} \cdot \frac{2^{1/n} (n 2^{(n+1)/n} - (n+1)2 + 1)}{(2^{1/n} - 1)^2} \quad , \text{ by the formula for } \sum_{k=1}^n k r^k \\ &= \lim_{n \rightarrow \infty} \frac{\ln 2 (2^{(n+1)/n} - \frac{n+1}{n} 2 + \frac{1}{n})}{2^{1/n} - 1} = \lim_{n \rightarrow \infty} \frac{\ln 2 (2 \cdot 2^{1/n} - 2 - \frac{2}{n} + \frac{1}{n})}{2^{1/n} - 1} \\ &= \lim_{n \rightarrow \infty} \frac{\ln 2 (2(2^{1/n} - 1) - \frac{1}{n})}{2^{1/n} - 1} = \ln 2 \left(2 - \lim_{n \rightarrow \infty} \frac{\frac{1}{n}}{2^{1/n} - 1} \right) \\ &= \ln 2 \left(2 - \lim_{x \rightarrow 0} \frac{x}{2^x - 1} \right) = \ln 2 \left(2 - \lim_{x \rightarrow 0} \frac{1}{\ln 2 \cdot 2^x} \right) \quad , \text{ by l'Hospital's Rule} \\ &= \ln 2 \left(2 - \frac{1}{\ln 2} \right) = 2 \ln 2 - 1. \end{aligned}$$

7: (a) Find $\int_0^\pi \sin x \, dx$ by evaluating the limit of a sequence of Riemann sums.

Solution: Let $f(x) = \sin x$ and let X_n be the partition of $[0, \pi]$ into n equal-sized subintervals, so $x_{n,k} = \frac{\pi k}{n}$ and $\Delta_{n,k}x = \frac{\pi}{n}$. Then we have

$$\int_0^\pi \sin x \, dx = \lim_{n \rightarrow \infty} \sum_{k=1}^n f(x_{n,k}) \Delta_{n,k}x = \lim_{n \rightarrow \infty} \sum_{k=1}^n \frac{\pi}{n} \sin\left(\frac{k\pi}{n}\right).$$

To find a formula for the sum $\sum_{k=1}^n \sin\left(\frac{k\pi}{n}\right)$, let $\alpha = e^{i\pi/n}$ so $\sin \frac{k\pi}{n} = \operatorname{Im}(\alpha^k)$. Note that $\alpha^n = -1$ and $\alpha\bar{\alpha} = 1$, so we have

$$\begin{aligned} \sum_{k=1}^n \sin \frac{k\pi}{n} &= \operatorname{Im}\left(\sum_{k=1}^n \alpha^k\right) = \operatorname{Im}\left(\frac{\alpha(1-\alpha^n)}{1-\alpha}\right) = \operatorname{Im}\left(\frac{2\alpha}{1-\alpha}\right) = \operatorname{Im}\left(\frac{2\alpha(1-\bar{\alpha})}{(1-\alpha)(1-\bar{\alpha})}\right) \\ &= \operatorname{Im}\left(\frac{2(\alpha-\alpha\bar{\alpha})}{1-2\operatorname{Re}(\alpha)+\alpha\bar{\alpha}}\right) = \operatorname{Im}\left(\frac{\alpha-1}{1-\operatorname{Re}(\alpha)}\right) = \frac{\operatorname{Im}(\alpha)}{1-\operatorname{Re}(\alpha)} = \frac{\sin \frac{\pi}{n}}{1-\cos \frac{\pi}{n}}. \end{aligned}$$

Thus we have

$$\begin{aligned} \int_0^\pi \sin x \, dx &= \lim_{n \rightarrow \infty} \sum_{k=1}^n \frac{\pi}{n} \sin\left(\frac{k\pi}{n}\right) = \lim_{n \rightarrow \infty} \frac{\frac{\pi}{n} \sin \frac{\pi}{n}}{1-\cos \frac{\pi}{n}} = \lim_{x \rightarrow 0} \frac{x \sin x}{1-\cos x} \\ &= \lim_{x \rightarrow 0} \frac{\sin x + x \cos x}{\sin x} \quad \text{, by l'Hospital's Rule} \\ &= \lim_{x \rightarrow 0} \frac{\cos x + \cos x - x \sin x}{\cos x} \quad \text{, by l'Hospital's Rule again} \\ &= 2. \end{aligned}$$

(b) Find $\int_0^1 \sqrt{1-x^2} \, dx$ by evaluating the limit of a sequence of Riemann sums.

Solution: Let $f(x) = \sqrt{1-x^2}$. Let $X_n = \{x_{n,0}, x_{n,1}, \dots, x_{n,n}\}$ where $x_{n,k} = \sin\left(\frac{k\pi}{2n}\right)$. We have

$$\begin{aligned} \Delta_{n,k}x &= \sin\left(\frac{k\pi}{2n}\right) - \sin\left(\frac{(k-1)\pi}{2n}\right) \\ &= \sin\left(\frac{k\pi}{2n}\right) - \sin\left(\frac{k\pi}{2n}\right) \cos\left(\frac{\pi}{2n}\right) + \cos\left(\frac{k\pi}{2n}\right) \sin\left(\frac{k\pi}{2n}\right) \\ &= \sin\left(\frac{k\pi}{2n}\right) \left(1 - \cos\left(\frac{\pi}{2n}\right)\right) + \cos\left(\frac{k\pi}{2n}\right) \sin\left(\frac{\pi}{2n}\right). \end{aligned}$$

Note that $|X_n| \leq \Delta_{n,k}x \leq 1 - \cos \frac{\pi}{2n} + \sin \frac{\pi}{2n} \rightarrow 0$ as $n \rightarrow \infty$. Using the formula $\sum_{k=1}^n \sin \frac{k\pi}{n} = \frac{\sin \frac{\pi}{n}}{1 - \cos \frac{\pi}{n}}$, which

we derived in the solution to Part (a), and the formula $\sum_{k=1}^n \cos \frac{k\pi}{n} = -1$ (which could be derived in the same

way as the previous formula, but can also be seen immediately using the symmetry $\cos \frac{k\pi}{n} = -\cos \frac{(n-k)\pi}{n}$), we have

$$\begin{aligned} \int_0^1 \sqrt{1-x^2} \, dx &= \lim_{n \rightarrow \infty} \sum_{k=1}^n \sqrt{1 - \sin^2\left(\frac{k\pi}{2n}\right)} \Delta_{n,k}x = \lim_{n \rightarrow \infty} \sum_{k=1}^n \left(\cos \frac{k\pi}{2n}\right) \left(\sin \frac{k\pi}{2n} \left(1 - \cos \frac{\pi}{2n}\right) + \cos \frac{k\pi}{2n} \sin \frac{\pi}{2n}\right) \\ &= \lim_{n \rightarrow \infty} \sum_{k=1}^n \left(\frac{1}{2} \sin \frac{k\pi}{n} \left(1 - \cos \frac{\pi}{2n}\right) + \frac{1}{2} \left(1 + \cos \frac{k\pi}{n}\right) \sin \frac{\pi}{2n}\right) \\ &= \lim_{n \rightarrow \infty} \left(\frac{1}{2} \left(1 - \cos \frac{\pi}{2n}\right) \sum_{k=1}^n \sin \frac{k\pi}{n} + \frac{1}{2} \sin \frac{\pi}{2n} \sum_{i=1}^n 1 + \frac{1}{2} \sin \frac{\pi}{2n} \sum_{k=1}^n \cos \frac{k\pi}{n}\right) \\ &= \lim_{n \rightarrow \infty} \left(\frac{1}{2} \left(1 - \cos \frac{\pi}{2n}\right) \frac{\sin \frac{\pi}{n}}{1 - \cos \frac{\pi}{n}} + \frac{1}{2} n \sin \frac{\pi}{2n} - \frac{1}{2} \sin \frac{\pi}{2n}\right) \\ &= 0 + \frac{\pi}{4} - 0 = \frac{\pi}{4}, \text{ where we used l'Hôpital's Rule.} \end{aligned}$$

8: (a) Show that if f is integrable on $[a, b]$ then f^2 is integrable on $[a, b]$.

Solution: Suppose that f is integrable on $[a, b]$. Then we know that $|f|$ is also integrable on $[a, b]$. Let M be an upper bound for $|f|$. Let $\epsilon > 0$ be arbitrary. Choose a partition X of $[a, b]$ so that $U(|f|, X) - L(|f|, X) < \frac{\epsilon}{2M}$. Note that $M_k(f^2) = M_k(|f|)^2$ and $m_k(f^2) = m_k(|f|)^2$ so we have

$$\begin{aligned} M_k(f^2) - m_k(f^2) &= M_k(|f|)^2 - m_k(|f|)^2 \\ &= (M_k(|f|) - m_k(|f|))(M_k(|f|) + m_k(|f|)) \\ &\leq (M_k(|f|) - m_k(|f|)) \cdot 2M \end{aligned}$$

Thus

$$\begin{aligned} U(f^2, X) - L(f^2, X) &= \sum_{k=1}^n (M_k(f^2) - m_k(f^2)) \Delta_k x \\ &\leq \sum_{k=1}^n (M_k(|f|) - m_k(|f|)) \cdot 2M \cdot \Delta_k x \\ &= 2M(U(|f|, X) - L(|f|, X)) < \epsilon. \end{aligned}$$

(b) Show that if f and g are both integrable on $[a, b]$, then fg is integrable on $[a, b]$.

Solution: Suppose that f and g are both integrable on $[a, b]$. Then, by linearity, $(f + g)$ is also integrable and so f^2 , g^2 and $(f + g)^2$ are all integrable by part (a). Since $fg = \frac{1}{2}((f + g)^2 - f^2 - g^2)$, it is integrable too, by linearity.

(c) Show that if f is integrable and non-negative on $[a, b]$, then \sqrt{f} is integrable on $[a, b]$.

Solution: Suppose that f is integrable and non-negative on $[a, b]$. When $X = \{x_0, x_1, \dots, x_n\}$ is a partition of $[a, b]$, let us write $M_k(\sqrt{f}) = \sup \{\sqrt{f(t)} \mid t \in [x_{k-1}, x_k]\}$ and $m_k(f) = \sup \{f(t) \mid t \in [x_{k-1}, x_k]\}$, and similarly for $m_k(\sqrt{f})$ and $m_k(f)$. Note that $M_k(f) = M_k(\sqrt{f})^2$ and $m_k(f) = m_k(\sqrt{f})^2$, and so we have

$$M_k(f) - m_k(f) = (M_k(\sqrt{f}) - m_k(\sqrt{f}))(M_k(\sqrt{f}) + m_k(\sqrt{f})).$$

For any constant $c > 0$, when $M_k(\sqrt{f}) < c$ we have $M_k(\sqrt{f}) - m_k(\sqrt{f}) < c$, and when $M_k(\sqrt{f}) > c$ we have $M_k(\sqrt{f}) + m_k(\sqrt{f}) > c$ so that $M_k(f) - m_k(f) \geq (M_k(\sqrt{f}) - m_k(\sqrt{f}))c$, that is $M_k(\sqrt{f}) - m_k(\sqrt{f}) \leq \frac{1}{c}(M_k(f) - m_k(f))$. Thus for any partition X and any constant $c > 0$ we have

$$\begin{aligned} \sum_{\substack{k \text{ such that } M_k(\sqrt{f}) < c}} (M_k(\sqrt{f}) - m_k(\sqrt{f})) \Delta_k x &\leq \sum_{k=1}^n c \Delta_k x = c(b-a), \text{ and} \\ \sum_{\substack{k \text{ such that } M_k(\sqrt{f}) \geq c}} (M_k(\sqrt{f}) - m_k(\sqrt{f})) \Delta_k x &\leq \sum_{k=1}^n \frac{1}{c} (M_k(f) - m_k(f)) \Delta_k x = \frac{1}{c} (U(f, X) - L(f, X)). \end{aligned}$$

Now, let $\epsilon > 0$. Set $c = \frac{\epsilon}{2(b-a)}$ and choose a partition X of $[a, b]$ such that $U(f, X) - L(f, X) < \frac{\epsilon^2}{4(b-a)}$.

Then

$$\begin{aligned} U(\sqrt{f}, X) - L(\sqrt{f}, X) &= \sum_{k=1}^n (M_k(\sqrt{f}) - m_k(\sqrt{f})) \Delta_k x \\ &= \sum_{\substack{k \text{ with } M_k(\sqrt{f}) < c}} (M_k(\sqrt{f}) - m_k(\sqrt{f})) \Delta_k x + \sum_{\substack{k \text{ with } M_k(\sqrt{f}) \geq c}} (M_k(\sqrt{f}) - m_k(\sqrt{f})) \Delta_k x \\ &\leq c(b-a) + \frac{1}{c} (U(f, X) - L(f, X)) \\ &< \frac{\epsilon}{2(b-a)} (b-a) + \frac{2(b-a)}{\epsilon} \frac{\epsilon^2}{4(b-a)} = \epsilon. \end{aligned}$$

Thus \sqrt{f} is integrable on $[a, b]$.

9: Determine (with proof) which of the following statements are true.

(a) If $f : [a, b] \rightarrow [c, d]$ is integrable on $[a, b]$ and $g : [c, d] \rightarrow \mathbb{R}$ is integrable on $[c, d]$ then the composite $g \circ f$ must be integrable on $[a, b]$.

Solution: This is false. Indeed let $f : [0, 1] \rightarrow [0, 1]$ be an integrable function with $f(x) > 0$ whenever $x \in \mathbb{Q}$ and $f(x) = 0$ whenever $x \notin \mathbb{Q}$, such as the function $f(x)$ from Problem 2(c), and let $g : [0, 1] \rightarrow [0, 1]$ be the map given by $g(0) = 0$ and $g(x) = 1$ for $x > 0$. We know that g is integrable on $[0, 1]$ by Problem 2(b). But the composite function $g \circ f$ is not integrable on $[0, 1]$, indeed we have $g(f(x)) = 0$ whenever $x \notin \mathbb{Q}$ and $g(f(x)) = 1$ whenever $x \in \mathbb{Q}$, and we have seen (in Example 1.4) that this function is not integrable.

(b) If $f(x) = 0$ for all but countably many $x \in [a, b]$ and $f(x) = 1$ for countably many $x \in [a, b]$, then f cannot be integrable on $[a, b]$.

Solution: This is false. Indeed, let

$$f(x) = \begin{cases} 1 & \text{if } x = 1 - \frac{1}{2^n} \text{ for some integer } n \geq 1, \\ 0 & \text{otherwise.} \end{cases}$$

We shall show that f is integrable on $[0, 1]$. Let $\epsilon > 0$. We shall find a partition X of $[a, b]$ such that $U(f, X) - L(f, X) < \epsilon$. Choose n so that $\frac{n+1}{2^n} < \epsilon$ (we can do this since $\lim_{n \rightarrow \infty} \frac{n+1}{2^n} = 0$, by l'Hôpital's Rule). For $k = 1, 2, \dots, n$ let $x_k = 1 - \frac{1}{2^k} - \frac{1}{2^{n+1}}$ and $y_k = 1 - \frac{1}{2^k} + \frac{1}{2^{n+1}}$. Then $y_k - x_k = \frac{1}{2^n}$, and $x_k - y_{k-1} = \frac{1}{2^k} - \frac{1}{2^n}$, so for $k < n$ we have $x_k > y_{k-1}$ and we have $x_n = y_{n-1}$ and $y_n = 1 - \frac{1}{2^{n+1}}$. Let X be the partition $\{0, x_1, y_1, x_2, y_2, \dots, x_{n-1}, y_{n-1} = x_n, y_n, 1\}$. On every subinterval, the minimum value of f is equal to 0, and so $L(f, X) = 0$. On each of the subintervals $[x_k, y_k]$, and also in the final subinterval $[y_n, 1]$, the maximum value of f is equal to 1, while in all the other subintervals, the maximum value of f is 0, and so

$$\begin{aligned} U(f, X) &= 0 + (y_1 - x_1) + 0 + (y_2 - x_2) + 0 + \dots + 0 + (y_{n-1} - x_{n-1}) + (y_n - x_n) + (1 - y_n) \\ &= n \frac{1}{2^n} + \frac{1}{2^{n+1}} < \frac{n+1}{2^n} < \epsilon. \end{aligned}$$

Thus $U(f, X) - L(f, X) < \epsilon$ as required.

(c) If f is integrable on $[a, b]$ and the function $F(x) = \int_a^x f(t) dt$ is differentiable with $F' = f$ on $[a, b]$ then f is continuous on $[a, b]$.

Solution: This is false. To find a counterexample, consider the function G given by $G(x) = x^2 \sin \frac{1}{x}$ when $x \neq 0$ and $G(0) = 0$. Note that G is differentiable. Let $f(x) = G'(x)$ for $x \in [-\frac{1}{\pi}, \frac{1}{\pi}]$, so we have $f(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$ for $x \neq 0$ and $f(0) = 0$. Since f is continuous except at 0, f is integrable by part (a). We know, from the Fundamental Theorem, that the function $F(x) = \int_{-1/\pi}^x f(t) dt$ is continuous on $[-\frac{1}{\pi}, \frac{1}{\pi}]$ and is differentiable with $F'(x) = f(x)$ for all $x \neq 0$. For $x < 0$ we have $F' = f = G'$ so $F = G + c_1$ for some constant c_1 . Since $F(-\frac{1}{\pi}) = 0 = G(-\frac{1}{\pi})$, we must have $c_1 = 0$, and so $F(x) = G(x)$ for all $x < 0$. Since F and G are both continuous at 0, we also have $F(0) = G(0) = 0$. For $x > 0$ we again have $F' = f = G'$ so $F = G + c_2$ for some constant c_2 . Since F and G are both continuous at 0 with $F(0) = G(0)$, we must have $c_2 = 0$ and so $F(x) = G(x)$ for all x . Thus F is differentiable with $F' = f$ for all x (including 0), but f is not continuous at 0.