

MATH 148 Calculus 2, Exercises for Chapter 1

1: (a) Let $f(x) = \frac{8x}{2^{3x}}$ and let X be the partition of $[0, 2]$ into 6 equal-sized subintervals. Find the Riemann sum for f on X which uses the right endpoints of the subintervals.

(b) Let $f(x) = \frac{1}{x}$ and let X be the partition of $[\frac{1}{5}, \frac{13}{5}]$ into 6 equal-sized subintervals. Find the Riemann sum for f on X which uses the midpoints of the subintervals.

(c) Let $f(x) = 4^{\cos x}$ and let $X = \{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, 2\pi\}$. Find the average of the upper and lower Riemann sums for f on X .

2: (a) Suppose that f is increasing on $[a, b]$. Show that f is integrable on $[a, b]$.

(b) Suppose that $f(x) = 0$ for all but finitely many points $x \in [a, b]$. Show that f is integrable on $[a, b]$.

(c) Define $f : [0, 1] \rightarrow \mathbb{R}$ as follows. Let $f(0) = f(1) = 0$. For $x \in (0, 1)$ with $x \notin \mathbb{Q}$, let $f(x) = 0$. For $x \in (0, 1)$ with $x \in \mathbb{Q}$, write $x = \frac{a}{b}$ where $0 < a, b \in \mathbb{Z}$ with $\gcd(a, b) = 1$, and then let $f(x) = \frac{1}{b}$. Show that f is integrable in $[0, 1]$.

3: (a) Let f be continuous with $f \geq 0$ on $[a, b]$. Show that if $\int_a^b f = 0$ then $f = 0$ on $[a, b]$.

(b) Find $g'(1)$ where $g(x) = \int_{3x-3}^{x^2+1} \sqrt{1+t^3} dt$.

(c) Find $\lim_{n \rightarrow \infty} \sum_{i=1}^n \frac{1}{n+i}$.

4: (a) Let $0 \leq a < b$. From the definition, show that $f(x) = x^2$ is integrable on $[a, b]$ with $\int_a^b f = \frac{1}{3}(b^3 - a^3)$.

(b) Define $f : [1, 2] \rightarrow \mathbb{R}$ by $f(x) = \begin{cases} x^2, & \text{if } x \notin \mathbb{Q} \\ 2x, & \text{if } x \in \mathbb{Q} \end{cases}$. From the definition, show that $U(f) = 3$ and $L(f) = \frac{7}{3}$.

5: (a) Find $\int_a^b x^3 dx$ by evaluating the limit of a sequence of Riemann sums.

(b) Find $\int_0^8 \sqrt[3]{x} dx$ by evaluating the limit of a sequence of Riemann sums.

6: (a) Find $\int_1^2 \frac{1}{x} dx$ by evaluating the limit of a sequence of Riemann sums.

(b) Find $\int_1^2 \ln x dx$ by evaluating the limit of a sequence of Riemann sums.

7: (a) Find $\int_0^\pi \sin x dx$ by evaluating the limit of a sequence of Riemann sums.

(b) Find $\int_0^1 \sqrt{1-x^2} dx$ by evaluating the limit of a sequence of Riemann sums.

8: (a) Show that if f is integrable on $[a, b]$ then f^2 is integrable on $[a, b]$.

(b) Show that if f and g are both integrable on $[a, b]$, then fg is integrable on $[a, b]$.

(c) Show that if f is integrable and non-negative on $[a, b]$, then \sqrt{f} is integrable on $[a, b]$.

9: Determine (with proof) which of the following statements are true.

(a) If $f : [a, b] \rightarrow [c, d]$ is integrable on $[a, b]$ and $g : [c, d] \rightarrow \mathbb{R}$ is integrable on $[c, d]$ then the composite $g \circ f$ must be integrable on $[a, b]$.

(b) If $f(x) = 0$ for all but countably many $x \in [a, b]$ and $f(x) = 1$ for countably many $x \in [a, b]$, then f cannot be integrable on $[a, b]$.

(c) If f is integrable on $[a, b]$ and the function $F(x) = \int_a^x f(t) dt$ is differentiable with $F' = f$ on $[a, b]$ then f is continuous on $[a, b]$.