

MATH 148 Calculus 2, Exercises for Appendix 1

1: Let p_n be equal to one half of the perimeter of a regular polygon with 2^{n+1} sides which is circumscribed around the unit circle (note that $\{p_n\}_{n \geq 1}$ is decreasing and tends to π). Find p_1, p_2, p_3 and p_4 . Express your answers as algebraic numbers (that is in terms of integers and radicals, not in terms of values of trigonometric functions).

2: (a) Find the value of $\cos\left(\frac{\pi}{5}\right)$. Express your answer in terms of integers and radicals.
(b) Find the area of a regular decagon with sides of length 1 (a decagon has 10 sides).

3: Let A be the rectangle-based cone with its base vertices at $(\pm 2, \pm 1, 0)$ and with its top vertex at $(0, 3, 4)$, and let B be the rectangle-based cone with the same base but with its top vertex at $(0, -3, 4)$. Find the volume and the surface area of the solid $A \cup B$.

4: Let R be the radius of the Earth ($R \cong 6,000$ km).
(a) A satellite orbits the Earth at a distance $2R$ from the Earth's center. Let A be the set of points on the Earth's surface from which the satellite is visible (at one instant in time). Find the area of A .
(b) Let B be the portion of the Earth's surface which lies between 30° and 60° latitude and between 30° and 60° longitude. Find the area of B .

5: (a) Let A be the ball of radius 2 centered at $(1, 0, 0)$ and let B be the ball of radius 2 centered at $(-1, 0, 0)$. Find the volume of the solid $A \cap B$.
(b) A cylindrical hole is bored through the centre of a solid spherical ball. Let A be the portion of the ball which remains. Let h be the height of the cylindrical face of A . Find the volume of A in terms of h (somewhat surprisingly, the final answer involves neither the radius of the sphere, nor the radius of the hole).

6: a) Let A be the the solid torus obtained by revolving the disc $(x - R)^2 + y^2 \leq r^2$ about the y -axis. Find the volume and the surface area of A . (Hint: slice A into pieces which can be reassembled to form a cylinder).
(b) Let B be the paraboloidal solid which is obtained by revolving the region given by $0 \leq x \leq 1$ and $x^2 \leq y \leq 1$ about the y -axis. Find the volume of B . (Hint: slice B horizontally into n thin discs each of thickness $\frac{1}{n}$, find the approximate volume of each disc by treating it as a cylinder, add these volumes and take the limit as $n \rightarrow \infty$).