
Chapter 7. Sequences and Series of Functions

Pointwise Convergence

7.1 Definition: Let A ⊆ R, let g : A → R, and for each integer n ≥ p let fn : A → R.
We say that the sequence of functions (fn)n≥p converges pointwise to g on A, and we
write fn → g pointwise on A, when lim

n→∞
fn(x) = g(x) for all x ∈ A, that is when for all

x ∈ A and for all ε > 0 there exists m ≥ p such that for all integers n we have

n ≥ m =⇒ |fn(x)− g(x)| < ε .

7.2 Note: By the Cauchy Criterion for convergence, the sequence (fn)n≥p converges
pointwise to some function g(x) on A if and only if for all x ∈ A and for all ε > 0 there
exists m ≥ p such that for all integers k, ` we have

k, ` ≥ m =⇒
∣∣fk(x)− f`(x)

∣∣ < ε .

7.3 Example: Find an example of a sequence of functions (fn)n≥1 and a function g with
fn → g pointwise on [0, 1] such that each fn is continuous but g is not.

Solution: Let fn(x) = xn. Then lim
n→∞

fn(x) =

{
0 if x 6= 1

1 if x = 1

}
.

7.4 Example: Find an example of a sequence of functions (fn)n≥1 and a function g with
fn → g pointwise on [0, 1] such that each fn is differentiable and g is differentiable, but
lim
n→∞

fn
′ 6= g′.

Solution: Let fn(x) = 1
n tan−1(nx). Then lim

n→∞
fn(x) = 0, and fn

′(x) =
1

1 + (nx)2
so

lim
n→∞

fn
′(x) =

{
0 if x 6= 0

1 if x = 0

}
.

7.5 Example: Find an example of a sequence of functions (fn)n≥1 and a function g with
fn → g pointwise on [0, 1] such that each fn is integrable but g is not.

Solution: We have Q ∩ [0, 1] = {a1, a2, a3, · · ·} where

(an)n≥1 =
(
0
1 ,

1
1 ,

0
2 ,

1
2 ,

2
2 ,

0
3 ,

1
3 ,

2
3 ,

3
3 ,

0
4 , · · · ,

4
4 , · · ·

)
.(

as an exercise, you can check that an = k
` where ` =

⌈ −3+√9−8n
2

⌉
and k = n− `2+`

2

)
. For

x ∈ [0, 1], let fn(x) =

{
0 if x /∈ {a1, a2, · · · , an}
1 if x ∈ {a1, a2, · · · , an}

}
. Then lim

n→∞
fn(x) =

{
0 if x /∈ Q
1 if x ∈ Q

}
.

7.6 Example: Find an example of a sequence of functions (fn)n≥1 and a function g with
fn → g pointwise on [0, 1] such that each fn is integrable and g is integrable but

lim
n→∞

∫ 1

0

fn(x) dx 6=
∫ 1

0

g(x) dx .

Solution: Let f1(x) =

{
48
(
x− 1

2

)(
1− x

)
if 1

2 ≤ x ≤ 1

0 otherwise

}
. For n ≥ 1 let fn(x) = nf1(nx).

Then each fn is continuous with

∫ 1

0

fn(x) dx = 1, and lim
n→∞

fn(x) = 0 for all x.
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Uniform Convergence

7.7 Definition: Let A ⊆ R, let g : A → R, and for each integer n ≥ p let fn : A → R.
We say that the sequence of functions (fn)n≥p converges uniformly to g on A, and we
write fn → g uniformly on A, when for all ε > 0 there exists m ∈ Z≥p such that for all
x ∈ A and for all integers n ∈ Z≥p we have

n ≥ m =⇒
∣∣fn(x)− g(x)

∣∣ < ε .

7.8 Theorem: (Cauchy Criterion for Uniform Convergence of Sequences of Functions)
Let (fn)n≥p be a sequence of functions on A ⊆ R. Then (fn) converges uniformly (to some
function g) on A if and only if for all ε > 0 there exists m ∈ Z≥p such that for all x ∈ A
and for all integers k, ` ∈ Z≥p we have

k, ` ≥ m =⇒
∣∣fk(x)− f`(x)

∣∣ < ε .

Proof: Suppose that (fn) converges uniformly to g on A. Let ε > 0. Choose m so that
for all x ∈ A we have n ≥ m =⇒

∣∣fn(x) − g(x)
∣∣ < ε

2 . Then for k, ` ≥ m we have∣∣fk(x)− g(x)
∣∣ < ε

2 and
∣∣f`(x)− g(x)

∣∣ < ε
2 and so∣∣fk(x)− f`(x)

∣∣ ≤ ∣∣fk(x)− g(x)
∣∣+
∣∣f`(x)− g(x)

∣∣ < ε
2 + ε

2 = ε .

Conversely, suppose that (fn) satisfies the Cauchy Criterion for uniform convergence, that
is for all ε > 0 there exists m such that for all x ∈ A and all integers n, ` we have

n, ` ≥ m =⇒
∣∣fn(x)− f`(x)

∣∣ < ε .

For each fixed x ∈ A, (fn(x)) is a Cauchy sequence, so (fn(x)) converges, and we can
define g(x) by

g(x) = lim
n→∞

fn(x) .

We know that fn → g pointwise on A, but we must show that fn → g uniformly on A.
Let ε > 0. Choose m so that for all x ∈ A and for all integers n, ` we have

n, ` ≥ m =⇒
∣∣fn(x)− f`(x)

∣∣ < ε
2 .

Let x ∈ A. Since lim
`→∞

f`(x) = g(x), we can choose ` ≥ m so that
∣∣f`(x)− g(x)

∣∣ < ε
2 . Then

for n ≥ m we have∣∣fn(x)− g(x)
∣∣ ≤ ∣∣fn(x)− f`(x)

∣∣+
∣∣f`(x)− g(x)

∣∣ < ε
2 + ε

2 = ε .

7.9 Theorem: (Uniform Convergence, Limits and Continuity) Suppose that fn → g
uniformly on A. Let a be a limit point of A. If lim

x→a
fn(x) exists for each n, then

lim
x→a

g(x) = lim
x→a

lim
n→∞

fn(x) = lim
n→∞

lim
x→a

fn(x) .

In particular, if each fn is continuous in A, then so is g.

Proof: Suppose that lim
x→a

fn(x) exists for all n, and let bn = lim
x→a

fn(x). We must show that

lim
x→a

g(x) = lim
n→∞

bn. We claim first that (bn) converges. Let ε > 0. Since (fn) converges

uniformly, we can choose m so that k, ` ≥ m =⇒
∣∣fk(x) − f`(x)

∣∣ < ε
3 for all x ∈ A. Let

k, ` ≥ m. Since lim
x→a

fn(x) = bn for all n, we can choose x ∈ A so that
∣∣fk(x) − bk

∣∣ < ε
3

and
∣∣f`(x)− b`

∣∣ < ε
3 . Then we have∣∣bk − b`| ≤ |bk − fk(x)

∣∣+
∣∣fk(x)− f`(x)

∣∣+
∣∣f`(x)− b`

∣∣ < ε
3 + ε

3 + ε
3 = ε .

By the Cauchy Criterion for sequences, (bn) converges, as claimed.
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Now, let c = lim
n→∞

bn. We must show that lim
x→a

f(x) = c. Let ε > 0. Since fn → g

uniformly on A, and since bn → c, we can choose m so that when n ≥ m we have∣∣fn(x)−g(x)
∣∣ < ε

3 for all x ∈ A and we have |bn−c| < ε
3 . Let n ≥ m. Since lim

x→a
fn(x) = bn

we can choose δ > 0 so that 0 < |x−a| < δ =⇒
∣∣fn(x)−bn

∣∣ < ε
3 . Then when 0 < |x−a| < δ

we have ∣∣g(x)− c
∣∣ ≤ ∣∣g(x)− fn(x)

∣∣+
∣∣fn(x)− bn

∣∣+
∣∣bn − c∣∣ < ε

3 + ε
3 + ε

3 = ε .

Thus lim
x→a

f(x) = c, as required.

In particular, if a ∈ A and each fn is continuous at a then we have

lim
x→a

g(x) = lim
x→a

lim
n→∞

fn(x) = lim
n→∞

lim
x→a

fn(x) = lim
n→∞

fn(a) = g(a)

so g is continuous at a.

7.10 Theorem: (Uniform Convergence and Integration) Suppose that fn → g uniformly

on [a, b]. If each fn is integrable on [a, b] then so is g. In this case, if Fn(x) =

∫ x

a

fn(t) dt

and G(x) =

∫ x

a

g(t) dt, then Fn → G uniformly on [a, b]. In particular, we have∫ b

a

g(x) dx =

∫ b

a

lim
n→∞

fn(x) dx = lim
n→∞

∫ b

a

fn(x) dx .

Proof: Suppose that each fn is integrable on [a, b]. We claim that g is integrable on
[a, b]. Let ε > 0. Since fn → g uniformly on [a, b], we can choose an integer N so that
n ≥ N =⇒

∣∣fn(x) − g(x)
∣∣ < ε

4(b−a) for all x ∈ [a, b]. Fix n ≥ N . Since fn is integrable,

we can choose a partition X of [a, b] so that U(fn, X) − L(fn, X) < ε
2 . Note that since∣∣fn(x)− g(x)

∣∣ < ε
4(b−a) we have Mk(g) ≤Mk(fn) + ε

4(b−a) and mk(g) ≥ mk(fn)− ε
4(b−a) ,

and so

U(g,X)− L(g,X) =
n∑
k=1

(
Mk(g)−mk(g)

)
∆kx ≤

n∑
k=1

(
Mk(fn)−mk(fn) + ε

2(b−a)

)
∆kx

= U(fn, X)− L(fn, X) + ε
2 <

ε
2 + ε

2 = ε .

Thus g is integrable on [a, b].

Now define Fn(x) =

∫ x

a

fn(t) dt and G(x) =

∫ x

a

g(t) dt. We claim that Fn → G

uniformly on [a, b]. Let ε > 0. Since fn → g uniformly on [a, b], we can choose N so that
n ≥ N =⇒

∣∣fn(t) − g(t)
∣∣ < ε

2(b−a) for all t ∈ [a, b]. Let n ≥ N . Let x ∈ [a, b]. Then we

have ∣∣Fn(x)−G(x)
∣∣ =

∣∣∣∣∫ x

a

fn(t) dt−
∫ x

a

g(t) dt

∣∣∣∣ =

∣∣∣∣∫ x

a

fn(t)− g(t) dt

∣∣∣∣
≤
∫ x

a

∣∣fn(t)− g(t)
∣∣ dt ≤ ∫ x

a

ε
2(b−a) dt = ε

2(b−a) (x− a) ≤ ε
2 < ε .

Thus Fn → G uniformly on [a, b], as required.
In particular, we have lim

n→∞
Fn(b) = G(b), that is

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

g(x) dx =

∫ b

a

lim
n→∞

fn(x) dx .
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7.11 Theorem: (Uniform Convergence and Differentiation) Let (fn) be a sequence of
functions on [a, b]. Suppose that each fn is differentiable on [a, b],

(
fn
′) converges uniformly

on [a, b], and
(
fn(c)

)
converges for some c ∈ [a, b]. Then (fn) converges uniformly on [a, b],

lim
n→∞

fn(x) is differentiable, and

d

dx
lim
n→∞

fn(x) = lim
n→∞

d

dx
fn(x) .

Proof: We claim that (fn) converges uniformly on [a, b]. Let ε > 0. Since (fn) converges
uniformly on [a, b], and since (fn(c)) converges, we can choose N so that when n,m ≥ N
we have

∣∣fn′(t) − fm
′(t)
∣∣ < ε

2(b−a) for all t ∈ [a, b] and we have
∣∣fn(c) − fm(c)

∣∣ < ε
2 .

Let n,m ≥ N . Let x ∈ [a, b]. By the Mean Value Theorem applied to the function
fn(x)− fm(x), we can choose t between c and x so that(

fn(x)− fm(x)− fn(c) + fm(c)
)

=
(
fn
′(t)− fm′(t)

)
(x− c) .

Then we have∣∣fn(x)− fm(x)
∣∣ ≤ ∣∣fn(x)− fm(x)− fn(c) + fm(c)

∣∣+
∣∣fn(c)− fm(c)

∣∣
=
∣∣fn′(t)− fm′(t)∣∣|x− c|+ ∣∣fn(c)− fm(c)

∣∣
< ε

2(b−a) (b− a) + ε
2 = ε .

Thus (fn) converges uniformly on [a, b].
Let g(x) = lim

n→∞
fn(x). We claim that g is differentiable with fg(x) = lim

n→∞
fn
′(x) for

all x ∈ [a, b]. Fix x ∈ [a, b]. Note that

g′(x) = lim
n→∞

fn
′(x) ⇐⇒ lim

y→x

g(y)− g(x)

y − x
= lim
n→∞

lim
y→x

fn(y)− fn(x)

y − x

⇐⇒ lim
y→x

lim
n→∞

fn(y)− fn(x)

y − x
= lim
n→∞

lim
y→x

fn(y)− fn(x)

y − x
so it suffices to show that

(
hn
)

converges uniformly on [a, b] \ {x}, where

hn(y) =
fn(y)− fn(x)

y − x
.

Let ε > 0. Since (f ′n) converges uniformly on [a, b], we can choose an integer N so that
n,m ≥ N =⇒

∣∣fn′(t)− fm′(t)∣∣ < ε for all t ∈ [a, b]. Let n,m ≥ N . Let y ∈ [a, b] \ {x}. By
the Mean Value Theorem, we can choose t between x and y so that(

fn(y)− fm(y)− fn(x) + fm(x)
)

=
(
fn
′(t)− fm′(t)

)
(y − x) .

Then ∣∣hn(y)− hm(y)
∣∣ =

∣∣∣∣fn(y)− fm(y)− fn(x) + fm(x)

y − x

∣∣∣∣ =
∣∣fn′(t)− fm′(t)∣∣ < ε .

Thus
(
hn
)

converges uniformly on [a, b] \ {x}, as required.
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Series of Functions

7.12 Definition: Let (fn)n≥p be a sequence of functions fn : A → R. The series

of functions
∑
n≥p

fn is defined to be the sequence
(
S`
)
n≥p where S`(x) =

∑̀
n=p

fn(x).

The function S` is called the `th partial sum of the series. We say the series
∑
n≥p

fn

converges pointwise (or uniformly) on A when the sequence (S`)n≥p converges, pointwise
(or uniformly) on A. In this case, the sum of the series of functions is defined to be the
function

g(x) =
∞∑
n=p

fn(x) = lim
`→∞

S`(x) .

7.13 Theorem: (Cauchy Criterion for the Uniform Convergence of a Series of Functions)
The series

∑
n≥p

fn converges uniformly (to some function g) on A if and only if for every

ε > 0 there exists N ≥ p such that for all x ∈ A and for all m, ` ≥ p we have

m > ` ≥ N =⇒
∣∣∣ m∑
n=`+1

fn(x)
∣∣∣ < ε .

Proof: This follows immediately from the analogous theorem for sequences of functions,
since Sm(x)− S`(x) =

∑m
n=`+1 fn(x).

7.14 Theorem: (Uniform Convergence, Limits and Continuity) Suppose that
∑
n≥p

fn(x)

converges uniformly on A. Let a be a limit point of A. If lim
x→a

fn(x) exists for all n ≥ p,

then

lim
x→a

∞∑
n=p

fn(x) =
∞∑
n=p

lim
x→a

fn(x) .

In particular, if each fn is continuous on A then so is
∑∞
n=p fn.

Proof: This follows immediately from the analogous theorem for sequences of functions.

7.15 Theorem: (Uniform Convergence and Integration) Suppose that
∑
n≥p

fn converges

uniformly on [a, b]. If each fn is integrable on [a, b], then so is
∞∑
n=p

fn. In this case, if we

define Fn(x) =

∫ x

a

fn(t) dt and G(x) =

∫ x

a

∞∑
n=p

fn(t) dt, then
∑
n≥p

Fn converges uniformly

to G on A. In particular, we have∫ b

a

∞∑
n=p

fn(x) dx =
∞∑
n=p

∫ b

a

fn(x) dx .

Proof: This follows immediately from the analogous theorem for sequences of functions.
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7.16 Theorem: (Uniform Convergence and Differentiation) Suppose that each fn is
differentiable on [a, b], and

∑
n≥p

fn
′ converges uniformly on [a, b], and

∑
n≥p

fn(c) converges

for some c ∈ [a, b]. Then
∑
n≥p

fn converges uniformly on [a, b] and

d
dx

∞∑
n=p

fn(x) =
∞∑
n=p

d
dxfn(x) .

Proof: This follows immediately from the analogous theorem for sequences of functions.

7.17 Theorem: (The Weierstrass M -Test) Suppose that each fn : A → R is bounded
with |fn(x)| ≤ Mn for all x ∈ A, and that

∑
n≥p

Mn converges. Then
∑
n≥p

fn(x) converges

uniformly on A.

Proof: Let ε > 0. Since the series
∑
Mn converges, we can choose an integer N so that

m > ` ≥ N =⇒
m∑

n=`+1

Mn < ε. Let m > ` ≥ N and let x ∈ A. Then

∣∣∣ m∑
n=`+1

fn(x)
∣∣∣ ≤ m∑

n=`+1

∣∣fn(x)
∣∣ ≤ m∑

n=`+1

Mn < ε .

7.18 Example: Find a sequence of functions
(
fn(x)

)
n≥0, each of which is differentiable

on R, such that
∑
n≥0

fn(x) converges uniformly on R, but the sum g(x) =
∞∑
n=0

fn(x) is

nowhere differentiable.

Solution: Let fn(x) = 1
2n sin2(8nx). Since |fn(x)| ≤ 1

2n and
∑

1
2n converges,

∑
n≥0

fn(x)

converges uniformly on R by the Weierstrass M-Test. Let g(x) =
∞∑
n=0

fn(x). We claim

that g(x) is nowhere differentiable. Let x ∈ R. For each n, let m, an and bn be such

that an = mπ
2·8n , bn = (m+1)π

2·8n and x ∈ [an, bn). Note that one of fn(an) and fn(bn) is
equal to 1

2n and the other is equal to 0 so we have
∣∣fn(bn)− fn(an)

∣∣ = 1
2n . Note also that

for k > n we have fk(an) = fk(bn) = 0. Also, for all k we have fk(x) = 1
2k

sin2(8kx),

fk
′(x) = 4k sin(2 · 8kx), and

∣∣fk′(x)
∣∣ ≤ 4k, so by the Mean Value Theorem,∣∣fk(bn)− fk(an)

∣∣ ≤ 4k|bn − an| .

Finally, note that if g′(x) did exist, then we would have g′(x) = lim
n→∞

f(bn)− f(an)

bn − an
, but∣∣∣∣f(bn)− f(an)

bn − an

∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

fk(bn)− fk(an)

bn − an

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=0

fk(bn)− fk(an)

bn − an

∣∣∣∣∣
≥
∣∣∣∣fn(bn)− fn(an)

bn − an

∣∣∣∣− n−1∑
k=0

∣∣∣∣fk(bn)− fk(an)

bn − an

∣∣∣∣
≥

1
2n

π
2·8n
−
n−1∑
k=0

4k = 2·4n
π −

4n−1
3 =

(
2
π −

1
3

)
4n + 1

3 →∞ as n→∞
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Power Series

7.19 Definition: A power series centred at a is a series of the form
∑
n≥0

cn(x−a)n for

some real numbers cn, where we use the convention that (x− a)0 = 1.

7.20 Example: The geometric series
∑
n≥0

xn is a power series centred at 0. It converges

when |x| < 1 and for all such x the sum of the series is

∞∑
n=0

xn = 1
1−x .

7.21 Lemma: (Abel’s Formula) Let (an)n≥p and (bn)n≥p be sequences. Let S` =
∑̀
n=p

an.

Then ∑̀
n=p

anbn = S`b` −
`−1∑
j=p

Sj(bj+1 − bj) .

Proof: We have
`−1∑
j=p

Sj(bj+1 − bj) = ap(bp+1 − bp) + (ap + ap+1)(bp+2 − bp+1)

+ (ap + ap+1 + ap+2)(bp+3 − bp+2)

+ · · ·+ (ap + ap+1 + ap+2 + · · ·+ a`−1)(b` − b`−1)

= −apbp − ap+1bp+1 − · · · − a`−1b`−1
+ (ap + ap+1 + · · · a`−1)b` − a`b` + a`b`

= S`b` −
∑̀
n=p

anbn .

7.22 Note: Recall that for a sequence (an) in R, we define lim sup
n→∞

an = lim
n→∞

sn where

sn = sup{ak | k ≥ n} (with lim sup
n→∞

an =∞ when (an) is not bounded above).

7.23 Theorem: (The Interval and Radius of Convergence) Let
∑
n≥0

cn(x−a)n be a power

series and let R = 1

lim sup
n→∞

n
√
|cn|

∈ [0,∞]. Then the set of x ∈ R for which the power

series converges is an interval I centred at a of radius R. Indeed

(1) If |x− a| > R then lim
n→∞

cn(x− a) 6= 0 so
∑
n≥0

cn(x− a)n diverges.

(2) If |x− a| < R then
∑
n≥0

cn(x− a)n converges absolutely.

(3) If 0 < r < R then
∑
n≥0

cn(x− a)n converges uniformly in [a− r, a+ r].

(4) (Abel’s Theorem) If
∑
n≥0

cnR
n converges then

∑
n≥0

cn(x − a)n converges uniformly on

[a, a+R]. If
∑
n≥0

cn(−R)n converges then
∑
n≥0

cn(x− a)n converges uniformly on [a−R, a].
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Proof: To prove Part 1, suppose that |x− a| > R. Then

lim sup
n→∞

n
√
|cn(x− a)n| = |x− a| lim sup

n→∞

n
√
|cn| > R · 1

R = 1 ,

and so lim
n→∞

cn(x− a)n 6= 0 and
∑
cn(x− a)n diverges, by the Root Test.

To prove Part 2, suppose that |x− a| < R. Then

lim sup
n→∞

n
√
|cn(x− a)n| = |x− a| lim sup

n→∞

n
√
|cn| < R · 1

R = 1 ,

and so
∑∣∣cn(x− a)n

∣∣ converges, by the Root Test.

To prove Part 3, fix 0 < r < R. By part 2,
∑∣∣cn(x− a)n

∣∣ converges when x = a+ r,
that is

∑
|cnrn| converges. Let x ∈ [a− r, a+ r]. Then |cn(x− a)n| ≤ |cnrn| and

∑
|cnrn|

converges, and so
∑
|cn(x− a)n| converges uniformly by the Weierstrass M -Test.

Now let us prove the first statement in Part 4 (the proof of the second statement
is similar). Suppose that

∑
cnR

n converges. Let ε > 0. Choose an integer N so that

m > ` ≥ N =⇒
∣∣∣ m∑
n=`+1

cnR
n
∣∣∣ < ε. Let x ∈ [a, a+R]. By Abel’s Lemma, using an = cnR

n,

bn =
(
x−a
R

)n
, Sm =

m∑̀
+1

an, and noting that 0 ≤ x−a
R ≤ 1 so that 0 ≤ bj+1 ≤ bj ≤ 1,

∣∣∣ m∑
n=`+1

cn(x− a)n
∣∣∣ =

∣∣∣ m∑
n=`+1

cnR
n
(
x−a
R

)n ∣∣∣ =
∣∣∣ m∑
n=`+1

anbn

∣∣∣
=
∣∣∣Sm bm − m−1∑

j=`+1

Sj(bj+1 − bj)
∣∣∣ ≤ |Sm||bm|+ m−1∑

j=`+1

|Sj ||bj+1 − bj |

= |Sm| bm +
m−1∑
j=`+1

|Sj |(bj − bj+1) < ε bm + ε
m−1∑
j=`+1

(bj − bj+1)

= ε bm + ε (b`+1 − bm) = ε b`+1 ≤ ε.

7.24 Definition: The number R in the above theorem is called the radius of conver-
gence of the power series, and the interval I is called the interval of convergence of
the power series.

7.25 Example: Find the interval of convergence of the power series
∑
n≥1

(3− 2x)n√
n

.

Solution: First note that this is in fact a power series, since
(3− 2x)n√

n
= (−2)n√

n

(
x− 3

2

)n
,

and so
∑
n≥1

(3− 2x)n√
n

=
∑
n≥0

cn(x− a)n, where c0 = 0, cn = (−2)n√
n

for n ≥ 1 and a = 3
2 .

Now, let an =
(3− 2x)n√

n
. Then

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ (3− 2x)n+1

√
n+ 1

√
n

(3− 2x)n

∣∣∣∣ =
√

n
n+1 |3 − 2x|,

so lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |3 − 2x| . By the Ratio Test,
∑
an converges when |3 − 2x| < 1 and

diverges when |3− 2x| > 1. Equivalently, it converges when x ∈ (1, 2) and diverges when
x /∈ [1, 2]. When x = 1 so (3 − 2x) = 1, we have

∑
an =

∑
1√
n

, which diverges (its a

p-series), and when x = 2 so (3− 2x) = −1, we have
∑
an =

∑ (−1)n√
n

which converges by

the Alternating Series Test. Thus the interval of convergence is I = (1, 2 ].
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Operations on Power Series

7.26 Theorem: (Continuity of Power Series) Suppose that the power series
∑
cn(x−a)n

converges in an interval I. Then the sum f(x) =
∞∑
n=0

cn(x− a)n is continuous in I.

Proof: This follows from uniform convergence of
∑
cn(x− a)n on closed subintervals of I.

Indeed, given x ∈ I we can choose a closed interval [b, c] ⊆ I with x ∈ [b, c], and then since∑
cn(x− a)n converges uniformly on [b, c], the sum is continuous on [b, c], and hence at x.

7.27 Theorem: (Addition and Subtraction of Power Series) Suppose that the power series∑
an(x− a)n and

∑
bn(x− a)n both converge in the interval I. Then

∑
(an + bn)(x− a)n

and
∑

(an − bn)(x− a)n both converge in I, and for all x ∈ I we have

∞∑
n=0

(an ± bn)(x− a)n =
( ∞∑
n=0

an(x− a)n
)
±
( ∞∑
n=0

bn(x− a)n
)
.

Proof: This follows from Linearity.

7.28 Theorem: (Multiplication of Power Series) Suppose the power series
∑
an(x− a)n

and
∑
bn(x − a)n both converge in an open interval I with a ∈ I. Let cn =

n∑
k=0

akbn−k.

Then
∑
cn(x− a)n converges in I and for all x ∈ I we have

∞∑
n=0

cn(x− a)n =
( ∞∑
n=0

an(x− a)n
)( ∞∑

n=0
bn(x− a)n

)
.

Proof: This follows from the Multiplication of Series Theorem, since the power series
converge absolutely in I.

7.29 Theorem: (Integration of Power Series) Suppose that
∑
cn(x−a)n converges in the

interval I. Then for all x ∈ I, the sum f(x) =
∞∑
n=0

cn(x − a)n is integrable on the closed

interval between a and x (that is on [a, x] or [x, a]) and∫ x

a

∞∑
n=0

cn(t− a)n dt =
∞∑
n=0

∫ x

a

cn(t− a)n dt =
∞∑
n=0

1
n+1 cn(x− a)n+1 .

Proof: This follows from uniform convergence on closed subintervals of I.

7.30 Theorem: (Differentiation of Power Series) Suppose that
∑
cn(x − a)n converges

in the open interval I. Then the sum f(x) =
∞∑
n=0

cn(x− a)n is differentiable in I and

f ′(x) = d
dx

∑
cn(x− a)n =

∞∑
n=0

d
dxcn(x− a)n =

∞∑
n=1

n cn(x− a)n−1 .

Proof: Note that the two power series
∑
cn(x− a)n and

∑
n cn(x− a)n−1 have the same

radius of convergence R, because lim
n→∞

n
√
n = 1 so that lim sup n

√
|ncn| = lim sup n

√
|cn|.

The theorem now follows from the convergence of
∑
cn(x − a)n and the uniform

convergence of
∑
n cn(x− a)n−1 on closed subintervals of I.
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7.31 Theorem: (Division of Power Series) Suppose that
∑
an(x− a)n and

∑
bn(x− a)n

both converge in an open interval J with a ∈ J , and that b0 6= 0. Define cn by

c0 = a0
b0

, and for n > 0, cn = an
b0
− bnc0

b0
− bn−1c1

b0
− · · · − b1cn−1

b0
.

Then there is an open interval I with a ∈ I ⊆ J such that
∑
cn(x − a)n converges in I

with

∞∑
n=0

cn(x− a)n =

∞∑
n=0

an(x− a)n

∞∑
n=0

bn(x− a)n
.

Proof: For all x ∈ J , let f(x) =
∑∞
n=0 an(x− a)n and g(x) =

∑∞
n=0 bn(x− a)n. Since g is

continuous with g(a) = b0 6= 0, we can choose r > 0 small enough so that [a− r, a+ r] ⊆ J
and g(x) 6= 0 for all x ∈ [a − r, a + r]. Note that

∑
|anrn| and

∑
|bnrn| both converge.

Since |anrn| → 0 and |bnrn| → 0 and b0 6= 0, we can choose M so that M ≥
∣∣∣anrnb0

∣∣∣ and

M ≥
∣∣∣ bnrnb0

∣∣∣ for all n. Note that |c0| =
∣∣∣a0b0 ∣∣∣ ≤M and since c1 = a1

b0
+ b1c0

b0
we have

|c1r| ≤
∣∣∣a1rb0 ∣∣∣+

∣∣∣ b1rb0 ∣∣∣ |c0| ≤M +M2 = M(1 +M) .

Suppose, inductively, that |ckrk| ≤M(1 +M)k for all k < n. Then since

an = bnc0 + bn−1c1 + · · ·+ b1cn−1 + b0cn ,

we have

|cnrn| ≤
∣∣∣anrnb0

∣∣∣+
∣∣∣ bnrnb0

∣∣∣ |c0|+ ∣∣∣ bn−1r
n−1

b0

∣∣∣ |c1r|+ · · ·+ ∣∣∣ b1rb0 ∣∣∣ |cn−1rn−1|
≤M +M2 +M2(1 +M) +M2(1 +M)2 +M2(1 +M)3 + · · ·+M2(1 +M)n−1

= M +M2
( (1+M)n−1

M

)
= M(1 +M)n .

By induction, we have |cnrn| ≤ M(1 + M)n for all n ≥ 0. Let I = (a − s, a + s) with
s = r

1+M . Note that I ⊆ (a− r, a+ r) ⊆ J . When x ∈ I, for all n we have

|cn(x− a)n| = |cnrn| ·
1

(1 +M)n
·
∣∣∣∣ x− a
r/(1 +M)

∣∣∣∣n ≤M ∣∣∣∣ x− a
r/(1 +M)

∣∣∣∣n
and so

∑
|cn(x− a)n| converges in I by the Comparison Test.

Note that from the definition of cn we have an =
n∑
k=0

ckbn−k, and so by multiplying

power series, we have( ∞∑
n=0

cn(x− a)n
)( ∞∑

n=0
bn(x− a)n

)
=
∞∑
n=0

an(x− a)n

for all x ∈ I.
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7.32 Theorem: (Composition of Power Series). Let f(x) =
∞∑
n=0

an(x − a)n in an open

interval J with a ∈ J , and let g(y) =
∞∑
m=0

bm(y − b)m in an open interval K with

b = f(a) ∈ K. Let cm,k be the coefficient of (x− a)k in the product
( k∑
n=1

an(x− a)n
)m

,

and let dk =
k∑

m=0
bmcm,k. Then there exists an open interval I ⊆ J with a ∈ I such that

f(I) ⊆ K and the series
∑
k≥0

dk(x− a)k converges in I with g(f(x)) =
∞∑
k=0

dk(x− a)k.

Proof: When x ∈ J and f(x) ∈ K, we have

g
(
f(x)

)
=
∞∑
m=0

bm
( ∞∑
n=1

an(x− a)n
)m

=
∞∑
m=0

bm
∞∑
k=0

cm,k(x− a)k =
∞∑
m=0

∞∑
k=0

bmcm,k(x− a)k.

If we can apply Fubini’s Theorem to interchange the order of summation, then we obtain

g
(
f(x)

)
=
∞∑
m=0

∞∑
k=0

bmcm,k(x− a)k =
∞∑
k=0

∞∑
m=0

bmcm,k(x− a)k =
∞∑
m=0

dk(x− a)k.

We need to verify that the hypotheses of Fubini’s Theorem are satisfied, so we must show
that

∑
k≥0 |bmcm,k(x− a)k| converges for each m, and that

∑
m≥0

∑∞
k=0 |bmcm,k(x− a)k|

converges (at least in some subinterval I ⊆ J with a ∈ I). We know that
∑
an(x − a)n

converges in J , so by multiplication of power series, the series
∑
cm,k(x−a)k also converges

in J with
∑∞
k=0 cm,k(x−a)k =

(∑∞
n=1 an(x−a)n

)m
, and hence by multiplying by bm, the

series
∑
k≥0 bmcm,k(x− a)k also converges in J . Since power series converge absolutely in

their open interval of convergence,
∑
k≥0 |bmcm,k(x− a)k| converges in J .

It remains to show that
∑
m≥0

∑∞
k=0 |bmcm,k(x − a)k| converges in an open interval

I with a ∈ I. Let R and S be the radii of convergence of the series
∑
an(x − a)n and∑

bm(y − b)m. Note that the series
∑
|an|(x − a)n and

∑
|bm|(y − |b|)m have the same

radii of convergence, R and S, so we can define functions f(x) =
∑∞
n=0 |an|(x − a)n for

x ∈ (a − R, a + R) and g(y) =
∑∞
m=0 |bm|(y − |b|)m for y ∈ (|b| − S, |b| + S). Since f is

continuous with f(a) = |a0| = |f(a)| = |b|, we can choose r with 0 < r ≤ R such that
|x−a| < r =⇒ |f(a)−|b|

∣∣ < S. Let I = (a− r, a+ r)∩J , and note that g
(
f(x)

)
is defined

for all x ∈ I. Let cm,k be the coefficient of (x− a)k in the product
(∑k

n=1 |an|(x− a)n
)m

.
Note that, by the triangle inequality, |cm,k| ≤ cm,k for all m, k. For all x ∈ I, we have

g
(
f(x)

)
=
∞∑
m=0
|bm|

( ∞∑
n=1
|an|(x−a)n

)m
=
∞∑
m=0
|bm|

∞∑
k=0

cm,k(x−a)k=
∞∑
m=0

∞∑
k=0

|bm| cm,k(x−a)k.

Since power series converge absolutely,
∑
m≥0

∑∞
k=0 |bmcm,k(x−a)k| converges in I. Since

|cm,k| ≤ cm,k, the series
∑
m≥0

∑∞
k=0 |bmcm,k(x− a)k| also converges in I, by comparison.
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7.33 Example: We have 1
1+x =

∞∑
n=0

(−1)nxn for |x| < 1. By Integration of Power Series,

ln(1 + x) =
∞∑
n=0

(−1)n
n+1 x

n+1 =
∞∑
n=1

(−1)n
n xn for |x| < 1. In particular, we can take x = 1

2 to

get ln 3
2 =

∞∑
n=1

(−1)n
n·2n and we can take x = − 1

2 to get ln 1
2 =

∞∑
n=1

−1
n·2n , that is ln 2 =

∞∑
n=1

1
n·2n .

Let us also argue that we can also take x = 1. Note when x = −1, the series
∞∑
n=1

(−1)n+1

n xn becomes the harmonic series, which diverges, and when x = 1 it becomes

the alternating harmonic series, which converges, so the interval of convergence is (−1, 1].

Thus the sum f(x) =
∞∑
n=1

(−1)n+1

n xn is defined for −1 < x ≤ 1. We know already that

f(x) = ln(1 + x) for −1 < x < 1. By Abel’s Theorem, the series converges uniformly

on [0, 1], so by the Continuity of Power Series Theorem, the sum f(x) =
∞∑
n=0

(−1)n+1

n xn is

continuous on [0, 1] and in particular f(x) is continuous at x = 1. Since f(x) = ln(1 + x)
for |x| < 1 and and since both f(x) and ln(1 + x) are continuous at 1 it follows that

f(1) = ln 2. Thus we have ln 2 =
∞∑
n=1

(−1)n+1

n .

7.34 Example: Let f(x) = 1
x2+3x+2 . Find a power series centred at 0 whose sum is f(x)

in its interval of convergence, and find a power series centred at −4 whose sum is f(x) in
its interval of convergence.

Solution: Let us find a series centred at 0. For all x 6= −1,−2 we have

f(x) =
1

(x+ 1)(x+ 2)
=

1

x+ 1
− 1

x+ 2
=

1

1 + x
−

1
2

1 + x
2

=
∞∑
n=0

(−x)n −
∞∑
n=0

1
2

(
−x2
)n

=
∞∑
n=0

(−1)nxn −
∞∑
n=0

(−1)n
2n+1 x

n

=
∞∑
n=0

(−1)n
(
1− 1

2n+1

)
xn .

We remark that since
∑
n≥0(−x)n converges if and only if |x| < 1 and

∑
n≥0

1
2

(
−x2
)n

converges when |x| < 2, it follows from Linearity the sum of these two series converges if
and only if |x| < 1.

Solution: Now let us find a series centred at −4. For all x 6= −1,−2, we have

f(x) =
1

(x+ 1)(x+ 2)
=

1

x+ 1
− 1

x+ 2
=

1

(x+ 4)− 3
− 1

(x+ 4)− 2

=
− 1

3

1− x+4
3

+
1
2

1− x+4
2

=
∞∑
n=0
− 1

3

(
x+4
3

)n
+
∞∑
n=0

1
2

(
x+4
2

)n
=
∞∑
n=0

(
1

2n+1 − 1
3n+1

)
(x+ 4)n .

Since
∑
n≥0−

1
3

(
x+4
3

)n
converges if and only if |x+ 4| < 3 and

∑
n≥0

1
2

(
x+4
2

)n
converges

if and only if |x+ 4| < 2, it follows that their sum converges if and only if |x+ 4| < 2.
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7.35 Example: Find a power series centered at 0 whose sum is f(x) =
1

(1− x)2
.

Solution: We provide three solutions. For the first solution, we multiply two power series.
For |x| < 1 we have

f(x) =
1

1− x
· 1

1− x
=
(
1 + x+ x2 + x3 + · · ·

)(
1 + x+ x2 + x3 + · · ·

)
= 1 + (1 + 1)x+ (1 + 1 + 1)x2 + (1 + 1 + 1 + 1)x3 + · · ·
= 1 + 2x+ 3x2 + 4x3 + · · ·

=
∞∑
n=0

(n+ 1)xn .

For the second solution, we note that f(x) =
1

1− 2x+ x2
and we use long division.

1 + 2x+ 3x2 + 4x3 + 5x4 + · · ·
1− 2x+ x2

)
1 + 0x+ 0x2 + 0x3 + 0x4 − · · ·
1− 2x+ x2

2x− x2
2x− 4x2 + 2x3

3x2 − 2x3

3x2 − 6x3 + 3x4

4x3 − 8x4 + · · ·
4x3 − 8x4 + · · ·

5x4 + · · ·

For the third solution, we note that

∫
1

(1− x)2
=

1

1− x
and we use differentiation.

1

1− x
= 1 + x2 + x3 + x4 + x5 + · · ·

d

dx

( 1

1− x

)
= d

dx

(
1 + x+ x2 + x3 + x4 + x5 + · · ·

)
1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + 5x4 + · · · .
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Taylor Series

7.36 Theorem: Suppose that f(x) =
∞∑
n=0

an(x− a)n in an open interval I centred at a.

Then f is infinitely differentiable at a and for all n ≥ 0 we have

an =
f (n)(a)

n!
,

where f (n)(a) denotes the nth derivative of f at a.

Proof: By repeated application of the Differentiation of Power Series Theorem, for all
x ∈ I, we have f ′(x) =

∑∞
n=1 nan(x − a)n−1, f ′′(x) =

∑∞
n=2 n(n − 1)an(x − a)n−2 and

f ′′′(x) =
∑∞
n=3 n(n− 1)(n− 2)an(x− a)n−3, and in general

f (k)(x) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)an(x− a)n−k

and so f(a) = a0, f ′(a) = a1, f ′′(a) = 2 · 1 a2 and f ′′′(a) = 3 · 2 · 1 a3, and in general

f (n)(a) = n! an

7.37 Definition: Given a function f(x) which is infinitely differentiable at x = a, we
define the Taylor series of f(x) centred at a to be the power series

T (x) =
∑
n≥0

an(x− a)n where an =
f (n)(a)

n!

and we define the lth Taylor Polynomial of f(x) centred at a to be the lth partial sum

Tl(x) =
l∑

n=0

an(x− a)n where an =
f (n)(a)

n!

7.38 Example: Find the Taylor series centred at 0 for f(x) = ex.

Solution: We have f (n)(x) = ex for all n, so f (n)(0) = 1 and an = 1
n! for all n ≥ 0. Thus

the Taylor series is

T (x) =
∞∑
n=0

1
n! x

n = 1 + x+ 1
2!x

2 + 1
3!x

3 + 1
4!x

4 + · · · .

7.39 Example: Find the Taylor series centred at 0 for f(x) = sinx.

Solution: We have f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx, f ′′′′(x) = sinx and so
on, so that in general f (2n)(x) = (−1)n sinx and f (2n+1)(x) = (−1)n cosx. It follows that

f (2n)(0) = 0 and f (2n+1)(0) = (−1)n, so we have a2n = 0 and a2n+1 = (−1)n
(2n+1)! . Thus

T (x) =
∞∑
n=0

(−1)n
(2n+1)!x

2n+1 = x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · .
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7.40 Example: Find the Taylor series centred at 0 for f(x) = (1+x)p where p ∈ R. This
series is called the binomial series

Solution: f ′(x) = p(1+x)p−1, f ′′(x) = p(p−1)(1+x)p−2, f ′′′(x) = p(p−1)(p−2)(1+x)p−3,
and in general

f (n)(x) = p(p− 1)(p− 2) · · · (p− n+ 1)(1 + x)p−n ,

so f(0) = 1, f ′(0) = p, f ′′(0) = p(p−1), and in general f (n)(0) = p(p−1)(p−2) · · · (p−n+1),

and so we have an = p(p−1)(p−2)···(p−n+1)
n! . Thus the Taylor series is

T (x) =
∞∑
n=0

(
p
n

)
xn = 1 + px+ p(p−1)

2! x2 + p(p−1)(p−2)
3! x3 + p(p−1)(p−2)(p−3)

4! x4 + · · ·

where we use the notation(
p
0

)
= 1 , and for n ≥ 1,

(
p
n

)
= p(p−1)(p−2)···(p−n+1)

n!

7.41 Theorem: (Taylor) Let f(x) be infinitely differentiable in an open interval I with
a ∈ I. Let Tl(x) be the lth Taylor polynomial for f(x) centered at a. Then for all x ∈ I
there exists a number c between a and x such that

f(x)− Tl(x) =
f (l+1)(c)

(l + 1)!
(x− a)l+1 .

Proof: When x = a both sides of the above equation are 0. Suppose that x > a (the case
that x < a is similar). Since f (l+1) is differentiable and hence continuous, by the Extreme
Value Theorem it attains its maximum and minimum values, say M and m, on the interval
[a, x]. Since m ≤ f (l+1)(t) ≤M for all t ∈ [a, x], we have∫ t1

a

mdt ≤
∫ t1

a

f (l+1)(t) dt ≤
∫ t1

a

M dt

that is
m(t1 − a) ≤ f (l)(t1)− f (l)(a) ≤M(t1 − a)

for all t1 ∈ [a, x]. Integrating each term with respect to t1 from a to t2, we get

1
2m(t2 − a)2 ≤ f (l−1)(t2)− f (l−1)(a)− f (l)(a)(t2 − a) ≤ 1

2M(tt − a)2

for all t2 ∈ [a, x]. Integrating with respect to t2 from a to t3 gives

1
3!m(t3−a)3 ≤ f (l−2)(t3)− f (l−2)(a)− f (l−1)(a)(t3−a)− 1

2f
(l)(a)(t3−a)2 ≤ 1

3!M(t3−a)3

for all t3 ∈ [a, x]. Repeating this procedure eventually gives

1
(l+1)!m(tl+1 − a)l+1 ≤ f(tl+1)− Tl(tl+1) ≤ 1

(l+1)!M(tl+1 − a)l+1

for all tl+1 ∈ [a, x]. In particular 1
(l+1)!m(x− a)l+1 ≤ f(x)−Tl(x) ≤ 1

(l+1)!M(x− a)l+1, so

m ≤
(
f(x)− Tl(x)

) (l+1)!
(x−a)l+1 ≤M .

By the Intermediate Value Theorem, there is a number c ∈ [a, x] such that

f (l+1)(c) =
(
f(x)− Tl(x)

) (l + 1)!

(x− a)l+1

.
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7.42 Theorem: The functions ex and sinx are equal to the sum of their Taylor series
centred at 0 for all x ∈ R. For p ∈ R, the function (1+x)p is equal to the sum of its Taylor
series, centred at 0, for all |x| < 1

Proof: First let f(x) = ex and let x ∈ R. By Taylor’s Theorem, f(x) − Tl(x) =
ecxl+1

(l + 1)!
for some c between 0 and x, and so∣∣f(x)− Tl(x)

∣∣ ≤ e|x||x|l+1

(l + 1)!
.

Since
∑ e|x||x|l+1

(l + 1)!
converges by the Ratio Test, we have lim

l→∞

e|x||x|l+1

(l + 1)!
= 0 by the Diver-

gence Test, so lim
l→∞

(
f(x)− Tl(x)

)
= 0, and so f(x) = lim

l→∞
Tl(x) = T (x).

Now let f(x)= sinx and let x∈R. By Taylor’s Theorem, f(x)−T`(x) =
f (l+1)(c)xl+1

(l + 1)!
for some c between 0 and x. Since f (l+1)(x) is one of the functions ± sinx or ± cosx, we
have

∣∣f (l+1)(c)
∣∣ ≤ 1 for all c and so∣∣f(x)− T`(x)

∣∣ ≤ |x|l+1

(l + 1)!
.

Since
∑ |x|l+1

(l + 1)!
converges by the Ratio Test, lim

l→∞

|x|l+1

(l + 1)!
= 0 by the Divergence Test,

and so we have and f(x) = T (x) as above.
Finally, let f(x) = (1 + x)p. The Taylor series centred at 0 is

T (x) = 1 + px+ p(p−1)
2! x2 + p(p−1)(p−2)

3! x3 + p(p−1)(p−2)(p−3)
4! x4 + · · ·

and it converges for |x| < 1. Differentiating the power series gives

T ′(x) = p+ p(p−1)
1! x+ p(p−1)(p−2)

2! x2 + p(p−1)(p−2)(p−3)
3! x3 + · · ·

and so

(1 + x)T ′(x) = p+
(
p+ p(p−1)

1!

)
x+

(
p(p−1)

1! + p(p−1)(p−2)
2!

)
x2

+
(
p(p−1)(p−2)

2! − p(p−1)(p−2)(p−3)
3!

)
x3 + · · ·

= p+ p·p
1! x+ p·p(p−1)

2! x2 + p·p(p−1)(p−2)
3! x3 + · · ·

= p T (x) .

Thus we have (1 + x)T ′(x) = pT (x), that is (1 + x)T ′(x) − pT (x) = 0, for all |x| < 1.
Multiply both sides by (1 + x)−p−1 to get (1 + x)−p T ′(x) − p(1 + x)−p−1 = 0, that is
d
dx

(
(1 + x)−p T (x)

)
= 0 for all |x| < 1. It follows that (1 + x)−p T (x) = c for some

constant c ∈ R. Taking x = 0 shows that c = 1, so we have (1 + x)−p T (x) = 1, and hence
T (x) = (1 + x)p, for all |x| < 1.

7.43 Note: It is not the case that every infinitely differentiable function is equal to the
sum of its Taylor series in the open interval of convergence. For example, for the function
given by f(x) = e−1/x

2

when x 6= 0 with f(0) = 0, you can verify, as an exercise, that
f (n)(0) = 0 for all 0 ≤ n ∈ Z, so the Taylor series of f , centred at 0, is the zero function
T (x) = 0 for all x. A function which is equal, in an open interval, to the sum of its Taylor
series centred at every point a in its domain, is called analytic.
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Applications

7.44 Example: Let f(x) = sin
(
1
2x

2
)
. Find the 10th derivative f (10)(0).

Solution: Say f(x) = sin
(
1
2x

2
)

=
∞∑
n=0

cnx
n. For all x ∈ R we have

sinx = x− 1
3! x

3 + 1
5! x

5 − · · ·
sin
(
1
2 x

2
)

= 1
2 x

2 − 1
23·3! x

6 + 1
25·5! x

10 − · · ·

and so f (10)(0) = 10! c10 = 10! 1
25 5! = 10·9·8·7·6

25 = 5 · 9 · 7 · 3 = 945.

7.45 Example: Find lim
x→0

e−2x
2 − cos 2x(

tan−1 x− ln(1 + x)
)2

Solution: For all x in an open neighbourhood of 0, and for some a, b, c, d ∈ R we have

e−2x
2 − cos 2x(

tan−1 x− ln(1 + x)
)2 =

(
1− 2x2 + 1

2 (2x2)2 − · · ·
)
−
(
1− 1

2 (2x)2 + 1
24 (2x)4 − · · ·

)((
x− 1

3x
3 + 1

5x
5 − · · ·

)
−
(
x− 1

2x
2 + 1

3x
3 − · · ·

))2
=

4
3x

4 + ax6 + · · ·(
1
2x

2 + bx4 + · · ·
)2 =

4
3x

4 + ax6 + · · ·
1
4x

4 + cx6 + · · ·
= 16

3 + dx2 + · · ·

−→ 16
3 as x→ 0.

7.46 Remark: The next few examples illustrate how one could design some of the buttons
on a calculator. In particular, they show how one make an algorithm to calculate ex, lnx,
x2/3 (or x1/n) and π (assuming one has an algorithm to calculate addition, subtraction,
multiplication and division).

7.47 Example: Approximate the value of 1√
e

so the error is at most 1
100 .

Solution: We have
1√
e

= e−1/2 = 1− 1
2 + 1

22·2! −
1

23·3! + 1
24·4! − · · ·

∼= 1− 1
2 + 1

22·2! −
1

23·3! = 1− 1
2 + 1

8 −
1
48 = 29

48

with error E ≤ 1
24·4! = 1

384 by the AST (since the sequence 1
2n·n! decreases with limit zero).

7.48 Example: Approximate the value of
√
e so the error is at most 1

100 .

Solution: We have
√
e = e1/2 = 1 + 1

2 + 1
22·2! + 1

23·3! + 1
24·4! + · · ·

∼= 1 + 1
2 + 1

22·2! + 1
23·3! = 1 + 1

2 + 1
8 + 1

24 = 79
48

with error
E = 1

24·4! + 1
25·5! + 1

26·6! + 1
27·7! + · · ·

= 1
24·4!

(
1 + 1

2·5 + 1
22·5·6 + 1

23·5·6·7 + · · ·
)

< 1
24·4!

(
1 + 1

10 +
(

1
10

)2
+
(

1
10

)3
+ · · ·

)
= 1

24·4! ·
1

1− 1
5

= 1
24·4! ·

5
4 = 5

1536 .
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7.49 Example: Approximate the value of ln 2 so the error is at most 1
50

Solution: For |x| < 1 we have 1
1−x = 1+x+x2+· · · so that − ln

(
1− 1

2

)
= x+ 1

2x
2+ 1

3x
3+· · ·,

so
ln 2 = − ln 1

2 = − ln
(
1− 1

2

)
= 1

2 + 1
2·22 + 1

3·23 + 1
4·24 + 1

5·25 + · · ·
∼= 1

2 + 1
2·22 + 1

3·23 + 1
4·24 = 1

2 + 1
8 + 1

24 + 1
64 = 131

192

with error

E = 1
5·25 + 1

6·26 + 1
7·27 + · · · < 1

5·25
(
1 + 1

2 + 1
22 + 1

23 + · · ·
)

= 1
5·25 · 2 = 1

80 .

7.50 Example: Approximate the value of 102/3 so the error is at most 1
100 .

Solution: Using the binomial series, we have

102/3 = (8 + 2)2/3 = 4
(
1 + 1

4

)2/3
= 4
(

1 + 2
3 ·

1
4 +

( 2
3 )(−

1
3 )

2! · 1
42 +

( 2
3

)(
− 1

3

)(
− 4

3

)
3! · 1

43 + · · ·
)

= 4 + 2
3 −

2·1
32·2!·4 + 2·1·4

33·3!·42 − · · ·+ (−1)n+1 2·1·4·7···(3n−5)
3n·n!·4n−1 + · · ·

∼= 4 + 2
3 −

2·1
32·2!·4 = 4 + 2

3 −
1
36 = 167

36

with error E ≤ 2·1·4
33·3!·42 = 1

33·3!·2 = 1
324 by the AST, which we can apply because because for

an = 2·1·4·7···(3n−5)
3n·n!·4n−1 we have an+1

an
= 3n−2

3(n+1)·4 <
1
4 so that the sequence (an) is decreasing,

and we have an = 2·1·4·7···(3n−5)
3n·n!·4n−1 < 3·6·9···(3n)

3n·n!·4n−1 = 1
4n−1 −→ 0 as n→∞.

7.51 Example: Approximate the value of π so the error is at most 1
50 .

Solution: For |x| < 1 we have 1
1+x2 = 1− x2 + x4 − · · · so tan−1 x = x− 1

3x
3 + 1

5x
5 − · · ·.

Put in x = 1√
3

to get

π
6 = 1√

3
− 1

3·3
√
3

+ 1
5·32
√
3
− 1

7·33
√
3

+ · · ·

π = 2
√

3
(
1− 1

3·3 + 1
5·32 −

1
7·33 + · · ·

)
=
∞∑
n=0

(−1)n 2
√
3

(2n+1)·3n

∼= 2
√

3
(
1− 1

3·3 + 1
5·32
)

= 82
√
3

45

with error E ≤ 2
√
3

7·33 = 2
√
3

189 by the AST.

7.52 Example: Approximate the value of

∫ 1

0

e−x
2

dx so the error is at most 1
100 .

Solution: We have∫ 1

0

e−x
2

dx =

∫ 1

0

1− x2 + 1
2!x

4 − 1
3!x

6 + 1
4!x

8 − · · · dx

=
[
x− 1

3x
3 + 1

5·2!x
5 − 1

7·3!x
7 + 1

9·4!x
9 − · · ·

]1
0

= 1− 1
3 + 1

5·2! −
1

7·3! + 1
9·4! − · · · =

∞∑
n=0

(−1)n 1
(2n+1)n!

∼= 1− 1
3 + 1

5·2! −
1

7·3! = 1− 1
3 + 1

10 −
1
42 = 26

35

with error E ≤ 1
9·4! = 1

216 by the AST.
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7.53 Example: Find the exact value of the sum
∞∑
n=0

(−2)n

(2n)!
.

Solution: Since cosx =
∞∑
n=0

(−1)n
(2n)! x

2n for all x, we have
∞∑
n=0

(−2)n
(2n)! = cos(

√
2).

7.54 Example: Find the exact value of the sum
∞∑
n=1

n− 2

(−3)n
.

Solution: For |x| < 1 we have 1
1+x = 1−x+x2−x3+· · · and 1

(1+x)2 = 1−2x+3x2−4x3−· · ·.
Put in x = 1

3 to get 9
16 = 1− 2

3 + 3
33 −

4
33 + 5

34 − · · · so that

∞∑
n=1

n−2
(−3)n = 1

3 + 0
32 −

1
33 + 2

34 −
3
35 + · · · = 1

3 −
1
33

(
1− 2

3 + 3
32 −

4
33 + · · ·

)
= 1

3 −
1
27 ·

9
16 = 5

16 .

7.55 Example: Find the exact value of the sum
∞∑
n=0

2 · 5 · 8 · · · · · (3n+ 2)

5n n!
.

Solution: For |x| < 1 we have

2(1− x)−5/3 = 2
(

1 +
(
− 5

3

)
(−x) +

(
− 5

3

)(
− 8

3

)
2!

x2 +

(
− 5

3

)(
− 8

3

)(
− 11

3

)
3!

x3 + · · ·
)

= 2 + 2·5
3·1! x+ 2·5·8

32·2! x
2 + 2·5·8·11

33·3! x3 + · · · .

Put in x = 3
5 to get

∞∑
n=0

2·5·8·····(3n+2)
5n n! = 2 + 2·5

5·1! + 2·5·8
52·2! + 2·5·8·11

53·3! + · · · = 2
(
2
5

)−5/3
= 2
(
5
2

)5/3
.

7.56 Example: Find the solution of the IVP y′′−2x y′−2y = 0 with y(0) = 1, y′(0) = 0.
First find a power series solution, then convert the power series to closed form.

Solution: Let y =
∞∑
n=0

anx
n so y′ =

∞∑
n=1

nanx
n−1 and y′′ =

∞∑
n=2

n(n− 1)anx
n−2. Put these

in the DE to get

0 = y′′ − 2xy′ − 2y =
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

2nanx
n −

∑∞
n=0 2anx

n

=
∞∑
m=0

(m+ 2)(m+ 1)am+2x
m −

∞∑
m=1

2mamx
m −

∑∞
m=0 2amx

m

=
(
2a2 − 2a0

)
+
∞∑
m=1

(
(m+ 2)(m+ 1)am+2 − 2(m+ 1)am

)
xm .

The coefficients all vanish, so a2 = a0 and for m ≥ 1, am+2 = 2(m+1)am
(m+2)(m+1) = 2am

m+2 . To get

y(0) = 1 and y′(0) = 0, we need a0 = 1 and a1 = 0, and then the recurrence formula gives

ak = 0 for k odd and a2 = 1, a4 = 2
4 , a6 = 22

2·6 , and in general a2n = 2n

2·4·6···(2n) = 1
n! . Thus

the solution is y =
∞∑
n=0

x2n

n! = ex
2

.
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