

Chapter 7. Sequences and Series of Functions

Pointwise Convergence

7.1 Definition: Let $A \subseteq \mathbb{R}$, let $g : A \rightarrow \mathbb{R}$, and for each integer $n \geq p$ let $f_n : A \rightarrow \mathbb{R}$. We say that the sequence of functions $(f_n)_{n \geq p}$ **converges pointwise** to g on A , and we write $f_n \rightarrow g$ pointwise on A , when $\lim_{n \rightarrow \infty} f_n(x) = g(x)$ for all $x \in A$, that is when for all $x \in A$ and for all $\epsilon > 0$ there exists $m \geq p$ such that for all integers n we have

$$n \geq m \implies |f_n(x) - g(x)| < \epsilon.$$

7.2 Note: By the Cauchy Criterion for convergence, the sequence $(f_n)_{n \geq p}$ converges pointwise to some function $g(x)$ on A if and only if for all $x \in A$ and for all $\epsilon > 0$ there exists $m \geq p$ such that for all integers k, ℓ we have

$$k, \ell \geq m \implies |f_k(x) - f_\ell(x)| < \epsilon.$$

7.3 Example: Find an example of a sequence of functions $(f_n)_{n \geq 1}$ and a function g with $f_n \rightarrow g$ pointwise on $[0, 1]$ such that each f_n is continuous but g is not.

Solution: Let $f_n(x) = x^n$. Then $\lim_{n \rightarrow \infty} f_n(x) = \begin{cases} 0 & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$.

7.4 Example: Find an example of a sequence of functions $(f_n)_{n \geq 1}$ and a function g with $f_n \rightarrow g$ pointwise on $[0, 1]$ such that each f_n is differentiable and g is differentiable, but $\lim_{n \rightarrow \infty} f_n' \neq g'$.

Solution: Let $f_n(x) = \frac{1}{n} \tan^{-1}(nx)$. Then $\lim_{n \rightarrow \infty} f_n(x) = 0$, and $f_n'(x) = \frac{1}{1 + (nx)^2}$ so

$$\lim_{n \rightarrow \infty} f_n'(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}.$$

7.5 Example: Find an example of a sequence of functions $(f_n)_{n \geq 1}$ and a function g with $f_n \rightarrow g$ pointwise on $[0, 1]$ such that each f_n is integrable but g is not.

Solution: We have $\mathbb{Q} \cap [0, 1] = \{a_1, a_2, a_3, \dots\}$ where

$$(a_n)_{n \geq 1} = \left(\frac{0}{1}, \frac{1}{1}, \frac{0}{2}, \frac{1}{2}, \frac{2}{2}, \frac{0}{3}, \frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{0}{4}, \dots, \frac{4}{4}, \dots \right).$$

(as an exercise, you can check that $a_n = \frac{k}{\ell}$ where $\ell = \lceil \frac{-3 + \sqrt{9 - 8n}}{2} \rceil$ and $k = n - \frac{\ell^2 + \ell}{2}$). For $x \in [0, 1]$, let $f_n(x) = \begin{cases} 0 & \text{if } x \notin \{a_1, a_2, \dots, a_n\} \\ 1 & \text{if } x \in \{a_1, a_2, \dots, a_n\} \end{cases}$. Then $\lim_{n \rightarrow \infty} f_n(x) = \begin{cases} 0 & \text{if } x \notin \mathbb{Q} \\ 1 & \text{if } x \in \mathbb{Q} \end{cases}$.

7.6 Example: Find an example of a sequence of functions $(f_n)_{n \geq 1}$ and a function g with $f_n \rightarrow g$ pointwise on $[0, 1]$ such that each f_n is integrable and g is integrable but

$$\lim_{n \rightarrow \infty} \int_0^1 f_n(x) dx \neq \int_0^1 g(x) dx.$$

Solution: Let $f_1(x) = \begin{cases} 48(x - \frac{1}{2})(1 - x) & \text{if } \frac{1}{2} \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$. For $n \geq 1$ let $f_n(x) = nf_1(nx)$.

Then each f_n is continuous with $\int_0^1 f_n(x) dx = 1$, and $\lim_{n \rightarrow \infty} f_n(x) = 0$ for all x .

Uniform Convergence

7.7 Definition: Let $A \subseteq \mathbb{R}$, let $g : A \rightarrow \mathbb{R}$, and for each integer $n \geq p$ let $f_n : A \rightarrow \mathbb{R}$. We say that the sequence of functions $(f_n)_{n \geq p}$ **converges uniformly** to g on A , and we write $f_n \rightarrow g$ uniformly on A , when for all $\epsilon > 0$ there exists $m \in \mathbb{Z}_{\geq p}$ such that for all $x \in A$ and for all integers $n \in \mathbb{Z}_{\geq p}$ we have

$$n \geq m \implies |f_n(x) - g(x)| < \epsilon.$$

7.8 Theorem: (Cauchy Criterion for Uniform Convergence of Sequences of Functions) Let $(f_n)_{n \geq p}$ be a sequence of functions on $A \subseteq \mathbb{R}$. Then (f_n) converges uniformly (to some function g) on A if and only if for all $\epsilon > 0$ there exists $m \in \mathbb{Z}_{\geq p}$ such that for all $x \in A$ and for all integers $k, \ell \in \mathbb{Z}_{\geq p}$ we have

$$k, \ell \geq m \implies |f_k(x) - f_\ell(x)| < \epsilon.$$

Proof: Suppose that (f_n) converges uniformly to g on A . Let $\epsilon > 0$. Choose m so that for all $x \in A$ we have $n \geq m \implies |f_n(x) - g(x)| < \frac{\epsilon}{2}$. Then for $k, \ell \geq m$ we have $|f_k(x) - g(x)| < \frac{\epsilon}{2}$ and $|f_\ell(x) - g(x)| < \frac{\epsilon}{2}$ and so

$$|f_k(x) - f_\ell(x)| \leq |f_k(x) - g(x)| + |f_\ell(x) - g(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Conversely, suppose that (f_n) satisfies the Cauchy Criterion for uniform convergence, that is for all $\epsilon > 0$ there exists m such that for all $x \in A$ and all integers n, ℓ we have

$$n, \ell \geq m \implies |f_n(x) - f_\ell(x)| < \epsilon.$$

For each fixed $x \in A$, $(f_n(x))$ is a Cauchy sequence, so $(f_n(x))$ converges, and we can define $g(x)$ by

$$g(x) = \lim_{n \rightarrow \infty} f_n(x).$$

We know that $f_n \rightarrow g$ pointwise on A , but we must show that $f_n \rightarrow g$ uniformly on A . Let $\epsilon > 0$. Choose m so that for all $x \in A$ and for all integers n, ℓ we have

$$n, \ell \geq m \implies |f_n(x) - f_\ell(x)| < \frac{\epsilon}{2}.$$

Let $x \in A$. Since $\lim_{\ell \rightarrow \infty} f_\ell(x) = g(x)$, we can choose $\ell \geq m$ so that $|f_\ell(x) - g(x)| < \frac{\epsilon}{2}$. Then for $n \geq m$ we have

$$|f_n(x) - g(x)| \leq |f_n(x) - f_\ell(x)| + |f_\ell(x) - g(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

7.9 Theorem: (Uniform Convergence, Limits and Continuity) Suppose that $f_n \rightarrow g$ uniformly on A . Let a be a limit point of A . If $\lim_{x \rightarrow a} f_n(x)$ exists for each n , then

$$\lim_{x \rightarrow a} g(x) = \lim_{x \rightarrow a} \lim_{n \rightarrow \infty} f_n(x) = \lim_{n \rightarrow \infty} \lim_{x \rightarrow a} f_n(x).$$

In particular, if each f_n is continuous in A , then so is g .

Proof: Suppose that $\lim_{x \rightarrow a} f_n(x)$ exists for all n , and let $b_n = \lim_{x \rightarrow a} f_n(x)$. We must show that $\lim_{x \rightarrow a} g(x) = \lim_{n \rightarrow \infty} b_n$. We claim first that (b_n) converges. Let $\epsilon > 0$. Since (f_n) converges uniformly, we can choose m so that $k, \ell \geq m \implies |f_k(x) - f_\ell(x)| < \frac{\epsilon}{3}$ for all $x \in A$. Let $k, \ell \geq m$. Since $\lim_{x \rightarrow a} f_n(x) = b_n$ for all n , we can choose $x \in A$ so that $|f_k(x) - b_k| < \frac{\epsilon}{3}$ and $|f_\ell(x) - b_\ell| < \frac{\epsilon}{3}$. Then we have

$$|b_k - b_\ell| \leq |b_k - f_k(x)| + |f_k(x) - f_\ell(x)| + |f_\ell(x) - b_\ell| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

By the Cauchy Criterion for sequences, (b_n) converges, as claimed.

Now, let $c = \lim_{n \rightarrow \infty} b_n$. We must show that $\lim_{x \rightarrow a} f(x) = c$. Let $\epsilon > 0$. Since $f_n \rightarrow g$ uniformly on A , and since $b_n \rightarrow c$, we can choose m so that when $n \geq m$ we have $|f_n(x) - g(x)| < \frac{\epsilon}{3}$ for all $x \in A$ and we have $|b_n - c| < \frac{\epsilon}{3}$. Let $n \geq m$. Since $\lim_{x \rightarrow a} f_n(x) = b_n$ we can choose $\delta > 0$ so that $0 < |x - a| < \delta \implies |f_n(x) - b_n| < \frac{\epsilon}{3}$. Then when $0 < |x - a| < \delta$ we have

$$|g(x) - c| \leq |g(x) - f_n(x)| + |f_n(x) - b_n| + |b_n - c| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Thus $\lim_{x \rightarrow a} f(x) = c$, as required.

In particular, if $a \in A$ and each f_n is continuous at a then we have

$$\lim_{x \rightarrow a} g(x) = \lim_{x \rightarrow a} \lim_{n \rightarrow \infty} f_n(x) = \lim_{n \rightarrow \infty} \lim_{x \rightarrow a} f_n(x) = \lim_{n \rightarrow \infty} f_n(a) = g(a)$$

so g is continuous at a .

7.10 Theorem: (Uniform Convergence and Integration) Suppose that $f_n \rightarrow g$ uniformly on $[a, b]$. If each f_n is integrable on $[a, b]$ then so is g . In this case, if $F_n(x) = \int_a^x f_n(t) dt$ and $G(x) = \int_a^x g(t) dt$, then $F_n \rightarrow G$ uniformly on $[a, b]$. In particular, we have

$$\int_a^b g(x) dx = \int_a^b \lim_{n \rightarrow \infty} f_n(x) dx = \lim_{n \rightarrow \infty} \int_a^b f_n(x) dx.$$

Proof: Suppose that each f_n is integrable on $[a, b]$. We claim that g is integrable on $[a, b]$. Let $\epsilon > 0$. Since $f_n \rightarrow g$ uniformly on $[a, b]$, we can choose an integer N so that $n \geq N \implies |f_n(x) - g(x)| < \frac{\epsilon}{4(b-a)}$ for all $x \in [a, b]$. Fix $n \geq N$. Since f_n is integrable, we can choose a partition X of $[a, b]$ so that $U(f_n, X) - L(f_n, X) < \frac{\epsilon}{2}$. Note that since $|f_n(x) - g(x)| < \frac{\epsilon}{4(b-a)}$ we have $M_k(g) \leq M_k(f_n) + \frac{\epsilon}{4(b-a)}$ and $m_k(g) \geq m_k(f_n) - \frac{\epsilon}{4(b-a)}$, and so

$$\begin{aligned} U(g, X) - L(g, X) &= \sum_{k=1}^n (M_k(g) - m_k(g)) \Delta_k x \leq \sum_{k=1}^n \left(M_k(f_n) - m_k(f_n) + \frac{\epsilon}{2(b-a)} \right) \Delta_k x \\ &= U(f_n, X) - L(f_n, X) + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Thus g is integrable on $[a, b]$.

Now define $F_n(x) = \int_a^x f_n(t) dt$ and $G(x) = \int_a^x g(t) dt$. We claim that $F_n \rightarrow G$ uniformly on $[a, b]$. Let $\epsilon > 0$. Since $f_n \rightarrow g$ uniformly on $[a, b]$, we can choose N so that $n \geq N \implies |f_n(t) - g(t)| < \frac{\epsilon}{2(b-a)}$ for all $t \in [a, b]$. Let $n \geq N$. Let $x \in [a, b]$. Then we have

$$\begin{aligned} |F_n(x) - G(x)| &= \left| \int_a^x f_n(t) dt - \int_a^x g(t) dt \right| = \left| \int_a^x f_n(t) - g(t) dt \right| \\ &\leq \int_a^x |f_n(t) - g(t)| dt \leq \int_a^x \frac{\epsilon}{2(b-a)} dt = \frac{\epsilon}{2(b-a)}(x - a) \leq \frac{\epsilon}{2} < \epsilon. \end{aligned}$$

Thus $F_n \rightarrow G$ uniformly on $[a, b]$, as required.

In particular, we have $\lim_{n \rightarrow \infty} F_n(b) = G(b)$, that is

$$\lim_{n \rightarrow \infty} \int_a^b f_n(x) dx = \int_a^b g(x) dx = \int_a^b \lim_{n \rightarrow \infty} f_n(x) dx.$$

7.11 Theorem: (Uniform Convergence and Differentiation) Let (f_n) be a sequence of functions on $[a, b]$. Suppose that each f_n is differentiable on $[a, b]$, (f_n') converges uniformly on $[a, b]$, and $(f_n(c))$ converges for some $c \in [a, b]$. Then (f_n) converges uniformly on $[a, b]$, $\lim_{n \rightarrow \infty} f_n(x)$ is differentiable, and

$$\frac{d}{dx} \lim_{n \rightarrow \infty} f_n(x) = \lim_{n \rightarrow \infty} \frac{d}{dx} f_n(x).$$

Proof: We claim that (f_n) converges uniformly on $[a, b]$. Let $\epsilon > 0$. Since (f_n) converges uniformly on $[a, b]$, and since $(f_n(c))$ converges, we can choose N so that when $n, m \geq N$ we have $|f_n'(t) - f_m'(t)| < \frac{\epsilon}{2(b-a)}$ for all $t \in [a, b]$ and we have $|f_n(c) - f_m(c)| < \frac{\epsilon}{2}$. Let $n, m \geq N$. Let $x \in [a, b]$. By the Mean Value Theorem applied to the function $f_n(x) - f_m(x)$, we can choose t between c and x so that

$$(f_n(x) - f_m(x) - f_n(c) + f_m(c)) = (f_n'(t) - f_m'(t))(x - c).$$

Then we have

$$\begin{aligned} |f_n(x) - f_m(x)| &\leq |f_n(x) - f_m(x) - f_n(c) + f_m(c)| + |f_n(c) - f_m(c)| \\ &= |f_n'(t) - f_m'(t)| |x - c| + |f_n(c) - f_m(c)| \\ &< \frac{\epsilon}{2(b-a)}(b-a) + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Thus (f_n) converges uniformly on $[a, b]$.

Let $g(x) = \lim_{n \rightarrow \infty} f_n(x)$. We claim that g is differentiable with $fg(x) = \lim_{n \rightarrow \infty} f_n'(x)$ for all $x \in [a, b]$. Fix $x \in [a, b]$. Note that

$$\begin{aligned} g'(x) = \lim_{n \rightarrow \infty} f_n'(x) &\iff \lim_{y \rightarrow x} \frac{g(y) - g(x)}{y - x} = \lim_{n \rightarrow \infty} \lim_{y \rightarrow x} \frac{f_n(y) - f_n(x)}{y - x} \\ &\iff \lim_{y \rightarrow x} \lim_{n \rightarrow \infty} \frac{f_n(y) - f_n(x)}{y - x} = \lim_{n \rightarrow \infty} \lim_{y \rightarrow x} \frac{f_n(y) - f_n(x)}{y - x} \end{aligned}$$

so it suffices to show that (h_n) converges uniformly on $[a, b] \setminus \{x\}$, where

$$h_n(y) = \frac{f_n(y) - f_n(x)}{y - x}.$$

Let $\epsilon > 0$. Since (f_n') converges uniformly on $[a, b]$, we can choose an integer N so that $n, m \geq N \implies |f_n'(t) - f_m'(t)| < \epsilon$ for all $t \in [a, b]$. Let $n, m \geq N$. Let $y \in [a, b] \setminus \{x\}$. By the Mean Value Theorem, we can choose t between x and y so that

$$(f_n(y) - f_m(y) - f_n(x) + f_m(x)) = (f_n'(t) - f_m'(t))(y - x).$$

Then

$$|h_n(y) - h_m(y)| = \left| \frac{f_n(y) - f_m(y) - f_n(x) + f_m(x)}{y - x} \right| = |f_n'(t) - f_m'(t)| < \epsilon.$$

Thus (h_n) converges uniformly on $[a, b] \setminus \{x\}$, as required.

Series of Functions

7.12 Definition: Let $(f_n)_{n \geq p}$ be a sequence of functions $f_n : A \rightarrow \mathbb{R}$. The **series of functions** $\sum_{n \geq p} f_n$ is defined to be the sequence $(S_\ell)_{n \geq p}$ where $S_\ell(x) = \sum_{n=p}^{\ell} f_n(x)$.

The function S_ℓ is called the ℓ^{th} **partial sum** of the series. We say the series $\sum_{n \geq p} f_n$ converges pointwise (or uniformly) on A when the sequence $(S_\ell)_{n \geq p}$ converges, pointwise (or uniformly) on A . In this case, the **sum** of the series of functions is defined to be the function

$$g(x) = \sum_{n=p}^{\infty} f_n(x) = \lim_{\ell \rightarrow \infty} S_\ell(x).$$

7.13 Theorem: (Cauchy Criterion for the Uniform Convergence of a Series of Functions) The series $\sum_{n \geq p} f_n$ converges uniformly (to some function g) on A if and only if for every $\epsilon > 0$ there exists $N \geq p$ such that for all $x \in A$ and for all $m, \ell \geq p$ we have

$$m > \ell \geq N \implies \left| \sum_{n=\ell+1}^m f_n(x) \right| < \epsilon.$$

Proof: This follows immediately from the analogous theorem for sequences of functions, since $S_m(x) - S_\ell(x) = \sum_{n=\ell+1}^m f_n(x)$.

7.14 Theorem: (Uniform Convergence, Limits and Continuity) Suppose that $\sum_{n \geq p} f_n(x)$ converges uniformly on A . Let a be a limit point of A . If $\lim_{x \rightarrow a} f_n(x)$ exists for all $n \geq p$, then

$$\lim_{x \rightarrow a} \sum_{n=p}^{\infty} f_n(x) = \sum_{n=p}^{\infty} \lim_{x \rightarrow a} f_n(x).$$

In particular, if each f_n is continuous on A then so is $\sum_{n=p}^{\infty} f_n$.

Proof: This follows immediately from the analogous theorem for sequences of functions.

7.15 Theorem: (Uniform Convergence and Integration) Suppose that $\sum_{n \geq p} f_n$ converges uniformly on $[a, b]$. If each f_n is integrable on $[a, b]$, then so is $\sum_{n=p}^{\infty} f_n$. In this case, if we define $F_n(x) = \int_a^x f_n(t) dt$ and $G(x) = \int_a^x \sum_{n=p}^{\infty} f_n(t) dt$, then $\sum_{n \geq p} F_n$ converges uniformly to G on A . In particular, we have

$$\int_a^b \sum_{n=p}^{\infty} f_n(x) dx = \sum_{n=p}^{\infty} \int_a^b f_n(x) dx.$$

Proof: This follows immediately from the analogous theorem for sequences of functions.

7.16 Theorem: (Uniform Convergence and Differentiation) Suppose that each f_n is differentiable on $[a, b]$, and $\sum_{n \geq p} f_n'$ converges uniformly on $[a, b]$, and $\sum_{n \geq p} f_n(c)$ converges for some $c \in [a, b]$. Then $\sum_{n \geq p} f_n$ converges uniformly on $[a, b]$ and

$$\frac{d}{dx} \sum_{n=p}^{\infty} f_n(x) = \sum_{n=p}^{\infty} \frac{d}{dx} f_n(x).$$

Proof: This follows immediately from the analogous theorem for sequences of functions.

7.17 Theorem: (The Weierstrass M-Test) Suppose that each $f_n : A \rightarrow \mathbb{R}$ is bounded with $|f_n(x)| \leq M_n$ for all $x \in A$, and that $\sum_{n \geq p} M_n$ converges. Then $\sum_{n \geq p} f_n(x)$ converges uniformly on A .

Proof: Let $\epsilon > 0$. Since the series $\sum M_n$ converges, we can choose an integer N so that $m > \ell \geq N \implies \sum_{n=\ell+1}^m M_n < \epsilon$. Let $m > \ell \geq N$ and let $x \in A$. Then

$$\left| \sum_{n=\ell+1}^m f_n(x) \right| \leq \sum_{n=\ell+1}^m |f_n(x)| \leq \sum_{n=\ell+1}^m M_n < \epsilon.$$

7.18 Example: Find a sequence of functions $(f_n(x))_{n \geq 0}$, each of which is differentiable on \mathbb{R} , such that $\sum_{n \geq 0} f_n(x)$ converges uniformly on \mathbb{R} , but the sum $g(x) = \sum_{n=0}^{\infty} f_n(x)$ is nowhere differentiable.

Solution: Let $f_n(x) = \frac{1}{2^n} \sin^2(8^n x)$. Since $|f_n(x)| \leq \frac{1}{2^n}$ and $\sum \frac{1}{2^n}$ converges, $\sum_{n \geq 0} f_n(x)$ converges uniformly on \mathbb{R} by the Weierstrass M-Test. Let $g(x) = \sum_{n=0}^{\infty} f_n(x)$. We claim that $g(x)$ is nowhere differentiable. Let $x \in \mathbb{R}$. For each n , let m , a_n and b_n be such that $a_n = \frac{m\pi}{2 \cdot 8^n}$, $b_n = \frac{(m+1)\pi}{2 \cdot 8^n}$ and $x \in [a_n, b_n]$. Note that one of $f_n(a_n)$ and $f_n(b_n)$ is equal to $\frac{1}{2^n}$ and the other is equal to 0 so we have $|f_n(b_n) - f_n(a_n)| = \frac{1}{2^n}$. Note also that for $k > n$ we have $f_k(a_n) = f_k(b_n) = 0$. Also, for all k we have $f_k(x) = \frac{1}{2^k} \sin^2(8^k x)$, $f_k'(x) = 4^k \sin(2 \cdot 8^k x)$, and $|f_k'(x)| \leq 4^k$, so by the Mean Value Theorem,

$$|f_k(b_n) - f_k(a_n)| \leq 4^k |b_n - a_n|.$$

Finally, note that if $g'(x)$ did exist, then we would have $g'(x) = \lim_{n \rightarrow \infty} \frac{f(b_n) - f(a_n)}{b_n - a_n}$, but

$$\begin{aligned} \left| \frac{f(b_n) - f(a_n)}{b_n - a_n} \right| &= \left| \sum_{k=0}^{\infty} \frac{f_k(b_n) - f_k(a_n)}{b_n - a_n} \right| = \left| \sum_{k=0}^n \frac{f_k(b_n) - f_k(a_n)}{b_n - a_n} \right| \\ &\geq \left| \frac{f_n(b_n) - f_n(a_n)}{b_n - a_n} \right| - \sum_{k=0}^{n-1} \left| \frac{f_k(b_n) - f_k(a_n)}{b_n - a_n} \right| \\ &\geq \frac{\frac{1}{2^n}}{\frac{\pi}{2 \cdot 8^n}} - \sum_{k=0}^{n-1} 4^k = \frac{2 \cdot 4^n}{\pi} - \frac{4^n - 1}{3} = \left(\frac{2}{\pi} - \frac{1}{3} \right) 4^n + \frac{1}{3} \rightarrow \infty \text{ as } n \rightarrow \infty \end{aligned}$$

Power Series

7.19 Definition: A **power series centred at a** is a series of the form $\sum_{n \geq 0} c_n(x - a)^n$ for some real numbers c_n , where we use the convention that $(x - a)^0 = 1$.

7.20 Example: The geometric series $\sum_{n \geq 0} x^n$ is a power series centred at 0. It converges when $|x| < 1$ and for all such x the sum of the series is

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

7.21 Lemma: (Abel's Formula) Let $(a_n)_{n \geq p}$ and $(b_n)_{n \geq p}$ be sequences. Let $S_\ell = \sum_{n=p}^{\ell} a_n$. Then

$$\sum_{n=p}^{\ell} a_n b_n = S_\ell b_\ell - \sum_{j=p}^{\ell-1} S_j (b_{j+1} - b_j).$$

Proof: We have

$$\begin{aligned} \sum_{j=p}^{\ell-1} S_j (b_{j+1} - b_j) &= a_p(b_{p+1} - b_p) + (a_p + a_{p+1})(b_{p+2} - b_{p+1}) \\ &\quad + (a_p + a_{p+1} + a_{p+2})(b_{p+3} - b_{p+2}) \\ &\quad + \cdots + (a_p + a_{p+1} + a_{p+2} + \cdots + a_{\ell-1})(b_\ell - b_{\ell-1}) \\ &= -a_p b_p - a_{p+1} b_{p+1} - \cdots - a_{\ell-1} b_{\ell-1} \\ &\quad + (a_p + a_{p+1} + \cdots + a_{\ell-1}) b_\ell - a_\ell b_\ell + a_\ell b_\ell \\ &= S_\ell b_\ell - \sum_{n=p}^{\ell} a_n b_n. \end{aligned}$$

7.22 Note: Recall that for a sequence (a_n) in \mathbb{R} , we define $\limsup_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} s_n$ where $s_n = \sup\{a_k \mid k \geq n\}$ (with $\limsup_{n \rightarrow \infty} a_n = \infty$ when (a_n) is not bounded above).

7.23 Theorem: (The Interval and Radius of Convergence) Let $\sum_{n \geq 0} c_n(x - a)^n$ be a power series and let $R = \frac{1}{\limsup_{n \rightarrow \infty} \sqrt[n]{|c_n|}} \in [0, \infty]$. Then the set of $x \in \mathbb{R}$ for which the power series converges is an interval I centred at a of radius R . Indeed

- (1) If $|x - a| > R$ then $\lim_{n \rightarrow \infty} c_n(x - a)^n \neq 0$ so $\sum_{n \geq 0} c_n(x - a)^n$ diverges.
- (2) If $|x - a| < R$ then $\sum_{n \geq 0} c_n(x - a)^n$ converges absolutely.
- (3) If $0 < r < R$ then $\sum_{n \geq 0} c_n(x - a)^n$ converges uniformly in $[a - r, a + r]$.
- (4) (Abel's Theorem) If $\sum_{n \geq 0} c_n R^n$ converges then $\sum_{n \geq 0} c_n(x - a)^n$ converges uniformly on $[a, a + R]$. If $\sum_{n \geq 0} c_n(-R)^n$ converges then $\sum_{n \geq 0} c_n(x - a)^n$ converges uniformly on $[a - R, a]$.

Proof: To prove Part 1, suppose that $|x - a| > R$. Then

$$\limsup_{n \rightarrow \infty} \sqrt[n]{|c_n(x - a)^n|} = |x - a| \limsup_{n \rightarrow \infty} \sqrt[n]{|c_n|} > R \cdot \frac{1}{R} = 1,$$

and so $\lim_{n \rightarrow \infty} c_n(x - a)^n \neq 0$ and $\sum c_n(x - a)^n$ diverges, by the Root Test.

To prove Part 2, suppose that $|x - a| < R$. Then

$$\limsup_{n \rightarrow \infty} \sqrt[n]{|c_n(x - a)^n|} = |x - a| \limsup_{n \rightarrow \infty} \sqrt[n]{|c_n|} < R \cdot \frac{1}{R} = 1,$$

and so $\sum |c_n(x - a)^n|$ converges, by the Root Test.

To prove Part 3, fix $0 < r < R$. By part 2, $\sum |c_n(x - a)^n|$ converges when $x = a + r$, that is $\sum |c_n r^n|$ converges. Let $x \in [a - r, a + r]$. Then $|c_n(x - a)^n| \leq |c_n r^n|$ and $\sum |c_n r^n|$ converges, and so $\sum |c_n(x - a)^n|$ converges uniformly by the Weierstrass M -Test.

Now let us prove the first statement in Part 4 (the proof of the second statement is similar). Suppose that $\sum c_n R^n$ converges. Let $\epsilon > 0$. Choose an integer N so that $m > \ell \geq N \implies \left| \sum_{n=\ell+1}^m c_n R^n \right| < \epsilon$. Let $x \in [a, a+R]$. By Abel's Lemma, using $a_n = c_n R^n$, $b_n = \left(\frac{x-a}{R}\right)^n$, $S_m = \sum_{\ell+1}^m a_n$, and noting that $0 \leq \frac{x-a}{R} \leq 1$ so that $0 \leq b_{j+1} \leq b_j \leq 1$,

$$\begin{aligned} \left| \sum_{n=\ell+1}^m c_n(x - a)^n \right| &= \left| \sum_{n=\ell+1}^m c_n R^n \left(\frac{x-a}{R}\right)^n \right| = \left| \sum_{n=\ell+1}^m a_n b_n \right| \\ &= \left| S_m b_m - \sum_{j=\ell+1}^{m-1} S_j (b_{j+1} - b_j) \right| \leq |S_m| |b_m| + \sum_{j=\ell+1}^{m-1} |S_j| |b_{j+1} - b_j| \\ &= |S_m| |b_m| + \sum_{j=\ell+1}^{m-1} |S_j| (b_j - b_{j+1}) < \epsilon b_m + \epsilon \sum_{j=\ell+1}^{m-1} (b_j - b_{j+1}) \\ &= \epsilon b_m + \epsilon (b_{\ell+1} - b_m) = \epsilon b_{\ell+1} \leq \epsilon. \end{aligned}$$

7.24 Definition: The number R in the above theorem is called the **radius of convergence** of the power series, and the interval I is called the **interval of convergence** of the power series.

7.25 Example: Find the interval of convergence of the power series $\sum_{n \geq 1} \frac{(3 - 2x)^n}{\sqrt{n}}$.

Solution: First note that this is in fact a power series, since $\frac{(3 - 2x)^n}{\sqrt{n}} = \frac{(-2)^n}{\sqrt{n}} \left(x - \frac{3}{2}\right)^n$,

and so $\sum_{n \geq 1} \frac{(3 - 2x)^n}{\sqrt{n}} = \sum_{n \geq 0} c_n(x - a)^n$, where $c_0 = 0$, $c_n = \frac{(-2)^n}{\sqrt{n}}$ for $n \geq 1$ and $a = \frac{3}{2}$.

Now, let $a_n = \frac{(3 - 2x)^n}{\sqrt{n}}$. Then $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(3 - 2x)^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{(3 - 2x)^n} \right| = \sqrt{\frac{n}{n+1}} |3 - 2x|$,

so $\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| = |3 - 2x|$. By the Ratio Test, $\sum a_n$ converges when $|3 - 2x| < 1$ and diverges when $|3 - 2x| > 1$. Equivalently, it converges when $x \in (1, 2)$ and diverges when $x \notin [1, 2]$. When $x = 1$ so $(3 - 2x) = 1$, we have $\sum a_n = \sum \frac{1}{\sqrt{n}}$, which diverges (its a p -series), and when $x = 2$ so $(3 - 2x) = -1$, we have $\sum a_n = \sum \frac{(-1)^n}{\sqrt{n}}$ which converges by the Alternating Series Test. Thus the interval of convergence is $I = (1, 2]$.

Operations on Power Series

7.26 Theorem: (*Continuity of Power Series*) Suppose that the power series $\sum c_n(x-a)^n$ converges in an interval I . Then the sum $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$ is continuous in I .

Proof: This follows from uniform convergence of $\sum c_n(x-a)^n$ on closed subintervals of I . Indeed, given $x \in I$ we can choose a closed interval $[b, c] \subseteq I$ with $x \in [b, c]$, and then since $\sum c_n(x-a)^n$ converges uniformly on $[b, c]$, the sum is continuous on $[b, c]$, and hence at x .

7.27 Theorem: (*Addition and Subtraction of Power Series*) Suppose that the power series $\sum a_n(x-a)^n$ and $\sum b_n(x-a)^n$ both converge in the interval I . Then $\sum (a_n + b_n)(x-a)^n$ and $\sum (a_n - b_n)(x-a)^n$ both converge in I , and for all $x \in I$ we have

$$\sum_{n=0}^{\infty} (a_n \pm b_n)(x-a)^n = \left(\sum_{n=0}^{\infty} a_n(x-a)^n \right) \pm \left(\sum_{n=0}^{\infty} b_n(x-a)^n \right).$$

Proof: This follows from Linearity.

7.28 Theorem: (*Multiplication of Power Series*) Suppose the power series $\sum a_n(x-a)^n$ and $\sum b_n(x-a)^n$ both converge in an open interval I with $a \in I$. Let $c_n = \sum_{k=0}^n a_k b_{n-k}$. Then $\sum c_n(x-a)^n$ converges in I and for all $x \in I$ we have

$$\sum_{n=0}^{\infty} c_n(x-a)^n = \left(\sum_{n=0}^{\infty} a_n(x-a)^n \right) \left(\sum_{n=0}^{\infty} b_n(x-a)^n \right).$$

Proof: This follows from the Multiplication of Series Theorem, since the power series converge absolutely in I .

7.29 Theorem: (*Integration of Power Series*) Suppose that $\sum c_n(x-a)^n$ converges in the interval I . Then for all $x \in I$, the sum $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$ is integrable on the closed interval between a and x (that is on $[a, x]$ or $[x, a]$) and

$$\int_a^x \sum_{n=0}^{\infty} c_n(t-a)^n dt = \sum_{n=0}^{\infty} \int_a^x c_n(t-a)^n dt = \sum_{n=0}^{\infty} \frac{1}{n+1} c_n(x-a)^{n+1}.$$

Proof: This follows from uniform convergence on closed subintervals of I .

7.30 Theorem: (*Differentiation of Power Series*) Suppose that $\sum c_n(x-a)^n$ converges in the open interval I . Then the sum $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$ is differentiable in I and

$$f'(x) = \frac{d}{dx} \sum c_n(x-a)^n = \sum_{n=0}^{\infty} \frac{d}{dx} c_n(x-a)^n = \sum_{n=1}^{\infty} n c_n(x-a)^{n-1}.$$

Proof: Note that the two power series $\sum c_n(x-a)^n$ and $\sum n c_n(x-a)^{n-1}$ have the same radius of convergence R , because $\lim_{n \rightarrow \infty} \sqrt[n]{n} = 1$ so that $\limsup \sqrt[n]{|nc_n|} = \limsup \sqrt[n]{|c_n|}$.

The theorem now follows from the convergence of $\sum c_n(x-a)^n$ and the uniform convergence of $\sum n c_n(x-a)^{n-1}$ on closed subintervals of I .

7.31 Theorem: (Division of Power Series) Suppose that $\sum a_n(x-a)^n$ and $\sum b_n(x-a)^n$ both converge in an open interval J with $a \in J$, and that $b_0 \neq 0$. Define c_n by

$$c_0 = \frac{a_0}{b_0}, \text{ and for } n > 0, c_n = \frac{a_n}{b_0} - \frac{b_n c_0}{b_0} - \frac{b_{n-1} c_1}{b_0} - \cdots - \frac{b_1 c_{n-1}}{b_0}.$$

Then there is an open interval I with $a \in I \subseteq J$ such that $\sum c_n(x-a)^n$ converges in I with

$$\sum_{n=0}^{\infty} c_n(x-a)^n = \frac{\sum_{n=0}^{\infty} a_n(x-a)^n}{\sum_{n=0}^{\infty} b_n(x-a)^n}.$$

Proof: For all $x \in J$, let $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ and $g(x) = \sum_{n=0}^{\infty} b_n(x-a)^n$. Since g is continuous with $g(a) = b_0 \neq 0$, we can choose $r > 0$ small enough so that $[a-r, a+r] \subseteq J$ and $g(x) \neq 0$ for all $x \in [a-r, a+r]$. Note that $\sum |a_n r^n|$ and $\sum |b_n r^n|$ both converge. Since $|a_n r^n| \rightarrow 0$ and $|b_n r^n| \rightarrow 0$ and $b_0 \neq 0$, we can choose M so that $M \geq \left| \frac{a_n r^n}{b_0} \right|$ and $M \geq \left| \frac{b_n r^n}{b_0} \right|$ for all n . Note that $|c_0| = \left| \frac{a_0}{b_0} \right| \leq M$ and since $c_1 = \frac{a_1}{b_0} + \frac{b_1 c_0}{b_0}$ we have

$$|c_1 r| \leq \left| \frac{a_1 r}{b_0} \right| + \left| \frac{b_1 r}{b_0} \right| |c_0| \leq M + M^2 = M(1 + M).$$

Suppose, inductively, that $|c_k r^k| \leq M(1 + M)^k$ for all $k < n$. Then since

$$a_n = b_n c_0 + b_{n-1} c_1 + \cdots + b_1 c_{n-1} + b_0 c_n,$$

we have

$$\begin{aligned} |c_n r^n| &\leq \left| \frac{a_n r^n}{b_0} \right| + \left| \frac{b_n r^n}{b_0} \right| |c_0| + \left| \frac{b_{n-1} r^{n-1}}{b_0} \right| |c_1 r| + \cdots + \left| \frac{b_1 r}{b_0} \right| |c_{n-1} r^{n-1}| \\ &\leq M + M^2 + M^2(1 + M) + M^2(1 + M)^2 + M^2(1 + M)^3 + \cdots + M^2(1 + M)^{n-1} \\ &= M + M^2 \left(\frac{(1+M)^n - 1}{M} \right) = M(1 + M)^n. \end{aligned}$$

By induction, we have $|c_n r^n| \leq M(1 + M)^n$ for all $n \geq 0$. Let $I = (a-s, a+s)$ with $s = \frac{r}{1+M}$. Note that $I \subseteq (a-r, a+r) \subseteq J$. When $x \in I$, for all n we have

$$|c_n(x-a)^n| = |c_n r^n| \cdot \frac{1}{(1+M)^n} \cdot \left| \frac{x-a}{r/(1+M)} \right|^n \leq M \left| \frac{x-a}{r/(1+M)} \right|^n$$

and so $\sum |c_n(x-a)^n|$ converges in I by the Comparison Test.

Note that from the definition of c_n we have $a_n = \sum_{k=0}^n c_k b_{n-k}$, and so by multiplying power series, we have

$$\left(\sum_{n=0}^{\infty} c_n(x-a)^n \right) \left(\sum_{n=0}^{\infty} b_n(x-a)^n \right) = \sum_{n=0}^{\infty} a_n(x-a)^n$$

for all $x \in I$.

7.32 Theorem: (Composition of Power Series). Let $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ in an open interval J with $a \in J$, and let $g(y) = \sum_{m=0}^{\infty} b_m(y-b)^m$ in an open interval K with $b = f(a) \in K$. Let $c_{m,k}$ be the coefficient of $(x-a)^k$ in the product $(\sum_{n=1}^k a_n(x-a)^n)^m$, and let $d_k = \sum_{m=0}^k b_m c_{m,k}$. Then there exists an open interval $I \subseteq J$ with $a \in I$ such that $f(I) \subseteq K$ and the series $\sum_{k \geq 0} d_k(x-a)^k$ converges in I with $g(f(x)) = \sum_{k=0}^{\infty} d_k(x-a)^k$.

Proof: When $x \in J$ and $f(x) \in K$, we have

$$g(f(x)) = \sum_{m=0}^{\infty} b_m \left(\sum_{n=1}^{\infty} a_n(x-a)^n \right)^m = \sum_{m=0}^{\infty} b_m \sum_{k=0}^{\infty} c_{m,k}(x-a)^k = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} b_m c_{m,k}(x-a)^k.$$

If we can apply Fubini's Theorem to interchange the order of summation, then we obtain

$$g(f(x)) = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} b_m c_{m,k}(x-a)^k = \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} b_m c_{m,k}(x-a)^k = \sum_{m=0}^{\infty} d_k(x-a)^k.$$

We need to verify that the hypotheses of Fubini's Theorem are satisfied, so we must show that $\sum_{k \geq 0} |b_m c_{m,k}(x-a)^k|$ converges for each m , and that $\sum_{m \geq 0} \sum_{k=0}^{\infty} |b_m c_{m,k}(x-a)^k|$ converges (at least in some subinterval $I \subseteq J$ with $a \in I$). We know that $\sum a_n(x-a)^n$ converges in J , so by multiplication of power series, the series $\sum c_{m,k}(x-a)^k$ also converges in J with $\sum_{k=0}^{\infty} c_{m,k}(x-a)^k = (\sum_{n=1}^{\infty} a_n(x-a)^n)^m$, and hence by multiplying by b_m , the series $\sum_{k \geq 0} b_m c_{m,k}(x-a)^k$ also converges in J . Since power series converge absolutely in their open interval of convergence, $\sum_{k \geq 0} |b_m c_{m,k}(x-a)^k|$ converges in J .

It remains to show that $\sum_{m \geq 0} \sum_{k=0}^{\infty} |b_m c_{m,k}(x-a)^k|$ converges in an open interval I with $a \in I$. Let R and S be the radii of convergence of the series $\sum a_n(x-a)^n$ and $\sum b_m(y-b)^m$. Note that the series $\sum |a_n|(x-a)^n$ and $\sum |b_m|(y-b)^m$ have the same radii of convergence, R and S , so we can define functions $\bar{f}(x) = \sum_{n=0}^{\infty} |a_n|(x-a)^n$ for $x \in (a-R, a+R)$ and $\bar{g}(y) = \sum_{m=0}^{\infty} |b_m|(y-b)^m$ for $y \in (|b|-S, |b|+S)$. Since \bar{f} is continuous with $\bar{f}(a) = |a_0| = |f(a)| = |b|$, we can choose r with $0 < r \leq R$ such that $|x-a| < r \implies |\bar{f}(a) - |b|| < S$. Let $I = (a-r, a+r) \cap J$, and note that $\bar{g}(\bar{f}(x))$ is defined for all $x \in I$. Let $\bar{c}_{m,k}$ be the coefficient of $(x-a)^k$ in the product $(\sum_{n=1}^k |a_n|(x-a)^n)^m$. Note that, by the triangle inequality, $|c_{m,k}| \leq \bar{c}_{m,k}$ for all m, k . For all $x \in I$, we have

$$\bar{g}(\bar{f}(x)) = \sum_{m=0}^{\infty} |b_m| \left(\sum_{n=1}^{\infty} |a_n|(x-a)^n \right)^m = \sum_{m=0}^{\infty} |b_m| \sum_{k=0}^{\infty} \bar{c}_{m,k}(x-a)^k = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} |b_m| \bar{c}_{m,k}(x-a)^k.$$

Since power series converge absolutely, $\sum_{m \geq 0} \sum_{k=0}^{\infty} |b_m \bar{c}_{m,k}(x-a)^k|$ converges in I . Since $|c_{m,k}| \leq \bar{c}_{m,k}$, the series $\sum_{m \geq 0} \sum_{k=0}^{\infty} |b_m c_{m,k}(x-a)^k|$ also converges in I , by comparison.

7.33 Example: We have $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$ for $|x| < 1$. By Integration of Power Series, $\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$ for $|x| < 1$. In particular, we can take $x = \frac{1}{2}$ to get $\ln \frac{3}{2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 2^n}$ and we can take $x = -\frac{1}{2}$ to get $\ln \frac{1}{2} = \sum_{n=1}^{\infty} \frac{-1}{n \cdot 2^n}$, that is $\ln 2 = \sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$.

Let us also argue that we can also take $x = 1$. Note when $x = -1$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ becomes the harmonic series, which diverges, and when $x = 1$ it becomes the alternating harmonic series, which converges, so the interval of convergence is $(-1, 1]$. Thus the sum $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ is defined for $-1 < x \leq 1$. We know already that $f(x) = \ln(1+x)$ for $-1 < x < 1$. By Abel's Theorem, the series converges uniformly on $[0, 1]$, so by the Continuity of Power Series Theorem, the sum $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ is continuous on $[0, 1]$ and in particular $f(x)$ is continuous at $x = 1$. Since $f(x) = \ln(1+x)$ for $|x| < 1$ and since both $f(x)$ and $\ln(1+x)$ are continuous at 1 it follows that $f(1) = \ln 2$. Thus we have $\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

7.34 Example: Let $f(x) = \frac{1}{x^2+3x+2}$. Find a power series centred at 0 whose sum is $f(x)$ in its interval of convergence, and find a power series centred at -4 whose sum is $f(x)$ in its interval of convergence.

Solution: Let us find a series centred at 0. For all $x \neq -1, -2$ we have

$$\begin{aligned} f(x) &= \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{1+x} - \frac{\frac{1}{2}}{1+\frac{x}{2}} \\ &= \sum_{n=0}^{\infty} (-x)^n - \sum_{n=0}^{\infty} \frac{1}{2} \left(-\frac{x}{2}\right)^n = \sum_{n=0}^{\infty} (-1)^n x^n - \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n \\ &= \sum_{n=0}^{\infty} (-1)^n \left(1 - \frac{1}{2^{n+1}}\right) x^n. \end{aligned}$$

We remark that since $\sum_{n \geq 0} (-x)^n$ converges if and only if $|x| < 1$ and $\sum_{n \geq 0} \frac{1}{2} \left(-\frac{x}{2}\right)^n$ converges when $|x| < 2$, it follows from Linearity the sum of these two series converges if and only if $|x| < 1$.

Solution: Now let us find a series centred at -4 . For all $x \neq -1, -2$, we have

$$\begin{aligned} f(x) &= \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{(x+4)-3} - \frac{1}{(x+4)-2} \\ &= \frac{-\frac{1}{3}}{1 - \frac{x+4}{3}} + \frac{\frac{1}{2}}{1 - \frac{x+4}{2}} = \sum_{n=0}^{\infty} -\frac{1}{3} \left(\frac{x+4}{3}\right)^n + \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{x+4}{2}\right)^n \\ &= \sum_{n=0}^{\infty} \left(\frac{1}{2^{n+1}} - \frac{1}{3^{n+1}}\right) (x+4)^n. \end{aligned}$$

Since $\sum_{n \geq 0} -\frac{1}{3} \left(\frac{x+4}{3}\right)^n$ converges if and only if $|x+4| < 3$ and $\sum_{n \geq 0} \frac{1}{2} \left(\frac{x+4}{2}\right)^n$ converges if and only if $|x+4| < 2$, it follows that their sum converges if and only if $|x+4| < 2$.

7.35 Example: Find a power series centered at 0 whose sum is $f(x) = \frac{1}{(1-x)^2}$.

Solution: We provide three solutions. For the first solution, we multiply two power series. For $|x| < 1$ we have

$$\begin{aligned} f(x) &= \frac{1}{1-x} \cdot \frac{1}{1-x} \\ &= (1 + x + x^2 + x^3 + \dots)(1 + x + x^2 + x^3 + \dots) \\ &= 1 + (1+1)x + (1+1+1)x^2 + (1+1+1+1)x^3 + \dots \\ &= 1 + 2x + 3x^2 + 4x^3 + \dots \\ &= \sum_{n=0}^{\infty} (n+1)x^n. \end{aligned}$$

For the second solution, we note that $f(x) = \frac{1}{1-2x+x^2}$ and we use long division.

$$\begin{array}{r} 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \dots \\ \hline 1 - 2x + x^2 \quad \left(\begin{array}{r} 1 + 0x + 0x^2 + 0x^3 + 0x^4 - \dots \\ - (1 - 2x + x^2) \\ \hline 2x - x^2 \\ - (2x - x^2) \\ \hline 0x^2 \\ - (0x^2) \\ \hline 0x^3 \\ - (0x^3) \\ \hline 0x^4 \\ - (0x^4) \\ \hline 0x^5 + \dots \end{array} \right) \end{array}$$

For the third solution, we note that $\int \frac{1}{(1-x)^2} = \frac{1}{1-x}$ and we use differentiation.

$$\begin{aligned} \frac{1}{1-x} &= 1 + x^2 + x^3 + x^4 + x^5 + \dots \\ \frac{d}{dx} \left(\frac{1}{1-x} \right) &= \frac{d}{dx} (1 + x + x^2 + x^3 + x^4 + x^5 + \dots) \\ \frac{1}{(1-x)^2} &= 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \dots. \end{aligned}$$

Taylor Series

7.36 Theorem: Suppose that $f(x) = \sum_{n=0}^{\infty} a_n(x - a)^n$ in an open interval I centred at a . Then f is infinitely differentiable at a and for all $n \geq 0$ we have

$$a_n = \frac{f^{(n)}(a)}{n!},$$

where $f^{(n)}(a)$ denotes the n^{th} derivative of f at a .

Proof: By repeated application of the Differentiation of Power Series Theorem, for all $x \in I$, we have $f'(x) = \sum_{n=1}^{\infty} n a_n (x - a)^{n-1}$, $f''(x) = \sum_{n=2}^{\infty} n(n-1) a_n (x - a)^{n-2}$ and $f'''(x) = \sum_{n=3}^{\infty} n(n-1)(n-2) a_n (x - a)^{n-3}$, and in general

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1) a_n (x - a)^{n-k}$$

and so $f(a) = a_0$, $f'(a) = a_1$, $f''(a) = 2 \cdot 1 a_2$ and $f'''(a) = 3 \cdot 2 \cdot 1 a_3$, and in general

$$f^{(n)}(a) = n! a_n$$

7.37 Definition: Given a function $f(x)$ which is infinitely differentiable at $x = a$, we define the **Taylor series** of $f(x)$ centred at a to be the power series

$$T(x) = \sum_{n \geq 0} a_n (x - a)^n \quad \text{where } a_n = \frac{f^{(n)}(a)}{n!}$$

and we define the l^{th} **Taylor Polynomial** of $f(x)$ centred at a to be the l^{th} partial sum

$$T_l(x) = \sum_{n=0}^l a_n (x - a)^n \quad \text{where } a_n = \frac{f^{(n)}(a)}{n!}$$

7.38 Example: Find the Taylor series centred at 0 for $f(x) = e^x$.

Solution: We have $f^{(n)}(x) = e^x$ for all n , so $f^{(n)}(0) = 1$ and $a_n = \frac{1}{n!}$ for all $n \geq 0$. Thus the Taylor series is

$$T(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \cdots.$$

7.39 Example: Find the Taylor series centred at 0 for $f(x) = \sin x$.

Solution: We have $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, $f''''(x) = \sin x$ and so on, so that in general $f^{(2n)}(x) = (-1)^n \sin x$ and $f^{(2n+1)}(x) = (-1)^n \cos x$. It follows that $f^{(2n)}(0) = 0$ and $f^{(2n+1)}(0) = (-1)^n$, so we have $a_{2n} = 0$ and $a_{2n+1} = \frac{(-1)^n}{(2n+1)!}$. Thus

$$T(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \cdots.$$

7.40 Example: Find the Taylor series centred at 0 for $f(x) = (1+x)^p$ where $p \in \mathbb{R}$. This series is called the **binomial series**

Solution: $f'(x) = p(1+x)^{p-1}$, $f''(x) = p(p-1)(1+x)^{p-2}$, $f'''(x) = p(p-1)(p-2)(1+x)^{p-3}$, and in general

$$f^{(n)}(x) = p(p-1)(p-2) \cdots (p-n+1)(1+x)^{p-n},$$

so $f(0) = 1$, $f'(0) = p$, $f''(0) = p(p-1)$, and in general $f^{(n)}(0) = p(p-1)(p-2) \cdots (p-n+1)$, and so we have $a_n = \frac{p(p-1)(p-2) \cdots (p-n+1)}{n!}$. Thus the Taylor series is

$$T(x) = \sum_{n=0}^{\infty} \binom{p}{n} x^n = 1 + px + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \frac{p(p-1)(p-2)(p-3)}{4!} x^4 + \cdots$$

where we use the notation

$$\binom{p}{0} = 1, \text{ and for } n \geq 1, \binom{p}{n} = \frac{p(p-1)(p-2) \cdots (p-n+1)}{n!}$$

7.41 Theorem: (Taylor) Let $f(x)$ be infinitely differentiable in an open interval I with $a \in I$. Let $T_l(x)$ be the l^{th} Taylor polynomial for $f(x)$ centered at a . Then for all $x \in I$ there exists a number c between a and x such that

$$f(x) - T_l(x) = \frac{f^{(l+1)}(c)}{(l+1)!} (x-a)^{l+1}.$$

Proof: When $x = a$ both sides of the above equation are 0. Suppose that $x > a$ (the case that $x < a$ is similar). Since $f^{(l+1)}$ is differentiable and hence continuous, by the Extreme Value Theorem it attains its maximum and minimum values, say M and m , on the interval $[a, x]$. Since $m \leq f^{(l+1)}(t) \leq M$ for all $t \in [a, x]$, we have

$$\int_a^{t_1} m dt \leq \int_a^{t_1} f^{(l+1)}(t) dt \leq \int_a^{t_1} M dt$$

that is

$$m(t_1 - a) \leq f^{(l)}(t_1) - f^{(l)}(a) \leq M(t_1 - a)$$

for all $t_1 \in [a, x]$. Integrating each term with respect to t_1 from a to t_2 , we get

$$\frac{1}{2}m(t_2 - a)^2 \leq f^{(l-1)}(t_2) - f^{(l-1)}(a) - f^{(l)}(a)(t_2 - a) \leq \frac{1}{2}M(t_2 - a)^2$$

for all $t_2 \in [a, x]$. Integrating with respect to t_2 from a to t_3 gives

$$\frac{1}{3!}m(t_3 - a)^3 \leq f^{(l-2)}(t_3) - f^{(l-2)}(a) - f^{(l-1)}(a)(t_3 - a) - \frac{1}{2}f^{(l)}(a)(t_3 - a)^2 \leq \frac{1}{3!}M(t_3 - a)^3$$

for all $t_3 \in [a, x]$. Repeating this procedure eventually gives

$$\frac{1}{(l+1)!}m(t_{l+1} - a)^{l+1} \leq f(t_{l+1}) - T_l(t_{l+1}) \leq \frac{1}{(l+1)!}M(t_{l+1} - a)^{l+1}$$

for all $t_{l+1} \in [a, x]$. In particular $\frac{1}{(l+1)!}m(x - a)^{l+1} \leq f(x) - T_l(x) \leq \frac{1}{(l+1)!}M(x - a)^{l+1}$, so

$$m \leq (f(x) - T_l(x)) \frac{(l+1)!}{(x-a)^{l+1}} \leq M.$$

By the Intermediate Value Theorem, there is a number $c \in [a, x]$ such that

$$f^{(l+1)}(c) = (f(x) - T_l(x)) \frac{(l+1)!}{(x-a)^{l+1}}$$

7.42 Theorem: The functions e^x and $\sin x$ are equal to the sum of their Taylor series centred at 0 for all $x \in \mathbb{R}$. For $p \in \mathbb{R}$, the function $(1+x)^p$ is equal to the sum of its Taylor series, centred at 0, for all $|x| < 1$

Proof: First let $f(x) = e^x$ and let $x \in \mathbb{R}$. By Taylor's Theorem, $f(x) - T_l(x) = \frac{e^c x^{l+1}}{(l+1)!}$ for some c between 0 and x , and so

$$|f(x) - T_l(x)| \leq \frac{e^{|x|} |x|^{l+1}}{(l+1)!}.$$

Since $\sum \frac{e^{|x|} |x|^{l+1}}{(l+1)!}$ converges by the Ratio Test, we have $\lim_{l \rightarrow \infty} \frac{e^{|x|} |x|^{l+1}}{(l+1)!} = 0$ by the Divergence Test, so $\lim_{l \rightarrow \infty} (f(x) - T_l(x)) = 0$, and so $f(x) = \lim_{l \rightarrow \infty} T_l(x) = T(x)$.

Now let $f(x) = \sin x$ and let $x \in \mathbb{R}$. By Taylor's Theorem, $f(x) - T_\ell(x) = \frac{f^{(l+1)}(c) x^{l+1}}{(l+1)!}$

for some c between 0 and x . Since $f^{(l+1)}(x)$ is one of the functions $\pm \sin x$ or $\pm \cos x$, we have $|f^{(l+1)}(c)| \leq 1$ for all c and so

$$|f(x) - T_\ell(x)| \leq \frac{|x|^{l+1}}{(l+1)!}.$$

Since $\sum \frac{|x|^{l+1}}{(l+1)!}$ converges by the Ratio Test, $\lim_{l \rightarrow \infty} \frac{|x|^{l+1}}{(l+1)!} = 0$ by the Divergence Test, and so we have and $f(x) = T(x)$ as above.

Finally, let $f(x) = (1+x)^p$. The Taylor series centred at 0 is

$$T(x) = 1 + px + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \frac{p(p-1)(p-2)(p-3)}{4!} x^4 + \dots$$

and it converges for $|x| < 1$. Differentiating the power series gives

$$T'(x) = p + \frac{p(p-1)}{1!} x + \frac{p(p-1)(p-2)}{2!} x^2 + \frac{p(p-1)(p-2)(p-3)}{3!} x^3 + \dots$$

and so

$$\begin{aligned} (1+x)T'(x) &= p + \left(p + \frac{p(p-1)}{1!}\right)x + \left(\frac{p(p-1)}{1!} + \frac{p(p-1)(p-2)}{2!}\right)x^2 \\ &\quad + \left(\frac{p(p-1)(p-2)}{2!} - \frac{p(p-1)(p-2)(p-3)}{3!}\right)x^3 + \dots \\ &= p + \frac{p}{1!}x + \frac{p \cdot p(p-1)}{2!}x^2 + \frac{p \cdot p(p-1)(p-2)}{3!}x^3 + \dots \\ &= pT(x). \end{aligned}$$

Thus we have $(1+x)T'(x) = pT(x)$, that is $(1+x)T'(x) - pT(x) = 0$, for all $|x| < 1$. Multiply both sides by $(1+x)^{-p-1}$ to get $(1+x)^{-p} T'(x) - p(1+x)^{-p-1} = 0$, that is $\frac{d}{dx}((1+x)^{-p} T(x)) = 0$ for all $|x| < 1$. It follows that $(1+x)^{-p} T(x) = c$ for some constant $c \in \mathbb{R}$. Taking $x = 0$ shows that $c = 1$, so we have $(1+x)^{-p} T(x) = 1$, and hence $T(x) = (1+x)^p$, for all $|x| < 1$.

7.43 Note: It is *not* the case that every infinitely differentiable function is equal to the sum of its Taylor series in the open interval of convergence. For example, for the function given by $f(x) = e^{-1/x^2}$ when $x \neq 0$ with $f(0) = 0$, you can verify, as an exercise, that $f^{(n)}(0) = 0$ for all $0 \leq n \in \mathbb{Z}$, so the Taylor series of f , centred at 0, is the zero function $T(x) = 0$ for all x . A function which is equal, in an open interval, to the sum of its Taylor series centred at every point a in its domain, is called **analytic**.

Applications

7.44 Example: Let $f(x) = \sin\left(\frac{1}{2}x^2\right)$. Find the 10th derivative $f^{(10)}(0)$.

Solution: Say $f(x) = \sin\left(\frac{1}{2}x^2\right) = \sum_{n=0}^{\infty} c_n x^n$. For all $x \in \mathbb{R}$ we have

$$\begin{aligned}\sin x &= x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \dots \\ \sin\left(\frac{1}{2}x^2\right) &= \frac{1}{2}x^2 - \frac{1}{2^3 \cdot 3!} x^6 + \frac{1}{2^5 \cdot 5!} x^{10} - \dots\end{aligned}$$

and so $f^{(10)}(0) = 10! c_{10} = 10! \frac{1}{2^5 \cdot 5!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{2^5} = 5 \cdot 9 \cdot 7 \cdot 3 = 945$.

7.45 Example: Find $\lim_{x \rightarrow 0} \frac{e^{-2x^2} - \cos 2x}{(\tan^{-1} x - \ln(1+x))^2}$

Solution: For all x in an open neighbourhood of 0, and for some $a, b, c, d \in \mathbb{R}$ we have

$$\begin{aligned}\frac{e^{-2x^2} - \cos 2x}{(\tan^{-1} x - \ln(1+x))^2} &= \frac{\left(1 - 2x^2 + \frac{1}{2}(2x^2)^2 - \dots\right) - \left(1 - \frac{1}{2}(2x)^2 + \frac{1}{24}(2x)^4 - \dots\right)}{\left((x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \dots) - (x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots)\right)^2} \\ &= \frac{\frac{4}{3}x^4 + ax^6 + \dots}{\left(\frac{1}{2}x^2 + bx^4 + \dots\right)^2} = \frac{\frac{4}{3}x^4 + ax^6 + \dots}{\frac{1}{4}x^4 + cx^6 + \dots} = \frac{16}{3} + dx^2 + \dots \\ &\longrightarrow \frac{16}{3} \quad \text{as } x \rightarrow 0.\end{aligned}$$

7.46 Remark: The next few examples illustrate how one could design some of the buttons on a calculator. In particular, they show how one make an algorithm to calculate e^x , $\ln x$, $x^{2/3}$ (or $x^{1/n}$) and π (assuming one has an algorithm to calculate addition, subtraction, multiplication and division).

7.47 Example: Approximate the value of $\frac{1}{\sqrt{e}}$ so the error is at most $\frac{1}{100}$.

Solution: We have

$$\begin{aligned}\frac{1}{\sqrt{e}} &= e^{-1/2} = 1 - \frac{1}{2} + \frac{1}{2^2 \cdot 2!} - \frac{1}{2^3 \cdot 3!} + \frac{1}{2^4 \cdot 4!} - \dots \\ &\cong 1 - \frac{1}{2} + \frac{1}{2^2 \cdot 2!} - \frac{1}{2^3 \cdot 3!} = 1 - \frac{1}{2} + \frac{1}{8} - \frac{1}{48} = \frac{29}{48}\end{aligned}$$

with error $E \leq \frac{1}{2^4 \cdot 4!} = \frac{1}{384}$ by the AST (since the sequence $\frac{1}{2^n \cdot n!}$ decreases with limit zero).

7.48 Example: Approximate the value of \sqrt{e} so the error is at most $\frac{1}{100}$.

Solution: We have

$$\begin{aligned}\sqrt{e} &= e^{1/2} = 1 + \frac{1}{2} + \frac{1}{2^2 \cdot 2!} + \frac{1}{2^3 \cdot 3!} + \frac{1}{2^4 \cdot 4!} + \dots \\ &\cong 1 + \frac{1}{2} + \frac{1}{2^2 \cdot 2!} + \frac{1}{2^3 \cdot 3!} = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{24} = \frac{79}{48}\end{aligned}$$

with error

$$\begin{aligned}E &= \frac{1}{2^4 \cdot 4!} + \frac{1}{2^5 \cdot 5!} + \frac{1}{2^6 \cdot 6!} + \frac{1}{2^7 \cdot 7!} + \dots \\ &= \frac{1}{2^4 \cdot 4!} \left(1 + \frac{1}{2 \cdot 5} + \frac{1}{2^2 \cdot 5 \cdot 6} + \frac{1}{2^3 \cdot 5 \cdot 6 \cdot 7} + \dots\right) \\ &< \frac{1}{2^4 \cdot 4!} \left(1 + \frac{1}{10} + \left(\frac{1}{10}\right)^2 + \left(\frac{1}{10}\right)^3 + \dots\right) \\ &= \frac{1}{2^4 \cdot 4!} \cdot \frac{1}{1 - \frac{1}{5}} = \frac{1}{2^4 \cdot 4!} \cdot \frac{5}{4} = \frac{5}{1536}.\end{aligned}$$

7.49 Example: Approximate the value of $\ln 2$ so the error is at most $\frac{1}{50}$

Solution: For $|x| < 1$ we have $\frac{1}{1-x} = 1+x+x^2+\dots$ so that $-\ln(1-\frac{1}{2}) = x+\frac{1}{2}x^2+\frac{1}{3}x^3+\dots$, so

$$\begin{aligned}\ln 2 &= -\ln \frac{1}{2} = -\ln \left(1 - \frac{1}{2}\right) = \frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \frac{1}{4 \cdot 2^4} + \frac{1}{5 \cdot 2^5} + \dots \\ &\cong \frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \frac{1}{4 \cdot 2^4} = \frac{1}{2} + \frac{1}{8} + \frac{1}{24} + \frac{1}{64} = \frac{131}{192}\end{aligned}$$

with error

$$E = \frac{1}{5 \cdot 2^5} + \frac{1}{6 \cdot 2^6} + \frac{1}{7 \cdot 2^7} + \dots < \frac{1}{5 \cdot 2^5} \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots\right) = \frac{1}{5 \cdot 2^5} \cdot 2 = \frac{1}{80}.$$

7.50 Example: Approximate the value of $10^{2/3}$ so the error is at most $\frac{1}{100}$.

Solution: Using the binomial series, we have

$$\begin{aligned}10^{2/3} &= (8+2)^{2/3} = 4\left(1 + \frac{1}{4}\right)^{2/3} \\ &= 4\left(1 + \frac{2}{3} \cdot \frac{1}{4} + \frac{\binom{2}{3}(-\frac{1}{3})}{2!} \cdot \frac{1}{4^2} + \frac{\binom{2}{3}(-\frac{1}{3})(-\frac{4}{3})}{3!} \cdot \frac{1}{4^3} + \dots\right) \\ &= 4 + \frac{2}{3} - \frac{2 \cdot 1}{3^2 \cdot 2! \cdot 4} + \frac{2 \cdot 1 \cdot 4}{3^3 \cdot 3! \cdot 4^2} - \dots + (-1)^{n+1} \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdots (3n-5)}{3^n \cdot n! \cdot 4^{n-1}} + \dots \\ &\cong 4 + \frac{2}{3} - \frac{2 \cdot 1}{3^2 \cdot 2! \cdot 4} = 4 + \frac{2}{3} - \frac{1}{36} = \frac{167}{36}\end{aligned}$$

with error $E \leq \frac{2 \cdot 1 \cdot 4}{3^3 \cdot 3! \cdot 4^2} = \frac{1}{3^3 \cdot 3! \cdot 2} = \frac{1}{324}$ by the AST, which we can apply because because for $a_n = \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdots (3n-5)}{3^n \cdot n! \cdot 4^{n-1}}$ we have $\frac{a_{n+1}}{a_n} = \frac{3n-2}{3(n+1) \cdot 4} < \frac{1}{4}$ so that the sequence (a_n) is decreasing, and we have $a_n = \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdots (3n-5)}{3^n \cdot n! \cdot 4^{n-1}} < \frac{3 \cdot 6 \cdot 9 \cdots (3n)}{3^n \cdot n! \cdot 4^{n-1}} = \frac{1}{4^{n-1}} \rightarrow 0$ as $n \rightarrow \infty$.

7.51 Example: Approximate the value of π so the error is at most $\frac{1}{50}$.

Solution: For $|x| < 1$ we have $\frac{1}{1+x^2} = 1 - x^2 + x^4 - \dots$ so $\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \dots$. Put in $x = \frac{1}{\sqrt{3}}$ to get

$$\begin{aligned}\frac{\pi}{6} &= \frac{1}{\sqrt{3}} - \frac{1}{3 \cdot 3\sqrt{3}} + \frac{1}{5 \cdot 3^2 \sqrt{3}} - \frac{1}{7 \cdot 3^3 \sqrt{3}} + \dots \\ \pi &= 2\sqrt{3} \left(1 - \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} - \frac{1}{7 \cdot 3^3} + \dots\right) = \sum_{n=0}^{\infty} (-1)^n \frac{2\sqrt{3}}{(2n+1) \cdot 3^n} \\ &\cong 2\sqrt{3} \left(1 - \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2}\right) = \frac{82\sqrt{3}}{45}\end{aligned}$$

with error $E \leq \frac{2\sqrt{3}}{7 \cdot 3^3} = \frac{2\sqrt{3}}{189}$ by the AST.

7.52 Example: Approximate the value of $\int_0^1 e^{-x^2} dx$ so the error is at most $\frac{1}{100}$.

Solution: We have

$$\begin{aligned}\int_0^1 e^{-x^2} dx &= \int_0^1 1 - x^2 + \frac{1}{2!}x^4 - \frac{1}{3!}x^6 + \frac{1}{4!}x^8 - \dots dx \\ &= \left[x - \frac{1}{3}x^3 + \frac{1}{5 \cdot 2!}x^5 - \frac{1}{7 \cdot 3!}x^7 + \frac{1}{9 \cdot 4!}x^9 - \dots\right]_0^1 \\ &= 1 - \frac{1}{3} + \frac{1}{5 \cdot 2!} - \frac{1}{7 \cdot 3!} + \frac{1}{9 \cdot 4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1) \cdot n!} \\ &\cong 1 - \frac{1}{3} + \frac{1}{5 \cdot 2!} - \frac{1}{7 \cdot 3!} = 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} = \frac{26}{35}\end{aligned}$$

with error $E \leq \frac{1}{9 \cdot 4!} = \frac{1}{216}$ by the AST.

7.53 Example: Find the exact value of the sum $\sum_{n=0}^{\infty} \frac{(-2)^n}{(2n)!}$.

Solution: Since $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$ for all x , we have $\sum_{n=0}^{\infty} \frac{(-2)^n}{(2n)!} = \cos(\sqrt{2})$.

7.54 Example: Find the exact value of the sum $\sum_{n=1}^{\infty} \frac{n-2}{(-3)^n}$.

Solution: For $|x| < 1$ we have $\frac{1}{1+x} = 1-x+x^2-x^3+\dots$ and $\frac{1}{(1+x)^2} = 1-2x+3x^2-4x^3-\dots$. Put in $x = \frac{1}{3}$ to get $\frac{9}{16} = 1 - \frac{2}{3} + \frac{3}{3^2} - \frac{4}{3^3} + \frac{5}{3^4} - \dots$ so that

$$\sum_{n=1}^{\infty} \frac{n-2}{(-3)^n} = \frac{1}{3} + \frac{0}{3^2} - \frac{1}{3^3} + \frac{2}{3^4} - \frac{3}{3^5} + \dots = \frac{1}{3} - \frac{1}{3^3} \left(1 - \frac{2}{3} + \frac{3}{3^2} - \frac{4}{3^3} + \dots\right) = \frac{1}{3} - \frac{1}{27} \cdot \frac{9}{16} = \frac{5}{16}.$$

7.55 Example: Find the exact value of the sum $\sum_{n=0}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots (3n+2)}{5^n n!}$.

Solution: For $|x| < 1$ we have

$$\begin{aligned} 2(1-x)^{-5/3} &= 2 \left(1 + \left(-\frac{5}{3} \right) (-x) + \frac{\left(-\frac{5}{3} \right) \left(-\frac{8}{3} \right)}{2!} x^2 + \frac{\left(-\frac{5}{3} \right) \left(-\frac{8}{3} \right) \left(-\frac{11}{3} \right)}{3!} x^3 + \dots \right) \\ &= 2 + \frac{2 \cdot 5}{3 \cdot 1!} x + \frac{2 \cdot 5 \cdot 8}{3^2 \cdot 2!} x^2 + \frac{2 \cdot 5 \cdot 8 \cdot 11}{3^3 \cdot 3!} x^3 + \dots \end{aligned}$$

Put in $x = \frac{3}{5}$ to get

$$\sum_{n=0}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots (3n+2)}{5^n n!} = 2 + \frac{2 \cdot 5}{5 \cdot 1!} + \frac{2 \cdot 5 \cdot 8}{5^2 \cdot 2!} + \frac{2 \cdot 5 \cdot 8 \cdot 11}{5^3 \cdot 3!} + \dots = 2 \left(\frac{2}{5} \right)^{-5/3} = 2 \left(\frac{5}{2} \right)^{5/3}.$$

7.56 Example: Find the solution of the IVP $y'' - 2xy' - 2y = 0$ with $y(0) = 1$, $y'(0) = 0$. First find a power series solution, then convert the power series to closed form.

Solution: Let $y = \sum_{n=0}^{\infty} a_n x^n$ so $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$ and $y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$. Put these in the DE to get

$$\begin{aligned} 0 &= y'' - 2xy' - 2y = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2} - \sum_{n=1}^{\infty} 2na_n x^n - \sum_{n=0}^{\infty} 2a_n x^n \\ &= \sum_{m=0}^{\infty} (m+2)(m+1) a_{m+2} x^m - \sum_{m=1}^{\infty} 2ma_m x^m - \sum_{m=0}^{\infty} 2a_m x^m \\ &= (2a_2 - 2a_0) + \sum_{m=1}^{\infty} ((m+2)(m+1)a_{m+2} - 2(m+1)a_m) x^m. \end{aligned}$$

The coefficients all vanish, so $a_2 = a_0$ and for $m \geq 1$, $a_{m+2} = \frac{2(m+1)a_m}{(m+2)(m+1)} = \frac{2a_m}{m+2}$. To get $y(0) = 1$ and $y'(0) = 0$, we need $a_0 = 1$ and $a_1 = 0$, and then the recurrence formula gives $a_k = 0$ for k odd and $a_2 = 1$, $a_4 = \frac{2}{4}$, $a_6 = \frac{2^2}{2 \cdot 6}$, and in general $a_{2n} = \frac{2^n}{2 \cdot 4 \cdot 6 \cdots (2n)} = \frac{1}{n!}$. Thus the solution is $y = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!} = e^{x^2}$.