Chapter 7. Sequences and Series of Functions

Pointwise Convergence

7.1 Definition: Let A C R, let g : A — R, and for each integer n > p let f, : A — R.

We say that the sequence of functions (f,),>, converges pointwise to g on A, and we

write f,, — g pointwise on A, when lim f,(z) = g(z) for all x € A, that is when for all
n— oo

x € A and for all € > 0 there exists m > p such that for all integers n we have
n>m = |fu(r) - g(z)| <e.
7.2 Note: By the Cauchy Criterion for convergence, the sequence (fy),>p converges

pointwise to some function g(z) on A if and only if for all z € A and for all € > 0 there
exists m > p such that for all integers k, ¢ we have

kol >m = |fu(z) — folz)| <e.

7.3 Example: Find an example of a sequence of functions (f,,),>1 and a function g with
fn — g pointwise on [0, 1] such that each f,, is continuous but g is not.

Oifx #1
life=11["

n—oo

Solution: Let f,(z) = 2™. Then lim f,(z)= {

7.4 Example: Find an example of a sequence of functions (fy,),>1 and a function g with
fn — ¢ pointwise on [0, 1] such that each f, is differentiable and ¢ is differentiable, but
lim f, #¢'.
n—oo

1

. X . l —1 1 = ! = 5
Solution: Let f,(z) = = tan™'(nz). Then Jim. Jn(z) = 0, and f, (z) 15 (a2 so

Oﬁx%O}

lim_fu'(x) :{1 iz =0

7.5 Example: Find an example of a sequence of functions (f,,),>1 and a function g with
fn — g pointwise on [0, 1] such that each f, is integrable but g is not.

Solution: We have Q N [0,1] = {a1, as,as,---} where

1 2 3 0 4
93939304 " Togy" ")

1
2
. _ /0 _ 2
(as an exercise, you can check that a,, = % where { = { w W and k =n— %). For

xz €[0,1], let fo(x) = {Oifx i {al’a%“.’an}}. Then lim f,(z) = {O ifxgé@}.

lifz € {a1,a2, -, a,} n—o0 lifzeQ

7.6 Example: Find an example of a sequence of functions (fy,),>1 and a function g with
fn — g pointwise on [0, 1] such that each f,, is integrable and ¢ is integrable but
1

lim fn(m)dx%/o g(x)dzx.

n—oo 0

(an)nZI = (%7 %7 37

_ {48(m—%)(1—x)if%§x§1}
Solution: Let fi(x) = . Forn > 1let f,(x) = nfi(nz).

0 otherwise

1
Then each f,, is continuous with / fn(z)dr =1, and lim f,(z) =0 for all z.
0

n—oo



Uniform Convergence

7.7 Definition: Let A C R, let g : A — R, and for each integer n > p let f, : A — R.
We say that the sequence of functions (f,),>, converges uniformly to g on A, and we
write f, — ¢ uniformly on A, when for all € > 0 there exists m € Z>, such that for all
x € A and for all integers n € Z>, we have

n>m= |fu(z)—g(z)| <e.

7.8 Theorem: (Cauchy Criterion for Uniform Convergence of Sequences of Functions)
Let (fn)n>p be a sequence of functions on A C R. Then (f,,) converges uniformly (to some
function g) on A if and only if for all € > 0 there exists m € Z>, such that for all z € A
and for all integers k,{ € Z>, we have

k40 >m— |fk(a:) — fg(.’lf)‘ <e€.
Proof: Suppose that (f,) converges uniformly to g on A. Let ¢ > 0. Choose m so that
for all z € A we have n > m = |fn(z) — g(z)| < §. Then for k,£ > m we have
| fi(z) — g(z)| < § and |fe(z) — g(z)| < & and so

(@) = fe(@)] < | fulz) = g(2)| + | fe(z) — g(2)| < 5 + 5 =¢.

Conversely, suppose that (f,) satisfies the Cauchy Criterion for uniform convergence, that
is for all € > 0 there exists m such that for all z € A and all integers n, ¢ we have

n,t>m— }fn(x) — fg(m)} <e€.
For each fixed z € A, (f.(x)) is a Cauchy sequence, so (f,(z)) converges, and we can
define g(x) by

g(x) = lim f,(x).

n—oo

We know that f,, — g pointwise on A, but we must show that f,, — ¢ uniformly on A.
Let € > 0. Choose m so that for all x € A and for all integers n, ¢ we have

nt>m=|fu(z) — folz)| < 5.
Let x € A. Since eli)rgo fe(x) = g(z), we can choose £ > m so that | f¢(z) — g(z)| < §. Then
for n > m we have
() = g(@)] < |ful@) = fol@)| + [ fe() —g(2)] < 5+ § =€.
7.9 Theorem: (Uniform Convergence, Limits and Continuity) Suppose that f, — g
uniformly on A. Let a be a limit point of A. If alzl—rf}; fn(x) exists for each n, then

lim g(z) = lim lim f,(z) = lim lim f,(z).

T—a T—a n—o0 n—oo r—a
In particular, if each f,, is continuous in A, then so is g.
Proof: Suppose that lim f,(x) exists for all n, and let b,, = lim f,,(x). We must show that
Tr—a Tr—a
lim g(z) = lim b,. We claim first that (b,) converges. Let € > 0. Since (f,) converges
n— o0

Tr—a

uniformly, we can choose m so that k,{ > m => |fx(z) — fi(z)| < § for all z € A. Let
k,¢ > m. Since lim f,(z) = b, for all n, we can choose x € A so that }fk(ac) —by| < §
Tr—a

and | fo(z) — be| < §. Then we have
bk — be| < b — fr(@)| + | fe(2) = fe(@)| + | fe(z) —be] < §+ 5+ 5 =€.

By the Cauchy Criterion for sequences, (b,,) converges, as claimed.



Now, let ¢ = lim b,. We must show that lim f(x) = ¢. Let ¢ > 0. Since f,, — ¢

n—oo r—a
uniformly on A, and since b, — ¢, we can choose m so that when n > m we have

| fu(z)—g(z)| < & for all z € A and we have |b, —c| < &. Let n > m. Since ligl fn(z) = by
we can choose § > 0so that 0 < |z—a| < § = | fn(2)—by| < §. Then when 0 < |[z—a| < §
we have
l9(x) — | < |g(@) = fu(@)| + | falz) —bu| + |bn —c| < S+ 5+ 5 =¢
Thus lim f(x) = ¢, as required.
Tr—a

In particular, if a € A and each f,, is continuous at a then we have

lim g(z) = lim lim f,(2) = lim lim f,(2) = lim_f,(a) = g(a)

Tr—a n— o0 n—,oo T

so g is continuous at a.
7.10 Theorem: (Uniform Convergence and Integration) Suppose that fn — g uniformly
on [a,b]. If each f, is integrable on [a,b] then so is g. In this case, if F,( / fn(t)dt

and G(z) = / g(t)dt, then F,, — G uniformly on [a,b]. In particular, we have

b b b
/a g(x)dx = /a Jim fo(z) do = lim. ’ fn(2) da

Proof: Suppose that each f, is integrable on [a,b]. We claim that ¢ is integrable on
[a,b]. Let € > 0. Since f, — ¢ uniformly on [a,b], we can choose an integer N so that
n>N= |fu(z)—g(z)| < 10— for all @ € [a,b]. Fixn > N. Since f, is integrable,

we can choose a partition X of [a,b] so that U(f,, X) — L(f,,X) < §. Note that since

}fn<$) - g(a:)} < m we have Mk:(Q) < Mk(fn) + m and mk:(g) > mk(fn) - 4((,—6_(1);
and so

U9, X) = L9, X) = 32 (Mi(g) = ma(9)) A < 35 (M(fa) = ma(fo) + 75557 Awr
=U(fn; X) = L(fn, X)+ 5 <5+ 5=
Thus g is integrable on [a b|.

Now define F,( / fn(t)dt and G(x) = / g(t)dt. We claim that F,, — G
uniformly on |a, b] Let € > 0. Smce fn — ¢ uniformly on [a, b], we can choose N so that
n>N = |f.(t) — g(t)| < 35-a for all ¢ € [a,b]. Let n > N. Let z € [a,b]. Then we
have

Fate) - G| =| [ paae— ("ot = | [ 1) 900 a1

S/ \fn(t)—g(t)\dtg/ sy Ut = gpea (T —a) < 5 <e.

Thus F,, — G uniformly on [a, b], as required.
In particular, we have lim F,,(b) = G(b), that is
n— oo

lim bfn( )dx:/abg(x)dx:/ab lim £, (z) dz

n— o0 n—oo



7.11 Theorem: (Uniform Convergence and Differentiation) Let (f,) be a sequence of
functions on [a, b]. Suppose that each f, is differentiable on |a, b], ( fn') converges uniformly
on [a,b], and (fn(c)) converges for some ¢ € [a,b]. Then (f,) converges uniformly on [a, b],
nh_}rlgo fn(x) is differentiable, and

Proof: We claim that (f,) converges uniformly on [a,b]. Let € > 0. Since (f,) converges
uniformly on [a, b], and since (f,,(c)) converges, we can choose N so that when n,m > N
we have |f,/(t) — f/(t)] < 30—y for all ¢ € [a,b] and we have |fn(c) — fm(c)] < §.
Let n,m > N. Let x € [a,b]. By the Mean Value Theorem applied to the function
fn(x) = fim(z), we can choose t between ¢ and z so that

(fu(@) = fin(z) = fule) + fin(e)) = (fu'(t) = f' (1)) (x —©) -

Then we have

[fa(@) = Fn(@)] < [£a@) = Fin(@) = Fa(0) + fin ()] + [ £al€) = Fim(c)]

= |fa'(t) = f(t )HfC—C\ + [ fule) = fm(c)]
< m(b—d)—F%:G.
Thus (f,) converges uniformly on [a, b].
Let g(z) = lim f,(x). We claim that g is differentiable with fg(z) = lim f,'(z) for

all x € [a,b]. FD?;OE [a,b]. Note that e

n— 00 y—z y— 00 Yy y—
< lim lim Jn(y) = Jul@) — lim lim fn(y) = fn(2)

so it suffices to show that (h,) converges uniformly on [a,b] \ {z}, where

faly) = fo(@)

y—x
Let € > 0. Since (f]) converges uniformly on [a,b], we can choose an integer N so that
n,m >N = |f./(t) — f'(t)| < efor all t € [a,b]. Let n,m > N. Let y € [a,b]\ {z}. By
the Mean Value Theorem, we can choose ¢t between = and y so that

(fn<y) — fm(y) — fulx) + fm(x)) = (fn/(t) - fm/(t))(y — ).

hn(y) =

Then

y)| _ fn(y) — fm(y; : J;n(x) + fm ()

Thus (hy) converges uniformly on [a,b] \ {z}, as required.

‘hn(y)_ = |fn/(t)_fm/(t)} < €.



Series of Functions

7.12 Definition: Let (f,)n,>p be a sequence of functions f,, : A — R. The series

¢
of functions ) f, is defined to be the sequence (Sg)n>p where Sy(z) = > fu(z).
n>p - n=p

The function S, is called the /** partial sum of the series. We say the series Y. f,

n>p
converges pointwise (or uniformly) on A when the sequence (S¢),>, converges, pointwise
(or uniformly) on A. In this case, the sum of the series of functions is defined to be the
function

@) = 3 Jala) = Jim Se(a).

7.13 Theorem: (Cauchy Criterion for the Uniform Convergence of a Series of Functions)
The series Y f, converges uniformly (to some function g) on A if and only if for every

n2p
€ > 0 there exists N > p such that for all x € A and for all m,¢ > p we have
m>(>N=| % fn(:z;)‘ <e.
n=~+1

Proof: This follows immediately from the analogous theorem for sequences of functions,
since Sy, () — Se(x) = 30"y q fu(T).

7.14 Theorem: (Uniform Convergence, Limits and Continuity) Suppose that Y fn(z)
nzp

converges uniformly on A. Let a be a limit point of A. If lim f,(z) exists for all n > p,
Tr—a
then

lim 3 fu(2) = 3 lim fu(o).

In particular, if each f, is continuous on A then so is Z;’O:p fn-
Proof: This follows immediately from the analogous theorem for sequences of functions.

7.15 Theorem: (Uniform Convergence and Integration) Suppose that > f, converges
n2p

uniformly on [a,b]. If each f, is integrable on [a,b|, then so is »_ f,. In this case, if we

n=p
define F,,(x) = / fn(t)dt and G(z) = > fn(t)dt, then Y F, converges uniformly
a a n=p n>p

to G on A. In particular, we have

b 0o b
S fa@)de =3 | folz)dz.

a Mn=p n=pJa

Proof: This follows immediately from the analogous theorem for sequences of functions.



7.16 Theorem: (Uniform Convergence and Differentiation) Suppose that each f, is

differentiable on [a,b], and Y. f,’ converges uniformly on [a,b], and Y f.(c) converges
n2p n2p
for some c € [a,b]. Then Y f, converges uniformly on [a,b] and
n=p

= 2 falz) = 3 dtful2).
n=p n=p
Proof: This follows immediately from the analogous theorem for sequences of functions.

7.17 Theorem: (The Weierstrass M-Test) Suppose that each f,, : A — R is bounded

with |f,(x)| < M, for all x € A, and that Y M, converges. Then Y f,(x) converges

. > >
uniformly on A. n=p n=p

Proof: Let € > 0. Since the series > M,, converges, we can choose an integer N so that

m>0>N=— > M, <e Letm>{¢>N and let x € A. Then
n=~¢+1
> f@)] < L @< X Mi<e.
n=~(+1 n=4+1 n=~¢+1

7.18 Example: Find a sequence of functions (f, (a:))n>0, each of which is differentiable

on R, such that > f.(z) converges uniformly on R, but the sum g(z) = > fu(x) is

n>0
nowhere differentiable.
Solution: Let f,(z) = 5 sin®(8"x). Since |f,(z)| < 5 and 3 5= converges, > f,(x)

n>0
converges uniformly on R by the Weierstrass M-Test. Let g(x) = > fn(z). We claim
=0

that g(z) is nowhere differentiable. Let x € R. For each n, let mil an and b, be such
that a,, = 2’”872, b, = (WZLE})” and x € [an,b,). Note that one of f,(a,) and f,(b,) is
equal to 55 and the other is equal to 0 so we have ‘fn bn) — fn(an)| = 2% Note also that
for k > n we have f(an) = fi(b,) = 0. Also, for all k we have fiy(z) = % sin®(8%x),

fi'(x) = 4% sin(2 - 8%x), and | f'(z)| < 4%, so by the Mean Value Theorem,
|fk(bn) - fk(an)‘ < 4k|bn - an| .

f(bn) — f(an> b

Finally, note that if ¢’(x) did exist, then we would have ¢'(z) = li_)rn — , but
f(bn) — f(an) _ f: fre(bn) — fr(an) _ zn: fi(bn) — fir(an)
bn—an bn_an bn_a'n
k=0 k=0
o [£20n) = Fulan) | _ 5| felbn) = filan)
bn Qn, bn Gnp
k=0
1 n—1
> 2 Z4k—2§n 4n§1—(% %)4”4— —» 00 as N — 00
28" k=0



Power Series

7.19 Definition: A power series centred at a is a series of the form > ¢, (z —a)™ for
n>0
some real numbers c,, where we use the convention that (x — a)? = 1.

7.20 Example: The geometric series ) x™ is a power series centred at 0. It converges

n>0
when |z| < 1 and for all such x the sum of the series is

00
> am = 1L
n=0

¢
7.21 Lemma: (Abel’s Formula) Let (ay,)n>p and (by,)n>p be sequences. Let Sy = > ay,.
Then
¢ -1
Z anbn = Sgbg — Z Sj(bj_H — bj) .
= i=p
Proof: We have
2 Si(bj+1 = bj) = ap(bp+1 —bp) + (ap + apt1)(bp+2 — bp+1)
+ (ap + apr1 + apr2)(bpys — bpi2)
+ o+ (ap +apr1 +apra + o+ ap—1)(be — be-1)
= _apbp - ap+1bp+1 — v —ap—1bp_y

+ (ap + apyq + - ag_l)bg — agby + agby

J4
= Sgbg — Z anbn

7.22 Note: Recall that for a sequence (a,) in R, we define limsupa,, = hm Sn Where
n— o0
sn = sup{ag | k > n} (with limsup a,, = co when (a,,) is not bounded above).
n—oo

7.23 Theorem: (The Interval and Radius of Convergence) Let »_ ¢,(z —a)™ be a power
n>0

series and let R = ———————— € [0,00|. Then the set of z € R for which the power
lim sup \/ |cn

n— oo
series converges is an interval I centred at a of radius R. Indeed

(1) If |x — a| > R then hm en(z—a) #0s0 > cp,(x—a)” diverges.

(2) If |z — a| < R then ) cp(z —a)” conver;ezoabsolutely

(3) If 0 < r < R then anzgn (x — a)™ converges uniformly in [a — r,a + 7].

(4) (Abel’s Theorem) nIlZ‘OZ cn R converges then ) c,(x — a)" converges uniformly on
la,a+ R]. If 2;0 Cn (—R)”nioonverges then 2;0 cn(x ji(;” converges uniformly on [a — R, al.



Proof: To prove Part 1, suppose that |z — a| > R. Then
limsup {/|cn(z — a)| = |z — a|limsup {/[c,| > R+ % =
and so lim ¢,(z —a)" #0 and > ¢,(z — a)™ diverges, by the Root Test.
n—oo
To prove Part 2, suppose that |z — a| < R. Then

limsup v/ |c,(x — a)?| = | — a|limsup V/|cn| < R - % =
n—oo

n— oo

and so Y |, (z — a)™| converges, by the Root Test.

To prove Part 3, fix 0 < r < R. By part 2, > |cn(ac — a)”‘ converges when x = a + r,
that is ) |e, ™| converges. Let x € [a —r,a+r]. Then |c,(x —a)"| < |c,r™| and Y |c,r™|
converges, and so Y |c,(x — a)™| converges uniformly by the Weierstrass M-Test.

Now let us prove the first statement in Part 4 (the proof of the second statement
is similar). Suppose that ) ¢, R™ converges. Let ¢ > 0. Choose an integer N so that

m>0>N=| > ¢,R"| <e. Letzx € |a,a+ R]. By Abel’s Lemma, using a,, = ¢, R",
n=~+1
b, = (Iga)n, Sm = Y @y, and noting that 0 < ¥ <1 so that 0 < bj 1 <b; <1,
+1
‘ Yo eplz—a)t =] >, c,R" (“E“)n = ‘ > apby,
n=~0+1 n=~+1 n=~0+1
m—1
= [Smbm = 3 Si(birr = b))| < [Smllbml + z 185lltse1 = b
j—€+1 Jj=+
m—1
= |Sm|bm + E 551(bj —bj41) < €bm+e€ > (bj —bjy)
j=0+1 j=0+1

= €by + €(bpp1 — b)) = €bpy1 < e

7.24 Definition: The number R in the above theorem is called the radius of conver-
gence of the power series, and the interval I is called the interval of convergence of
the power series.

3 —2x)"
7.25 Example: Find the interval of convergence of the power series Z ( ?)

n>1 v%

(3 —2z)" _oyn n
NG :(\/25) (x_%)’

_2 .
and so Z z)" ch(ac—a)",where co=0,c¢,= (:/2% for n > 1 anda:%.

Solution: First note that this is in fact a power series, since

n>1 n>0
3 —2x)" n 3 — 2z)" !
Now, let a,, = & Then |22+ | = ( z) vn = [3 — 2,
vn an vn+1 (3—2x)" =

. An+41
so lim
n— 00 an

diverges when |3 — 2z| > 1. Equivalently, it converges when z € (1,2) and diverges when
x ¢ [1,2]. When z = 1so (3 —2z) = 1, we have Y a, = ) \%, which diverges (its a

p-series), and when z = 2 so (3 — 2x) = —1, we have > a, = > (\}) which converges by

= |3 — 2z|. By the Ratio Test, > a, converges when |3 — 2x| < 1 and

the Alternating Series Test. Thus the interval of convergence is I = (1,2].



Operations on Power Series

7.26 Theorem: (Continuity of Power Series) Suppose that the power series . ¢, (z —a)”
o0

converges in an interval I. Then the sum f(x) = > ¢,(x — a)™ is continuous in I.
n=0

Proof: This follows from uniform convergence of > ¢, (z — a)™ on closed subintervals of 1.
Indeed, given x € I we can choose a closed interval [b, ¢] C I with x € [b, ¢], and then since
> cn(x —a)™ converges uniformly on [b, ¢, the sum is continuous on [b, ¢], and hence at z.

7.27 Theorem: (Addition and Subtraction of Power Series) Suppose that the power series
Y an(x—a)™® and > b, (x —a)™ both converge in the interval I. Then Y (a, + by)(x —a)™
and > (a, — by)(x — a)™ both converge in I, and for all x € I we have

S (an % bo)(z — ) = ( S an(z — a)”) + ( S b (2 — a)”) .
n=0 n=0 n=0

Proof: This follows from Linearity.

7.28 Theorem: (Multiplication of Power Series) Suppose the power series Y a,(x — a)"
and > b,(x — a)™ both converge in an open interval I with a € I. Let ¢, = > agb,—k.

Then > ¢, (x — a)™ converges in I and for all x € I we have
S oz —a) = ( S an(z — a)”) ( S b (z — a)”) .
n=0 n=0 n=0
Proof: This follows from the Multiplication of Series Theorem, since the power series

converge absolutely in 1.

7.29 Theorem: (Integration of Power Series) Suppose that »  ¢,(x —a)™ converges in the

interval I. Then for all x € I, the sum f(x) = > ¢y(x — a)™ is integrable on the closed
n=0
interval between a and x (that is on [a,x] or [z, a]) and

T o0 00 x oo
Yoep(t—a)rdt= > cn(t—a)tdt = > %ch(x—a)”"'l.
a n=0 n=0Ja n=0

Proof: This follows from uniform convergence on closed subintervals of I.
7.30 Theorem: (Differentiation of Power Series) Suppose that »_ c¢,(x — a)™ converges

in the open interval I. Then the sum f(x) = Y c¢,(x — a)™ is differentiable in I and
n=0

oo oo
f@)=2LY e (z—a) = Z Ley(z—a) = ney(z—a)" .
n=0 n=1
Proof: Note that the two power series Y ¢, (z —a)™ and >_nc,(z —a)"~! have the same
radius of convergence R, because lim {/n = 1 so that limsup {/|nc,| = limsup {/|c,|.

n— oo
The theorem now follows from the convergence of > ¢,(x — a)™ and the uniform

convergence of > nc,(z —a)""! on closed subintervals of I.



7.31 Theorem: (Division of Power Series) Suppose that ) a,(x —a)™ and > b, (z —a)"
both converge in an open interval J with a € J, and that by # 0. Define ¢,, by

= 20 _ an _ bpco _ bn_1c1 L bicn—1
co =32, and forn >0, ¢, = 3~ = = ot

Then there is an open interval I with a € I C J such that ) c¢,(z — a)™ converges in I
with

n(z —a)”

n=0

. > a
Z Cn(flj _a)n = no:oo
b

n(T —a)”

Proof: For all z € J, let f(z) =Y "~ jan(z —a)” and g(z) = Y~ bp(x —a)™. Since g is
continuous with g(a) = by # 0, we can choose r > 0 small enough so that [a —r,a+7] C J
and g(x) # 0 for all z € [a — r,a + r]. Note that > |a,7"| and > |b,r™| both converge.

Since ]anr”| — 0 and |b,7"| — 0 and by # 0, we can choose M so that M > ’% and

20| < M and since ¢; = % + Y% we have
bo bO bO

blT
bo

— M(1+M).

Suppose, inductively, that |c;r*| < M (1 + M)* for all k < n. Then since
ap = bpco +bp_101 + -+ +b1cy—1 + bocy )

we have

nlr

lenr |co| + |01r| o (B e Y

bo

§M+M2+M2(1+M)+M2(1+M) +M2(1+M) + o+ M1+ M)
1+M)"—1 n

= M+ M2 (U221 — v+ M)

By induction, we have |c,r"| < M(1+ M)™ for all n > 0. Let I = (a — s,a + s) with

s:lfM.Notethat]Q(a—r,a+r)§J.Whenxel,forallnwehave
en( — )" = Jenr™] - roa | roo |

cn(x —a)"| = |e,r™| - . < _—

(L+ M) |r/(1+ M) r/(1+ M)

and so Y |c,(x — a)™| converges in I by the Comparison Test.
n

Note that from the definition of ¢, we have a,, = >  ¢xb,—k, and so by multiplying

power series, we have

(L ent—a) (L bz —a)") = 3 an(w—a)"

for all z € I.

10



7.32 Theorem: (Composition of Power Series). Let f(z) = > an(z — a)™ in an open
o0 n=0
interval J with a € J, and let g(y) = > bn(y — b)"™ in an open interval K with

=0 k
b= f(a) € K. Let ¢, 1 be the coefficient of (x — a)* in the product ( Y an(z — a)”)m,
k n=1
and let d, = Y bycm k. Then there exists an open interval I C J with a € I such that

m=0 00
f(I) C K and the series Y dy(x — a)* converges in I with g(f(z)) = 3. dp(x — a)*.
k>0 k=0

Proof: When x € J and f(x) € K, we have

9(F@) = 2 bu( T anlr=a))" = 3 b 3 cnple =) = 5 5 bues(z—a)

n=1 m=0 m=0 k=0
If we can apply Fubini’s Theorem to interchange the order of summation, then we obtain

9(F@) = X 3 bueile = a) = 3 3 bncurlr o) = 3 di(r —a)"

m=0 k=0 =0 m=0

We need to verify that the hypotheses of Fubini’s Theorem are satisfied, so we must show
that >~ [bmcm k(T — a)¥| converges for each m, and that > om0 2o [bmCm k(T — a)”|
converges (at least in some subinterval I C J with a € I). We know that > a,(z — a)”

converges in J, so by multiplication of power series, the series ) ¢, k(2 — a)* also converges
in J with 302 g ek —a)* = (207, an(z— a)®)"™, and hence by multiplying by b,,, the
series D <o bmCm k(T — a)k also converges in .J. Since power series converge absolutely in

their open interval of convergence, >, < |bmCm.k(z — a)¥| converges in J.

It remains to show that >~ > '|bymcm k(x — a)¥| converges in an open interval
I with @ € I. Let R and S be the radii of convergence of the series Y a,(z — a)™ and
> b (y — b)™. Note that the series > |an|(x — a)™ and > |b,,|(y — |b])™ have the same
radii of convergence, R and S, so we can define functions f(z) = Yo7 |a,|(z — a)™ for
z € (a—R,a+ R) and g(y) = Yoo |bim|(y — [b])™ for y € (Jb] — S, |b] + S). Since f is
continuous with 7( ) lag| = |f(a)| = |b|, we can choose r with 0 < r < R such that
lz—a| <r=>|f(a)—|b|]| <S. Let I = (a—r,a+r)NJ, and note that g(f(z)) is defined
for all x € I. Let ¢, 1 be the coefficient of (x — a)* in the product (2221 lan|(x — a)")m
Note that, by the triangle inequality, |cy k| < € i for all m, k. For all x € I, we have

o0 o] oo [o.@]
9(f(z)= Z b ( Z lanl(z=a)")" = 32 [bm| 3 Cmp(@—a)= 3 3 [bm|Cmp(z—a)",
m=0 k=0 m=0 k=0
Since power series converge absolutely, >, <o > req |bmCm.k(z —a)*| converges in I. Since
|cm k| < Gk, the series > S0 S 2%  |bmCm i (z — a)*| also converges in I, by comparison.
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7.33 Example: We have 1+x = > (=1)"z" for |z| < 1. By Integration of Power Series,

n=0
S n n

In(l+z)= > (;Jlr)l Tt = Z %x" for |z| < 1. In particular, we can take z = % to

n 0 n=1
3 (—1)" 1 I o) [ee) 1
get In 3 Z —2— and we can takex = —3 toget In = > =L thatisln2= Y ..
n=1 n=1
Let us also argue that we can also take x = 1. Note when z = —1, the series

—1)ntt . . . . .
> %m” becomes the harmonic series, which diverges, and when xz = 1 it becomes
n=1
the alternating harmonic series, Which converges, so the interval of convergence is (—1,1].

Thus the sum f(x) = z Gl 1) "2 is defined for —1 < < 1. We know already that
f(z) = In(1 4+ ) for 7 < x < 1. By Abel’s Theorem, the series converges uniformly
on [0, 1], so by the Continuity of Power Series Theorem, the sum f(z) = Z (GO l)nﬂ

x™ 18

continuous on [0, 1] and in particular f(x) is continuous at x = 1. Since f ( ) In(1 + x)
for |z| < 1 and and since both f(z) and In(1 4+ z) are continuous at 1 it follows that

_ S G D
f(1) =In2. Thus we have In2 = }  *——.

n=1

7.34 Example: Let f(z) = m Find a power series centred at 0 whose sum is f(x)
in its interval of convergence, and find a power series centred at —4 whose sum is f(x) in
its interval of convergence.

Solution: Let us find a series centred at 0. For all z # —1, —2 we have
1 1 11 3
(z+1)(z+2) z+1 z+2 1+z 1+4%

= S SR = X (e - 3 e

fz) =

n=0 n=0 n=0
2 1

We remark that since Y, . ,(—z)" converges if and only if [z| < 1 and Y, -3 (—%)n
converges when |z| < 2, it follows from Linearity the sum of these two series converges if
and only if |z| < 1.

Solution: Now let us find a series centred at —4. For all x # —1, —2, we have

fa) = 1 111
v S+ )(z+2) 4+l z+2 (z+4) -3 (r+4)-2
_1 1 0
- S e ey

20(2n+1 - 3n+ ) (x+4)".

Since >, 5 -3 (%) converges if and only if |z + 4| <3 and ), <, 2 (5‘74'4)” converges
if and only if |x + 4] < 2, it follows that their sum converges if and only if |z + 4| < 2.

12



o
(1—=z)*

Solution: We provide three solutions. For the first solution, we multiply two power series.
For |z| < 1 we have
1 1

f(x)zl—a:.l—a:
=(l+z+”+2°+ )(I+a+a+2°+-)
=1+(1+Dz+Q+1+D22+ Q1 +1+1+D2>+---
= 1420 +32% +423 + -+

= Z(n + 1)z".
n=0

For the second solution, we note that f(z) =

7.35 Example: Find a power series centered at 0 whose sum is f(z) =

W and we use long division.
—2r+x

142z + 322 + 423 + 52 + - -
1— 92z + a2 )1—|—Ox+0x2—|—0x3—|—0x4—---

1 —2x + 2
2r — 2
2r — 4% + 223
3x? — 223
322 — 62° + 324
43 — 8xt + - -
43 — 8xt + - -
St + -
. . 1 1 . L
For the third solution, we note that / = and we use differentiation.
(1-x)? 11—z
ﬁ =1+ +2®+at+2° .-

d 1
%(1—3;) :%(1+$+$2+$3+x4+x5+...)

13



Taylor Series

oo

7.36 Theorem: Suppose that f(z) = Z an(x —a)™ in an open interval I centred at a.

n=0
Then f is infinitely differentiable at a and for all n > 0 we have

f"(a)

n!

where f(™)(a) denotes the n'" derivative of f at a.

Qnp )

Proof: By repeated application of the Differentiation of Power Series Theorem, for all
z € I, we have f'(z) = Y07 na,(z —a)" 1, f(z) = > 0" ,n(n — 1)ay(z — a)" 2 and
f"(x) =30 sn(n—1)(n —2)ay(x — a)" "3, and in general

f(k)(x) = Zn(n— 1)"'(n_k+1)an(:c—a)”_k

n=~k
and so f(a) = ag, f'(a) = a1, f"(a) =2-1as and f"(a) =3-2-1as, and in general
™ (a) =n! ay,

7.37 Definition: Given a function f(z) which is infinitely differentiable at = a, we
define the Taylor series of f(z) centred at a to be the power series

(n)
T(z) = nzman(x —a)® where a, = foa)
and we define the ['" Taylor Polynomial of f(z) centred at a to be the I*" partial sum
f(a)

n!

l
Ti(x) = Zan(x —a)® where a, =
n=0

7.38 Example: Find the Taylor series centred at 0 for f(z) = e”.

Solution: We have f(™(z) = e® for all n, so f(™(0) =1 and a, = 2 for all n > 0. Thus
the Taylor series is

o
T(l‘):Z%I‘HZI-FCB-F%J‘Q-F%:E?’-F%IA-F“-.
n=0

7.39 Example: Find the Taylor series centred at 0 for f(z) = sinz.

Solution: We have f'(x) = cosz, f"”(x) = —sinz, f""(x) = —cosz, f"(x) = sinz and so
on, so that in general f")(z) = (—1)"sinz and f*7+(z) = (—=1)" cosz. It follows that

F@(0) = 0 and f@**+D(0) = (=1)", so we have ag, = 0 and ag, 41 = (é;—i)ln), Thus

_ (="  2n+1 _ 1..3 1..5 1.,..7
T(z) = @ntD! =gt g -

n=0

14



7.40 Example: Find the Taylor series centred at 0 for f(z) = (1+x)? where p € R. This
series is called the binomial series

Solution: f'(x) = p(1+x)P~L, () = p(p—1)(1+2)P~2, f"(z) = p(p—1)(p—2) (1 +x)P~3,
and in general

fM @) =pp-1)p-2)(p—n+1)1+z)P",
so f(0) =1, f/(0) = p, f"(0) = p(p—1), and in general f(™)(0) = p(p—1)(p—2) - - - (p—n—+1),

and so we have a, = p(p—l)(P—i)!m(p_”H). Thus the Taylor series is

T(z) = Z (2) 2" =14 px+ P(Z;l)xZ + p(p—lg)!(p—2)m3 + p(p—l)(zz2)(p—3)x4 +..
n=0

where we use the notation

(F)=1,and forn>1, (?)= p(p_l)(p_i);m(p_nﬂ)

7.41 Theorem: (Taylor) Let f(x) be infinitely differentiable in an open interval I with
a € I. Let Ty(z) be the I*" Taylor polynomial for f(x) centered at a. Then for all & € I
there exists a number ¢ between a and x such that

(1) (¢
) = Tifo) = a1

Proof: When z = a both sides of the above equation are 0. Suppose that x > a (the case
that < a is similar). Since f(*1 is differentiable and hence continuous, by the Extreme
Value Theorem it attains its maximum and minimum values, say M and m, on the interval
[a,z]. Since m < fHD(¢) < M for all t € [a, x], we have

t1

tl tl
mdtg/ Y@ dt < | Mdt

that is
m(ty —a) < fO(t1) = fPD(a) < M(t - a)
for all t; € [a, z]. Integrating each term with respect to t; from a to t2, we get
m(t; —a)® < fCV(t) — fO7V(a) = fD(a)(t2 — a) < 3 M(t — a)?
for all t5 € [a, z]. Integrating with respect to to from a to t3 gives
gm(ts —a)® < U2 (t3) — fU72(a) — f1(a)(ts —a) — 5./ (a)(ts — a)* < 57 M (t3 - a)?
for all t3 € [a, z]. Repeating this procedure eventually gives

ﬁm(tl“ —a)* < ftir) = Ti(ti) < ﬁM(tlﬂ —a)'t!

1
2

for all t; 11 € [a, 2]. In particular ¢yym(z —a)' ™ < f(2) = Ti(z) < gy M (2 —a)'*, s0
m < (f(z) = Ti(2)) G oogler < M.

By the Intermediate Value Theorem, there is a number ¢ € [a, x| such that

PO = (1(0) ~ TiGe) L

15



7.42 Theorem: The functions e® and sinx are equal to the sum of their Taylor series
centred at 0 for all z € R. For p € R, the function (1+ z)P is equal to the sum of its Taylor
series, centred at 0, for all |z| < 1

cl+1
Proof: First let f(z) = e® and let x € R. By Taylor’s Theorem, f(x) — T;(x) = (el—T—l)'
for some ¢ between 0 and z, and so
|a:|| |l+1
ez

e|x|‘x‘l+1 e|x|‘x’l+1

converges by the Ratio Test, we have lim 0 by the Diver-

((+1)! Isoe (I+ 1)1
gence Test, so llim (f(z) = Ty(z)) =0, and so f(z) = ll_i)m Ti(x) =T(x).

Since

f(H—l)(c) Pt
Now let f(z)= sinx and let z € R. By Taylor’s Theorem, f(z)—Ty(z) = Tar

for some ¢ between 0 and z. Since fU+1)(x) is one of the functions 4 sinz or + cosz, we
have ‘f(l‘H)(c)‘ < 1 for all ¢ and so

2]+
7@) = Tu(o)| < -
) |:L’|l+1 _ ) |x|l+1 .
Since Z 1) converges by the Ratio Test, lli}rgo m = 0 by the Divergence Test,

and so we have and f(z) = T'(z) as above.
Finally, let f(x) = (14 z)P. The Taylor series centred at 0 is

T(z) =1+ pz + p(’;l)xQ + p(p—l?))!(p—2) 34+ p(p—l)(zz2)(p—3)x4 4.
and it converges for |x| < 1. Differentiating the power series gives

T'(:B) —p+ p(plTl)x + P(P—12)!(P—2)x2 + p(p—l)(zz);?)(p—i%) 234

and so

<p(p—12)!(p—2) _ p(p—l)(ngQ)(p—i%)) 234

+
+
+ %x + p~p(;—1)x2 + p~p(p—31!)(p—2)x3 +..
T

Thus we have (1 + z)T"(z) = pT'(z), that is (1 4+ x)T"(x) — pT(z) = 0, for all || < 1.
Multiply both sides by (1 + z)7P~1 to get (1 + ) PT'(z) — p(1 + x)"P~1 = 0, that is
L (14 z)7PT(z)) = 0 for all |z| < 1. It follows that (1 + z)"PT(z) = c for some
constant ¢ € R. Taking z = 0 shows that ¢ = 1, so we have (14 x) P T (z) = 1, and hence
T(x) = (1 + )P, for all |z| < 1.

7.43 Note: It is not the case that every infinitely differentiable function is equal to the
sum of its Taylor series in the open interval of convergence. For example, for the function
given by f(x) = e~ /" when x # 0 with f(0) = 0, you can verify, as an exercise, that
f(0) = 0 for all 0 < n € Z, so the Taylor series of f, centred at 0, is the zero function
T(z) =0 for all x. A function which is equal, in an open interval, to the sum of its Taylor
series centred at every point a in its domain, is called analytic.
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Applications
7.44 Example: Let f(z) = sin (22%). Find the 10" derivative f(19)(0).

Solution: Say f(z) = sin (32%) = 3 ¢,a". For all z € R we have
n=0

sinx:x—%a:?’—kémf’—---
: 1 1 1 1
sin (32%) = 527 — g 2 + g @’ — o
and so fU9(0) = 10! 1o = 10! 5 = 129876 —5.9.7.3 = 945.
2
e 2% — cos 2z

7.45 Example: Find lim
220 (tan~tz — In(1 + z))

2

Solution: For all z in an open neighbourhood of 0, and for some a, b, c,d € R we have

2
e~2%" _ cos2x _ (1-222 412222 -+ ) — (1 - 3(22)* + 5 (22)* — )
(tnte - (4 2) (@ bad a0 )~ (x— da ot dad )’
B %x4+ax6+--~ _§w4+aw6+--'_ﬂ+dl’2+u_
(L2 4 2 lpd g6 4.3
(51' + bx —|—) 1
—)% as z — 0.

7.46 Remark: The next few examples illustrate how one could design some of the buttons
on a calculator. In particular, they show how one make an algorithm to calculate e”, In z,
22/3 (or /™) and 7 (assuming one has an algorithm to calculate addition, subtraction,
multiplication and division).

7.47 Example: Approximate the value of \/Lg so the error is at most ﬁ.

Solution: We have

A _-1/2_q_ 1, 1 _ 1 1
ve € =l-g+ g~ gt
~q -1, 1 1 _q¢_1,1_ 1 _ 29
Slogstoa—wa=l-2+Ts =3
. 1 _ 1 . 1 . . .
with error ' < 515 = 557 by the AST (since the sequence 57— decreases with limit zero).

L

7.48 Example: Approximate the value of \/e so the error is at most 155.

Solution: We have
Ve=e? =145+ gy + ooy +gig + oo
1 1 1 1,1 1 _ 79
Ittt mgtmg=l+ts+s+a=1

12

with error

E

241.4! + 251.5! + 261~6! + 271.7! +---
1 1 1 1
= 24.4] (1 tostosstmser T )
1 1 12 1)3
<gp(l+35+(5) + (%) + )
1 1 1 5 5

2741 1-1 7 244 "4 — 1536°
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7.49 Example: Approximate the value of In 2 so the error is at most %

Solution: For |z| < 1 we have -~ = 1+z+a?+---sothat —In (1—-3) = a+ 522 +1a%+- -,
S0
In2=— ln%: ln(l—%): + 22+ 23+ ra e R
1 1

__ 131
+ z+ 3.23 + -24 + + 24 + 64 192

I

N[+

with error

1 1,1 1 1
E:5-25+6-126+7-127+"' <5-125(1+§+2_2+2_3+"'):5.125'2:%'

7.50 Example: Approximate the value of 10%/3 so the error is at most 150
Solution: Using the binomial series, we have

102/3 (8"‘2)2/3 4(1+%)2/3

:4<1+§&+ (%)g!*%) N (%)(—é!)(—é) _4%+___>

=4+ % - 32251'4 + 332.31"12 -t (_1)71“% o

g4+ 322'4_4+ 316:%
with error £/ < 332.'31!'.12 = 33.2!'2 = 32 7 by the AST which we can apply because because for
ap = % we have az;“ = 3(::’1113 1 < Z so that the sequence (a,,) is decreasing,

2.1-4:7-(3n—5)
3n.pl.4n—1

3-6:9--(3n) 1
3noplgn—1 — 4n-1

—0asn — oo.

and we have a,, = <

7.51 Example: Approximate the value of 7 so the error is at most %

Solution: For |z| < 1 we have ﬁ =1—-a?+2*—-sotan oz =a— 123+ 1ab -

i — L
Put in x = \/gto get

-1 __1 4, _1 L _ ...
6 V3 33V3 ' 5:32v/3 7333

_ 1 1 1 — 3 n__2v3
W_z\/g(l_ﬁer—ﬁﬂt---)— > ()" e

n=0

IIZ

1\ _ 823
33 T 5~32) — 745

g

with error F § 3 = i by the AST.

1
7.52 Example: Approximate the value of / ** 4z so the error is at most 100
0

Solution: We have

1 1
2
/ex dmz/ 1—m2+%x4—%x6+%x8—---dm
0 0
1.3, 1 .5_ 1 .7, 1 9 !
- [5’3 37T T R ? T ows® T ag® T |
1, 1 1 1 o
=l-s3+tsm 7 ton —ZO( )" iy
n=
A1, 1 1 _q_ 1,1 1 _2
Slogtsm—ma=l-sti-2=35

with error £ < ﬁ = 216 by the AST.



o.@] _2 n
7.53 Example: Find the exact value of the sum g @ %l .
n)!

=0

Solution: Since cosz = 3. X227 for all z, we have S &g?; = cos(v/2).
n=0

=0 (2n)!
. “n—2
7.54 Example: Find the exact value of the sum Z( 3y
=1

Solution: For |z| < 1 we have —— 1+m =1l-a+2?—23+ - and m =1-2z+3z2—4x3—- - ..

Put in z = 1 toget16—1—§+———+34—~~~Sothat
1,0 _ 1,2 _3 _1_ 1 2,3 _ 4 _1_1.9 _5
ste—wta—st o =5-w(l-3+a-—+)=3-% 6~ 15

n=1

7.55 Example: Find the exact value of the sum Z

Solution: For |z| < 1 we have

2(1—x)_5/3:2(1+(—§)(—x)—|— (_g)zg_g)x2+ (‘%)(‘3?)(_1_31) x3+--->

2.5-8 2.5.8-11
2""31'95""322'5‘7 + T35 ad 4

Put in x = % to get

o 2:5:8-+(3n42) 2.5-8 | 2:5-8-11 _o(2\7%/3 _ 5(5\5/3
ZO 5"n' ) 24’51'+522'+ e T _2(5) —2(5) :
n—

7.56 Example: Find the solution of the IVP ¢ —2x ¢y’ —2y = 0 with y(0) = 1, y/(0) = 0.
First find a power series solution, then convert the power series to closed form.

Solution: Let y = > an2® soy' = > na,z™ ! and y’ = > n(n — 1)a,z" 2. Put these
n=0 n=1 n=2
in the DE to get
oo oo
0=y’ —2zy' =2y =3 n(n—1)a,z"? = Y 2na,z™ - .o, 2a,z"
n=2 n=1
o0 o0
= Y (m+2)(m+ Dam2z™ — > 2mamz™ — > 0 2a,z™
m=0 m=1
oo
= (2a2 — 2a0) + >, ((m+2)(m+ 1)ams+2 — 2(m + 1)ay,)z™.
m=1

2(m+1)am _ 2am
(m+2)(m+1) = m+2°

y(0) = 1 and 4'(0) = 0, we need ap = 1 and a; = 0, and then the recurrence formula gives
2 on

The coefficients all vanish, so as = ag and for m > 1, a,,42 = To get

_ _ __ 2 _ 2 : _
ar =0 for kodd and az =1, ay = 3, ag = 56 and in general as,, = T6-on) = . Thus
. . S an 1,2
the solution is y = I-=e
n:
n=0
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