

Chapter 6. Sequences and Series of Real Numbers

Sequences (Review)

6.1 Definition: A **sequence** in a set A is a function $a : \{k, k+1, k+2, \dots\} \rightarrow A$ for some integer k . For a sequence $a : \{k, k+1, \dots\} \rightarrow A$, we write $a_n = a(n)$ for $n \geq k$, we refer to the function a as the sequence (a_n) or the sequence $(a_n)_{n \geq k}$, and we write

$$(a_n)_{n \geq k} = (a_k, a_{k+1}, a_{k+2}, \dots).$$

When $(a_n)_{n \geq k}$ is a sequence in \mathbb{R} , we say the sequence $(a_n)_{n \geq k}$ **converges** to the real number $b \in \mathbb{R}$, or that the **limit** of the sequence $(a_n)_{n \geq k}$ is equal to b , and we write $\lim_{n \rightarrow \infty} a_n = b$ or we write $a_n \rightarrow b$ (as $n \rightarrow \infty$), when for every $\epsilon > 0$ there exists an integer $m \geq k$ such that for every integer n we have

$$n \geq m \implies |a_n - b| < \epsilon.$$

We say the sequence (a_n) **converges** (in \mathbb{R}) if it converges to some real number $b \in \mathbb{R}$.

We say the sequence (a_n) **diverges to infinity**, or that the **limit** of (a_n) is equal to infinity, and write $\lim_{n \rightarrow \infty} a_n = \infty$ or $a_n \rightarrow \infty$, when for every $r \in \mathbb{R}$ there exists an integer $m \geq k$ such that for every integer n we have

$$n \geq m \implies a_n > r.$$

We say that (a_n) **diverges to negative infinity**, or that the limit of (a_n) is equal to negative infinity, and write $\lim_{n \rightarrow \infty} a_n = -\infty$ or $a_n \rightarrow -\infty$, when for every $r \in \mathbb{R}$ there exists an integer $m \geq k$ such that for every integer n we have

$$n \geq m \implies a_n < r.$$

6.2 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let $(a_n)_{n \geq k}$ be a sequence in \mathbb{R} and let $\ell \in \mathbb{Z}^+$. Then $\lim_{n \rightarrow \infty} a_n$ exists if and only if $\lim_{n \rightarrow \infty} a_{n+\ell}$ exists, and in this case the limits are equal.

6.3 Note: Because of the above theorem, we often omit the starting value k from our notation and write the sequence $(a_n)_{n \geq k}$ simply as (a_n) . Also, we often choose a specific starting value k (often $k = 1$) in the statements or the proofs of various theorems with the understanding that the theorem holds for any any integer k .

6.4 Theorem: (Linearity, Products and Quotients) If (a_n) and (b_n) are convergent sequences in \mathbb{R} then

- (1) for any real number c , the sequence (ca_n) converges with $\lim_{n \rightarrow \infty} ca_n = c \lim_{n \rightarrow \infty} a_n$,
- (2) the sequence $(a_n + b_n)$ converges with $\lim_{n \rightarrow \infty} (a_n + b_n) = \lim_{n \rightarrow \infty} a_n + \lim_{n \rightarrow \infty} b_n$,
- (3) the sequence $(a_n b_n)$ converges with $\lim_{n \rightarrow \infty} (a_n b_n) = \left(\lim_{n \rightarrow \infty} a_n \right) \left(\lim_{n \rightarrow \infty} b_n \right)$, and
- (4) if $\lim_{n \rightarrow \infty} b_n \neq 0$ then the sequence $\left(\frac{a_n}{b_n} \right)$ converges with $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \frac{\lim_{n \rightarrow \infty} a_n}{\lim_{n \rightarrow \infty} b_n}$.

6.5 Note: By defining algebraic operations in the **extended real numbers** $\mathbb{R} \cup \{\pm\infty\}$, the above theorem can be extended to include many cases in which $\lim_{n \rightarrow \infty} a_n = \pm\infty$ or $\lim_{n \rightarrow \infty} b_n = \pm\infty$, but care is needed for the **indeterminate forms** $\infty - \infty$, $0 \cdot \infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$.

6.6 Theorem: (Comparison and Squeeze) Let (a_n) , (b_n) and (c_n) be sequences in \mathbb{R} .

- (1) If $a_n \leq b_n$ for all n and $\lim_{n \rightarrow \infty} a_n$ and $\lim_{n \rightarrow \infty} b_n$ both exist, then $\lim_{n \rightarrow \infty} a_n \leq \lim_{n \rightarrow \infty} b_n$.
- (2) If $a_n \leq b_n \leq c_n$ for all n and if $\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n$ then $\lim_{n \rightarrow \infty} b_n = \lim_{n \rightarrow \infty} a_n$.

6.7 Theorem: (Sequences and Absolute Values) Let (a_n) be a sequence in \mathbb{R} .

- (1) If $\lim_{n \rightarrow \infty} a_n$ exists then $\lim_{n \rightarrow \infty} |a_n| = \left| \lim_{n \rightarrow \infty} a_n \right|$.
- (2) If $\lim_{n \rightarrow \infty} |a_n| = 0$ then $\lim_{n \rightarrow \infty} a_n = 0$.
- (3) If $|a_n| \leq b_n$ for all $n \geq k$ and $\lim_{n \rightarrow \infty} b_n = 0$ then $\lim_{n \rightarrow \infty} a_n = 0$.

6.8 Definition: Let $(a_n)_{n \geq k}$ be a sequence in \mathbb{R} . We say that $(a_n)_{n \geq k}$ is **increasing** (or **non-decreasing**) when $a_n \leq a_{n+1}$ for all $n \geq k$, or equivalently when $n \leq m \implies a_n \leq a_m$ for all integers $n, m \geq k$. We say that $(a_n)_{n \geq k}$ is **strictly increasing** when $a_n < a_{n+1}$ for all $n \geq k$. We say that $(a_n)_{n \geq k}$ is **bounded above** by the real number b when $a_n \leq b$ for all $n \geq k$, and in this case b is called an **upper bound** for the sequence. We say that $(a_n)_{n \geq k}$ is **bounded above** when it is bounded above by some real number b . We have similar definitions for the terms **decreasing** (or **nonincreasing**), **strictly decreasing**, **bounded below** and **lower bound**.

6.9 Theorem: (The Monotone Convergence Theorem) Let (a_n) be a sequence in \mathbb{R} .

- (1) If (a_n) is increasing and bounded above by b , then (a_n) converges and $\lim_{n \rightarrow \infty} a_n \leq b$.
- (2) If (a_n) is increasing and is not bounded above, then $\lim_{n \rightarrow \infty} a_n = \infty$.
- (3) If (a_n) is decreasing and bounded below by c , then (a_n) converges and $\lim_{n \rightarrow \infty} a_n \geq c$.
- (4) If (a_n) is decreasing and is not bounded below, then $\lim_{n \rightarrow \infty} a_n = -\infty$.

6.10 Definition: A sequence $(a_n)_{n \geq k}$ is said to be **Cauchy** when for every $\epsilon > 0$ there exists an integer $N \geq k$ such that for all integers $n, m \geq k$ we have

$$n, m \geq N \implies |a_n - a_m| < \epsilon.$$

6.11 Theorem: (The Cauchy Criterion for Sequences) Let (a_n) be a sequence in \mathbb{R} . Then (a_n) converges if and only if (a_n) is Cauchy.

6.12 Theorem: (The Sequential Characterization of Limits of Functions) Let $A \subseteq \mathbb{R}$, let $f : A \rightarrow \mathbb{R}$, and let $a, b \in \mathbb{R} \cup \{\pm\infty\}$ where either $a \in A$ or a is a limit point of A . Then $\lim_{x \rightarrow a} f(x) = b$ if and only if $\lim_{n \rightarrow \infty} f(x_n) = b$ for every sequence (x_n) in $A \setminus \{a\}$ with $\lim_{n \rightarrow \infty} x_n = a$.

6.13 Definition: Let $(a_n)_{n \geq k}$ be a sequence in \mathbb{R} . We define the **limit supremum** and the **limit infimum** of $(a_n)_{n \geq k}$ to be the the extended real numbers

$$\limsup_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} \sup \{a_k \mid k \geq n\}, \quad \liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} \inf \{a_k \mid k \geq n\}.$$

The above two limits do exist as extended real numbers because for $b_n = \sup \{a_k \mid k \geq n\}$ the sequence (b_n) is decreasing, and for $c_n = \inf \{a_k \mid k \geq n\}$ the sequence (c_n) is increasing.

6.14 Theorem: Let $(a_n)_{n \geq k}$ be a sequence in \mathbb{R} and let $b \in \mathbb{R}$.

- (2) (a_n) is bounded above if and only if $\limsup_{n \rightarrow \infty} a_n < \infty$,
- (2) (a_n) is bounded below if and only if $\liminf_{n \rightarrow \infty} a_n > -\infty$,
- (3) $\lim_{n \rightarrow \infty} a_n = b$ if and only if $\limsup_{n \rightarrow \infty} a_n = \liminf_{n \rightarrow \infty} a_n = b$.

Series

6.15 Definition: Let $(a_n)_{n \geq k}$ be a sequence. The **series** $\sum_{n \geq k} a_n$ is defined to be the sequence $(S_\ell)_{\ell \geq k}$ where

$$S_\ell = \sum_{n=k}^{\ell} a_n = a_k + a_{k+1} + \cdots + a_\ell.$$

The term S_ℓ is called the ℓ^{th} **partial sum** of the series $\sum_{n \geq k} a_n$. The **sum** of the series, denoted by

$$S = \sum_{n=k}^{\infty} a_n = a_k + a_{k+1} + a_{k+2} + \cdots,$$

is the limit of the sequence of partial sums, if it exists, and we say the series **converges** when the sum exists and is finite. We remark that it is quite common to write $\sum_{n=k}^{\infty} a_n$ (somewhat abusively) both to denote the sequence of partial sums (which may or may not converge) and to denote its limit (when it does converge).

6.16 Example: (Geometric Series) Show that for $a \neq 0$, the series $\sum_{n=1}^{\infty} ar^n$ converges if and only if $|r| < 1$, and that in this case

$$\sum_{n=k}^{\infty} ar^n = \frac{ar^k}{1-r}.$$

Solution: The ℓ^{th} partial sum is

$$S_\ell = \sum_{n=k}^{\infty} ar^n = ar^k + ar^{k+1} + ar^{k+2} + \cdots + ar^\ell.$$

When $r = 1$ we have $S_\ell = a(\ell - k + 1)$ and so $\lim_{\ell \rightarrow \infty} S_\ell = \pm\infty$ ($+\infty$ when $a > 0$ and $-\infty$ when $a < 0$). When $r \neq 1$ we have $rS_\ell = ar^{k+1} + ar^{k+2} + \cdots + ar^\ell + ar^{\ell+1}$, so $S_\ell - rS_\ell = ar^k - ar^{\ell+1} = ar^k(1 - r^{\ell-k+1})$ and so

$$S_\ell = \frac{ar^k(1 - r^{\ell-k+1})}{1-r}.$$

When $r > 1$, $\lim_{\ell \rightarrow \infty} r^{\ell-k+1} = \infty$ and so $\lim_{\ell \rightarrow \infty} S_\ell = \pm\infty$ ($+\infty$ when $a > 0$ and $-\infty$ when $a < 0$). When $r \leq -1$, $\lim_{\ell \rightarrow \infty} r^{\ell-k+1}$ does not exist, and so neither does $\lim_{\ell \rightarrow \infty} S_\ell$. When $|r| < 1$, we have $\lim_{\ell \rightarrow \infty} r^{\ell-k+1} = 0$ and so $\lim_{\ell \rightarrow \infty} S_\ell = \frac{ar^k}{1-r}$, as required.

6.17 Example: Find $\sum_{n=-1}^{\infty} \frac{3^{n+1}}{2^{2n-1}}$.

Solution: This is a geometric series. By the formula in the previous example, we have

$$\sum_{n=-1}^{\infty} \frac{3^{n+1}}{2^{2n-1}} = \sum_{n=-1}^{\infty} \frac{9}{2} \left(\frac{3}{4}\right)^n = \frac{\frac{9}{2} \left(\frac{3}{4}\right)^{-1}}{1 - \frac{3}{4}} = \frac{9}{2} \cdot \frac{4}{3} \cdot \frac{4}{1} = 24.$$

6.18 Example: (Telescoping Series) Find $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$.

Solution: We use a partial fractions decomposition. The ℓ^{th} partial sum is

$$\begin{aligned} S_{\ell} &= \sum_{n=1}^{\ell} \frac{1}{n(n+2)} = \sum_{n=1}^{\ell} \left(\frac{\frac{1}{2}}{n} - \frac{\frac{1}{2}}{n+2} \right) = \frac{1}{2} \sum_{n=1}^{\ell} \left(\frac{1}{n} - \frac{1}{n+2} \right) \\ &= \frac{1}{2} \left(\left(1 - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \cdots + \left(\frac{1}{\ell-2} - \frac{1}{\ell}\right) + \left(\frac{1}{\ell-1} - \frac{1}{\ell+1}\right) + \left(\frac{1}{\ell} - \frac{1}{\ell+2}\right) \right) \\ &= \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{\ell+1} - \frac{1}{\ell+2} \right), \end{aligned}$$

since all the other terms cancel. Thus the sum of the series is

$$S = \lim_{\ell \rightarrow \infty} S_{\ell} = \frac{1}{2} \left(1 + \frac{1}{2} \right) = \frac{3}{4}.$$

6.19 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let $(a_n)_{n \geq k}$ be a sequence in \mathbb{R} . Then for any integer $m \geq k$, the series $\sum_{n \geq k} a_n$ converges if and only if the series $\sum_{n \geq m} a_n$ converges, and in this case

$$\sum_{n=k}^{\infty} a_n = (a_k + a_{k+1} + \cdots + a_{m-1}) + \sum_{n=m}^{\infty} a_n.$$

Proof: Let $S_{\ell} = \sum_{n=k}^{\ell} a_n$ and let $T_{\ell} = \sum_{n=m}^{\ell} a_n$. Then for all $\ell \geq m$ we have

$$S_{\ell} = (a_k + a_{k+1} + \cdots + a_{m-1}) + T_{\ell},$$

and so (S_{ℓ}) converges if and only if (T_{ℓ}) converges, and in this case

$$\lim_{\ell \rightarrow \infty} S_{\ell} = (a_k + a_{k+1} + \cdots + a_{m-1}) + \lim_{\ell \rightarrow \infty} T_{\ell}.$$

6.20 Note: Since the first finitely many terms do not affect the convergence of a series, we often omit the subscript $n \geq k$ in the expression $\sum_{n \geq k} a_n$, and simply write $\sum a_n$, when we are interested in whether or not the series converges. On the other hand, we cannot omit the subscript $n = k$ when we are interested in the value of the sum $\sum_{n=k}^{\infty} a_n$.

6.21 Definition: When we approximate a value x by the value y , the **error** in our approximation is $|x - y|$.

6.22 Note: If $\sum_{n \geq k} a_n$ converges and $\ell \geq k$ then, by the above theorem, so does $\sum_{n \geq \ell+1} a_n$.

If we approximate the sum $S = \sum_{n=k}^{\infty} a_n$ by the ℓ^{th} partial sum $S_{\ell} = \sum_{n=k}^{\ell} a_n$, then the **error** in our approximation is

$$|S - S_{\ell}| = \left| \sum_{n=\ell+1}^{\infty} a_n \right|.$$

6.23 Theorem: (Linearity) If $\sum a_n$ and $\sum b_n$ are convergent series then

- (1) for any real number c , $\sum ca_n$ converges and $\sum_{n=k}^{\infty} ca_n = c \sum_{n=k}^{\infty} a_n$, and
- (2) the series $\sum (a_n + b_n)$ converges and $\sum_{n=k}^{\infty} (a_n + b_n) = \sum_{n=k}^{\infty} a_n + \sum_{n=k}^{\infty} b_n$.

Proof: This follows immediately from the Linearity Theorem for sequences.

6.24 Theorem: (Series of Positive Terms) Let $\sum a_n$ be a series.

- (1) If $a_n \geq 0$ for all n then either $\sum a_n$ converges or $\sum_{n=k}^{\infty} a_n = \infty$.
- (2) If $a_n \leq 0$ for all n then either $\sum a_n$ converges or $\sum_{n=k}^{\infty} a_n = -\infty$.

Proof: This follows from the Monotone Convergence Theorem for sequences. Indeed if $a_n \geq 0$ for all $n \geq k$, then $(S_\ell)_{\ell \geq k}$ is increasing (since $S_{\ell+1} = S_\ell + a_{\ell+1} \geq S_\ell$ for all ℓ). Either (S_ℓ) is bounded above, in which case (S_ℓ) converges hence $\sum a_n$ converges, or the sequence (S_ℓ) is unbounded, in which case $\lim_{\ell \rightarrow \infty} S_\ell = \infty$ hence $\sum_{n=k}^{\infty} a_n = \infty$.

6.25 Theorem: (Cauchy Criterion for Series) Let $\sum a_n$ be a series. Then $\sum a_n$ converges if and only if for all $\epsilon > 0$ there exists N such that for all $\ell, m \in \mathbb{Z}$,

$$m > \ell \geq N \implies \left| \sum_{n=\ell+1}^m a_n \right| < \epsilon.$$

Proof: This follows from the Cauchy Criterion for Sequences, applied to the sequence of partial sums. Indeed (S_ℓ) converges if and only if for all $\epsilon > 0$ there exists N such that $m > \ell \geq N \implies |S_m - S_\ell| < \epsilon$, and we have

$$|S_m - S_\ell| = \left| \sum_{n=k}^m a_n - \sum_{n=k}^{\ell} a_n \right| = \left| \sum_{n=\ell+1}^m a_n \right|.$$

Convergence Tests

6.26 Theorem: (*The Divergence Test*) If $\sum a_n$ converges then $\lim_{n \rightarrow \infty} a_n = 0$. Equivalently, if $\lim_{n \rightarrow \infty} a_n$ either does not exist, or exists but is not equal to 0, then $\sum a_n$ diverges.

Proof: Suppose that $\sum a_n$ converges, and say $\sum_{n=k}^{\infty} a_n = S$. Let S_ℓ be the ℓ^{th} partial sum. Then we have $\lim_{\ell \rightarrow \infty} S_\ell = S = \lim_{\ell \rightarrow \infty} S_{\ell-1}$, and we have $a_\ell = S_\ell - S_{\ell-1}$, and so

$$\lim_{\ell \rightarrow \infty} a_\ell = \lim_{\ell \rightarrow \infty} S_\ell - \lim_{\ell \rightarrow \infty} S_{\ell-1} = S - S = 0.$$

6.27 Example: Determine whether $\sum e^{1/n}$ converges.

Solution: Since $\lim_{n \rightarrow \infty} e^{1/n} = e^0 = 1$, $\sum e^{1/n}$ diverges by the Divergence Test.

6.28 Note: The converse of the Divergence Test is false. For example, as we shall see below, $\sum \frac{1}{n}$ diverges even though $\lim_{n \rightarrow \infty} \frac{1}{n} = 0$.

6.29 Theorem: (*Integral Test*) Let $f(x)$ be positive and decreasing for $x \geq k$, and let $a_n = f(n)$ for all integers $n \geq k$. Then $\sum a_n$ converges if and only if $\int_k^{\infty} f(x) dx$ converges, and in this case, for any $\ell \geq k$ we have

$$\int_{\ell+1}^{\infty} f(x) dx \leq \sum_{n=\ell+1}^{\infty} a_n \leq \int_{\ell}^{\infty} f(x) dx.$$

Proof: Let T_m be the m^{th} partial sum for $\sum_{n \geq \ell+1} a_n$, so $T_m = \sum_{n=\ell+1}^m a_n$. Note that since $f(x)$ is decreasing, it is integrable on any closed interval. Also, for each $n \geq \ell$ we have $a_n = f(n) \leq f(x)$ for all $x \in [n-1, n]$, so $\int_{n-1}^n f(x) dx \geq \int_{n-1}^n a_n dx = a_n$ and so

$$T_m = \sum_{n=\ell+1}^m a_n \leq \sum_{n=\ell+1}^m \int_{n-1}^n f(x) dx = \int_{\ell}^m f(x) dx \leq \int_{\ell}^{\infty} f(x) dx.$$

Since $f(n) = a_n$ is positive, the sequence (T_m) is increasing. If $\int_k^{\infty} f(x) dx$ converges, then (T_n) is bounded above by $\int_{\ell}^{\infty} f(x) dx$, and so it converges with $\lim_{m \rightarrow \infty} T_m \leq \int_{\ell}^{\infty} f(x) dx$.

Similarly, for each $n \geq \ell$ we have $a_n = f(n) \geq f(x)$ for all $x \in [n, n+1]$ so that $\int_n^{n+1} f(x) dx \leq \int_n^{n+1} a_n dx = a_n$ and so

$$T_m = \sum_{n=\ell+1}^m a_n \geq \sum_{n=\ell+1}^m \int_n^{n+1} f(x) dx = \int_{\ell+1}^{m+1} f(x) dx.$$

If $\int_k^{\infty} f(x) dx$ converges, then $\lim_{m \rightarrow \infty} T_m \geq \lim_{m \rightarrow \infty} \int_{\ell+1}^{m+1} f(x) dx = \int_{\ell+1}^{\infty} f(x) dx$. If $\int_k^{\infty} f(x) dx$ diverges, then $\lim_{m \rightarrow \infty} \int_{\ell+1}^{m+1} f(x) dx = \infty$, and so $\lim_{m \rightarrow \infty} T_m = \infty$ too, by Comparison.

6.30 Example: (*p*-Series) Show that the series $\sum_{n \geq 1} \frac{1}{n^p}$ converges if and only if $p > 1$. In particular, the **harmonic series** $\sum \frac{1}{n}$ diverges.

Solution: If $p < 0$ then $\lim_{n \rightarrow \infty} \frac{1}{n^p} = \infty$ and if $p = 0$ then $\lim_{n \rightarrow \infty} \frac{1}{n^p} = 1$, so in either case $\sum \frac{1}{n^p}$ diverges by the Divergence Test. Suppose that $p > 0$. Let $a_n = \frac{1}{n^p}$ for integers $n \geq 1$, and let $f(x) = \frac{1}{x^p}$ for real numbers $x \geq 1$. Note that $f(x)$ is positive and decreasing for $x \geq 1$ and $a_n = f(n)$ for all $n \geq 1$. Since we know that $\int_1^\infty f(x) dx$ converges if and only if $p > 1$, it follows from the Integral Test that $\sum a_n$ converges if and only if $p > 1$.

6.31 Example: Approximate $S = \sum_{n=1}^{\infty} \frac{1}{2n^2}$ so that the error is at most $\frac{1}{100}$.

Solution: We let $a_n = \frac{1}{2n^2}$ and $f(x) = \frac{1}{2x^2}$ so that we can apply the Integral Test. If we choose to approximate the sum S by the ℓ^{th} partial sum S_ℓ , then the error is

$$E = S - S_\ell = \sum_{n=\ell+1}^{\infty} a_n \leq \int_{\ell}^{\infty} \frac{1}{2x^2} dx = \left[-\frac{1}{2x} \right]_{\ell}^{\infty} = \frac{1}{2\ell},$$

and so to insure that $E \leq \frac{1}{100}$ we can choose ℓ so that $\frac{1}{2\ell} \leq \frac{1}{100}$, that is $\ell \geq 50$. Since it would be tedious to add up the first 50 terms of the series, we take an alternate approach. The Integral Test gives us upper and lower bounds: we have

$$\begin{aligned} \int_{\ell+1}^{\infty} f(x) dx &\leq S - S_\ell \leq \int_{\ell}^{\infty} f(x) dx \\ \frac{1}{2(\ell+1)} &\leq S - S_\ell \leq \frac{1}{2\ell} \\ S_\ell + \frac{1}{2(\ell+1)} &\leq S \leq S_\ell + \frac{1}{2\ell}. \end{aligned}$$

If approximate S using the midpoint of the upper and lower bounds, that is if we make the approximation $S \cong S_\ell + \frac{1}{2} \left(\frac{1}{2\ell} + \frac{1}{2(\ell+1)} \right)$, then the error E will be at most half of the difference of the bounds:

$$E \leq \frac{1}{2} \left(\frac{1}{2\ell} - \frac{1}{2(\ell+1)} \right) = \frac{1}{4\ell(\ell+1)}.$$

To get $E \leq \frac{1}{100}$ we want $\frac{1}{4\ell(\ell+1)} \leq \frac{1}{100}$, that is $\ell(\ell+1) \geq 25$, and so we can take $\ell = 5$. Thus we estimate

$$S \cong S_5 + \frac{1}{2} \left(\frac{1}{10} + \frac{1}{12} \right) = \frac{1}{2} + \frac{1}{8} + \frac{1}{18} + \frac{1}{32} + \frac{1}{50} + \frac{1}{20} + \frac{1}{24} = \frac{5929}{7200}.$$

(Incidentally, the exact value of this sum is $\frac{\pi^2}{12}$).

6.32 Theorem: (*Comparison Test*) Let $0 \leq a_n \leq b_n$ for all $n \geq k$. Then if $\sum b_n$ converges then so does $\sum a_n$ and in this case,

$$\sum_{n=k}^{\infty} a_n \leq \sum_{n=k}^{\infty} b_n.$$

Proof: Let $S_\ell = \sum_{n=k}^{\ell} a_n$ and let $T_\ell = \sum_{n=k}^{\ell} b_n$. Since $0 \leq a_n, b_n$ for all n , the sequences (S_ℓ) and (T_ℓ) are increasing. Since $a_n \leq b_n$ for all n we have $S_\ell \leq T_\ell$ for all ℓ . Suppose that $\sum b_n$ converges with say $\sum_{n=k}^{\infty} b_n = T$ so that $\lim_{\ell \rightarrow \infty} T_\ell = T$. Then $S_\ell \leq T_\ell \leq T$ for all ℓ , so (S_ℓ) is increasing and bounded above, hence convergent, and $\lim_{\ell \rightarrow \infty} S_\ell \leq \lim_{\ell \rightarrow \infty} T_\ell$.

6.33 Example: Determine whether $\sum_{n \geq 0} \frac{1}{\sqrt{n^3+1}}$ converges.

Solution: Note that $0 \leq \frac{1}{\sqrt{n^3+1}} \leq \frac{1}{\sqrt{n^3}} = \frac{1}{n^{3/2}}$ for all $n \geq 1$, and $\sum \frac{1}{n^{3/2}}$ converges since it is a p -series with $p = \frac{3}{2}$, and so $\sum \frac{1}{\sqrt{n^3+1}}$ also converges, by the Comparison Test.

6.34 Example: Determine whether $\sum_{n \geq 1} \tan \frac{1}{n}$ converges.

Solution: For $0 < x < \frac{\pi}{2}$ we have $x < \tan x$, so for $n \geq 1$ we have $0 < \frac{1}{n} < \tan \frac{1}{n}$. Since the harmonic series $\sum \frac{1}{n}$ diverges, the series $\sum \tan \frac{1}{n}$ also diverges by the Comparison Test.

6.35 Example: Approximate $S = \sum_{n=0}^{\infty} \frac{1}{n!}$ so that the error is at most $\frac{1}{100}$.

Solution: If we make the approximation $S \cong S_{\ell} = \sum_{n=0}^l \frac{1}{n!}$ then the error is

$$\begin{aligned} E &= S - S_{\ell} = \sum_{n=\ell+1}^{\infty} \frac{1}{n!} \\ &= \frac{1}{(\ell+1)!} + \frac{1}{(\ell+2)!} + \frac{1}{(\ell+3)!} + \frac{1}{(\ell+4)!} + \cdots \\ &= \frac{1}{(\ell+1)!} \left(1 + \frac{1}{\ell+2} + \frac{1}{(\ell+2)(\ell+3)} + \frac{1}{(\ell+2)(\ell+3)(\ell+4)} + \cdots \right) \\ &\leq \frac{1}{(\ell+1)!} \left(1 + \frac{1}{\ell+2} + \frac{1}{(\ell+2)^2} + \frac{1}{(\ell+2)^3} + \cdots \right) \\ &= \frac{1}{(\ell+1)!} \frac{1}{1 - \frac{1}{\ell+2}} \\ &= \frac{\ell+2}{(\ell+1)(\ell+1)!} \end{aligned}$$

where we used the Comparison Test and the formula for the sum of a geometric series. To get $E \leq \frac{1}{100}$ we can choose ℓ so that $\frac{\ell+2}{(\ell+1)(\ell+1)!} \leq \frac{1}{100}$. By trial and error, we find that we can take $\ell = 4$, so we make the approximation

$$S \cong S_4 = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} = \frac{65}{24}.$$

(Incidentally, the exact value of this sum is e , so we have approximated the value of e).

6.36 Theorem: (Limit Comparison Test) Let $a_n \geq 0$ and let $b_n > 0$ for all $n \geq k$. Suppose that $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = r$. Then

- (1) if $r = \infty$ and $\sum a_n$ converges then so does $\sum b_n$,
- (2) if $r = 0$ and $\sum b_n$ converges then so does $\sum a_n$, and
- (3) if $0 < r < \infty$ then $\sum a_n$ converges if and only if $\sum b_n$ converges.

Proof: If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \infty$, then for large n we have $\frac{a_n}{b_n} > 1$ so that $a_n > b_n$, and so if $\sum a_n$ converges, then so does $\sum b_n$ by the Comparison Test. If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = 0$ then for large n we have $\frac{a_n}{b_n} < 1$ so $a_n < b_n$, and so if $\sum b_n$ converges then so does $\sum a_n$ by the Comparison Test. Suppose that $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = r$ with $0 < r < \infty$. Choose m so that when $n \geq m$ we have $\left| \frac{a_n}{b_n} - r \right| < \frac{r}{2}$ so that $\frac{r}{2} < \frac{a_n}{b_n} < \frac{3r}{2}$ and hence

$$0 < \frac{r}{2} b_n \leq a_n \leq \frac{3r}{2} b_n.$$

If $\sum a_n$ converges, then $\sum \frac{r}{2} b_n$ converges by the Comparison Test, and hence $\sum b_n$ converges by linearity. If $\sum b_n$ converges, then $\sum \frac{3r}{2} b_n$ converges by linearity, and hence so does $\sum a_n$ by the Comparison Test.

6.37 Example: Determine whether $\sum \frac{1}{\sqrt{n^3-1}}$ converges.

Solution: Note that we cannot use the same argument that we used earlier to show that $\sum \frac{1}{\sqrt{n^3+1}}$ converges, because $\frac{1}{\sqrt{n^3+1}} < \frac{1}{n^{3/2}}$ but $\frac{1}{\sqrt{n^3-1}} > \frac{1}{n^{3/2}}$. We use a different approach.

Let $a_n = \frac{1}{\sqrt{n^3-1}}$ and let $b_n = \frac{1}{n^{3/2}}$. Then $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \lim_{n \rightarrow \infty} \frac{n^{3/2}}{\sqrt{n^3-1}} = \lim_{n \rightarrow \infty} \frac{1}{\sqrt{1-\frac{1}{n^3}}} = 1$, and

$\sum b_n = \sum \frac{1}{n^{3/2}}$ converges (its a p -series with $p = \frac{3}{2}$), and so $\sum a_n$ converges too, by the Limit Comparison Test.

6.38 Theorem: (Ratio Test) Let $a_n > 0$ for all $n \geq k$. Suppose $\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = r$. Then

- (1) if $r < 1$ then $\sum a_n$ converges, and
- (2) if $r > 1$ then $\lim_{n \rightarrow \infty} a_n = \infty$ so $\sum a_n = \infty$.

Proof: Suppose that $\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = r < 1$. Choose s with $r < s < 1$, and then choose m so that when $n \geq m$ we have $\frac{a_{n+1}}{a_n} < s$ and hence $a_{n+1} < s a_n$. Fix $k \geq m$. Then $a_{k+1} < s a_k$, $a_{k+2} < s a_{k+1} < s^2 a_k$, $a_{k+3} < s a_{k+2} < s^3 a_k$, and so on, so we have $a_n < b_n = s^{n-k} a_k$ for all $n \geq k$. Since $\sum b_n$ is geometric with ratio $s < 1$, it converges, and hence so does $\sum a_n$ by the Comparison Test.

Now suppose that $\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = r > 1$. Choose s with $1 < s < r$, then choose m so that when $n \geq m$ we have $\frac{a_{n+1}}{a_n} > s$ and hence $a_{n+1} > s a_n$. Fix $k \geq m$. Then as above $a_n > b_n = s^{n-k} a_k$ for all $n \geq k$, and $\lim_{n \rightarrow \infty} b_n = \infty$, so $\lim_{n \rightarrow \infty} a_n = \infty$ too.

6.39 Example: Determine whether $\sum \frac{5^n}{n!}$ converges.

Solution: Let $a_n = \frac{5^n}{n!}$. Then $\frac{a_{n+1}}{a_n} = \frac{5^{n+1}}{(n+1)!} \cdot \frac{n!}{5^n} = \frac{5}{n+1} \rightarrow 0$ as $n \rightarrow \infty$, and so $\sum a_n$ converges by the Ratio Test.

6.40 Note: If $\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = 1$, then $\sum a_n$ could converge or diverge. For example, if $a_n = \frac{1}{n}$ then $\frac{a_{n+1}}{a_n} = \frac{n}{n+1} \rightarrow 1$ as $n \rightarrow \infty$ and $\sum a_n$ diverges, but if $b_n = \frac{1}{n^2}$ then $\frac{b_{n+1}}{b_n} = \frac{n^2}{(n+1)^2} \rightarrow 1$ as $n \rightarrow \infty$ and $\sum b_n$ converges.

6.41 Theorem: (Root Test) Let $a_n \geq 0$ for all $n \geq k$. Let $r = \limsup_{n \rightarrow \infty} \sqrt[n]{a_n}$. Then

- (1) if $r < 1$ then $\sum a_n$ converges, and
- (2) if $r > 1$ then $\lim_{n \rightarrow \infty} a_n = \infty$ so $\sum a_n = \infty$.

Proof: The proof is left as an exercise. It is similar to the proof of the Ratio Test.

6.42 Example: Determine whether $\sum \left(\frac{n}{n+1}\right)^{n^2}$ converges.

Solution: Let $a_n = \left(\frac{n}{n+1}\right)^{n^2}$. Then $\sqrt[n]{a_n} = \left(\frac{n}{n+1}\right)^n = e^{n \ln\left(\frac{n}{n+1}\right)}$, and by l'Hôpital's Rule we have $\lim_{n \rightarrow \infty} n \ln\left(\frac{n}{n+1}\right) = \lim_{x \rightarrow \infty} \frac{\ln\left(\frac{x}{x+1}\right)}{\frac{1}{x}} = \lim_{x \rightarrow \infty} \frac{\frac{1}{x+1}}{-\frac{1}{x^2}} = \lim_{x \rightarrow \infty} \frac{-x^2}{(x+1)^2} = -1$, and so $\lim_{n \rightarrow \infty} \sqrt[n]{a_n} = e^{-1} < 1$. Thus $\sum a_n$ converges by the Root Test.

6.43 Definition: A sequence $(a_n)_{n \geq k}$ is said to be **alternating** when either we have $a_n = (-1)^n |a_n|$ for all $n \geq k$ or we have $a_n = (-1)^{n+1} |a_n|$ for all $n \geq k$.

6.44 Theorem: (Alternating Series Test) Let $(a_n)_{n \geq k}$ be an alternating series. If the sequence $(|a_n|)$ is decreasing with $\lim_{n \rightarrow \infty} |a_n| = 0$ then $\sum_{n \geq k} a_n$ converges, and in this case

$$\left| \sum_{n=k}^{\infty} a_n \right| \leq |a_k|.$$

Proof: To simplify notation, we give the proof in the case that $k = 0$ and $a_n = (-1)^n |a_n|$. Suppose the sequence $(|a_n|)$ is decreasing with $|a_n| \rightarrow 0$. Let $S_\ell = \sum_{n=0}^{\ell} a_n$. We consider the sequences $(S_{2\ell})$ and $(S_{2\ell-1})$ of even and odd partial sums. Note that since $(|a_n|)$ is decreasing, we have

$$S_{2\ell} - S_{2(\ell-1)} = |a_{2\ell}| - |a_{2\ell-1}| \leq 0$$

so $(S_{2\ell})$ is decreasing, and we have

$$\begin{aligned} S_{2\ell} &= |a_0| - |a_1| + |a_2| - |a_3| + \cdots + |a_{2\ell-2}| - |a_{2\ell-1}| + |a_{2\ell}| \\ &= (|a_0| - |a_1|) + (|a_2| - |a_3|) + \cdots + (|a_{2\ell-2}| - |a_{2\ell-1}|) + |a_{2\ell}| \geq 0 \end{aligned}$$

and so $(S_{2\ell})$ is bounded below by 0. Thus $(S_{2\ell})$ converges by the Monotone Convergence Theorem. Similarly, $(S_{2\ell-1})$ is increasing and bounded above by $|a_0|$, so it also converges, and we have $\lim_{\ell \rightarrow \infty} S_{2\ell-1} \leq |a_0|$.

Finally we note that since $|a_n| \rightarrow 0$, taking the limit on both sides of the equality $|a_{2\ell}| = S_{2\ell} - S_{2\ell-1}$ gives $0 = \lim_{\ell \rightarrow \infty} S_{2\ell} - \lim_{\ell \rightarrow \infty} S_{2\ell-1}$, and so we have $\lim_{\ell \rightarrow \infty} S_{2\ell} = \lim_{\ell \rightarrow \infty} S_{2\ell-1}$. It follows that (S_ℓ) converges with $\lim_{\ell \rightarrow \infty} S_\ell = \lim_{\ell \rightarrow \infty} S_{2\ell} = \lim_{\ell \rightarrow \infty} S_{2\ell-1} \leq |a_0|$.

6.45 Example: Determine whether $\sum_{n \geq 2} \frac{(-1)^n \ln n}{\sqrt{n}}$ converges.

Solution: Let $a_n = \frac{(-1)^n \ln n}{\sqrt{n}}$. Let $f(x) = \frac{\ln x}{\sqrt{x}}$ so that $|a_n| = f(n)$. Note that

$$f'(x) = \frac{\frac{1}{x} \cdot \sqrt{x} - \ln x \cdot \frac{1}{2\sqrt{x}}}{x} = \frac{2 - \ln x}{2x^{3/2}},$$

so we have $f'(x) < 0$ for $x > e^2$. Thus $f(x)$ is decreasing for $x > e^2$, and so $(|a_n|)$ is decreasing for $n \geq 8$. Also, by l'Hôpital's Rule, we have

$$\lim_{x \rightarrow \infty} f(x) = \lim_{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \rightarrow \infty} \frac{2}{\sqrt{x}} = 0$$

and so $|a_n| \rightarrow 0$ as $n \rightarrow \infty$. Thus $\sum a_n$ converges by the Alternating Series Test.

6.46 Example: Approximate the sum $S = \sum_{n=0}^{\infty} \frac{(-2)^n}{(2n)!}$ so that the error is at most $\frac{1}{2000}$.

Solution: Let $a_n = \frac{(-2)^n}{(2n)!}$. Note that

$$\frac{|a_{n+1}|}{|a_n|} = \frac{2^{n+1}}{(2n+2)!} \cdot \frac{(2n)!}{2^n} = \frac{2}{(2n+2)(2n+1)} = \frac{1}{(n+1)(2n+1)}.$$

Since $\frac{|a_{n+1}|}{|a_n|} \leq 1$ for all $n \geq 0$, we know that $(|a_n|)$ is decreasing. Since $\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = 0$, we know that $\sum |a_n|$ converges by the Ratio Test, and so $|a_n| \rightarrow 0$ by the Divergence Test. This shows that we can apply the Alternating Series Test.

If we approximate S by the ℓ^{th} partial sum $S_\ell = \sum_{n=0}^{\ell} a_n$, then by the Alternating Series Test, the error is

$$E = |S - S_\ell| = \left| \sum_{n=\ell+1}^{\infty} a_n \right| \leq |a_{\ell+1}| = \frac{2^{\ell+1}}{(2\ell+2)!}.$$

To get $E \leq \frac{1}{2000}$ we can choose ℓ so that $\frac{2^{\ell+1}}{(2\ell+2)!} \leq \frac{1}{2000}$. By trial and error we find that we can take $\ell = 3$. Thus we make the approximation

$$S \cong S_3 = 1 - \frac{2}{2!} + \frac{2^2}{4!} - \frac{2^3}{6!} = 1 - 1 + \frac{1}{6} - \frac{1}{90} = \frac{7}{45}.$$

(We shall see later that the exact value of this sum is $\cos \sqrt{2}$).

6.47 Definition: A series $\sum_{n \geq k} a_n$ is said to **converge absolutely** when $\sum_{n \geq k} |a_n|$ converges.

The series is said to **converge conditionally** if $\sum_{n \geq k} a_n$ converges but $\sum_{n \geq k} |a_n|$ diverges.

6.48 Example: For $0 < p \leq 1$, the p -series $\sum \frac{1}{n^p}$ diverges, but since $(\frac{1}{n^p})$ is decreasing towards 0, $\sum \frac{(-1)^n}{n^p}$ converges by the Alternating Series Test. Thus for $0 < p \leq 1$, the alternating p -series $\sum \frac{(-1)^n}{n^p}$ converges conditionally.

6.49 Theorem: (Absolute Convergence Implies Convergence) If $\sum |a_n|$ converges then so does $\sum a_n$.

Proof: Suppose that $\sum |a_n|$ converges. Note that $-|a_n| \leq a_n \leq |a_n|$ so that

$$0 \leq a_n + |a_n| \leq 2|a_n| \text{ for all } n.$$

Since $\sum |a_n|$ converges, $\sum 2|a_n|$ converges by linearity, and so $\sum (a_n + |a_n|)$ converges by the Comparison Test. Since $\sum |a_n|$ and $\sum (a_n + |a_n|)$ both converge, $\sum a_n$ converges by linearity.

6.50 Example: Determine whether $\sum \frac{\sin n}{n^2}$ converges.

Solution: Let $a_n = \frac{\sin n}{n^2}$. Then $|a_n| = \frac{|\sin n|}{n^2} \leq \frac{1}{n^2}$. Since $\sum \frac{1}{n^2}$ converges (its a p -series with $p = 2$), $\sum |a_n|$ converges by the Comparison Test, and hence $\sum a_n$ converges too, since absolute convergence implies convergence.

6.51 Theorem: (Multiplication of Series) Suppose that $\sum_{n \geq 0} |a_n|$ converges and $\sum_{n \geq 0} b_n$ converges and define $c_n = \sum_{k=0}^n a_k b_{n-k}$. Then $\sum_{n \geq 0} c_n$ converges and

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n \right) \left(\sum_{n=0}^{\infty} b_n \right).$$

Proof: Let $A_\ell = \sum_{n=0}^{\ell} a_n$, $B_\ell = \sum_{n=0}^{\ell} b_n$, $C_\ell = \sum_{n=0}^{\ell} c_n$, $A = \sum_{n=0}^{\infty} a_n$, $B = \sum_{n=0}^{\infty} b_n$, $K = \sum_{n=0}^{\infty} |a_n|$ and $E_\ell = B - B_\ell$. Then we have

$$\begin{aligned} C_\ell &= a_0 b_0 + (a_0 b_1 + a_1 b_0) + (a_0 b_2 + a_1 b_1 + a_2 b_0) + \cdots + (a_0 b_\ell + \cdots + a_\ell b_0) \\ &= a_0 B_\ell + a_1 B_{\ell-1} + a_2 B_{\ell-2} + \cdots + a_\ell B_0 \\ &= a_0(B - E_\ell) + a_1(B - E_{\ell-1}) + \cdots + a_\ell(B - E_0) \\ &= A_\ell B - (a_0 E_\ell + a_1 E_{\ell-1} + \cdots + a_\ell E_0) \end{aligned}$$

and so

$$|C_\ell - AB| \leq |(A_\ell - A)B| + |a_0 E_\ell + a_1 E_{\ell-1} + \cdots + a_\ell E_0|.$$

Let $\epsilon > 0$. Choose m so that $j > m \implies E_j < \frac{\epsilon}{3K}$. Let $E = \max \{|E_0|, \dots, |E_m|\}$. Choose $L > m$ so that when $\ell > L$ we have $\sum_{n=\ell-m}^{\ell} |a_n| < \frac{\epsilon}{3E}$ and we have $|A_\ell - A||B| < \frac{\epsilon}{3}$. Then for $\ell > L$,

$$\begin{aligned} |C_\ell - AB| &< |(A_\ell - A)B| + |a_0 E_\ell + \cdots + a_{\ell-m-1} E_{m+1}| + |a_{\ell-m} E_m + \cdots + a_\ell E_0| \\ &\leq \frac{\epsilon}{3} + \left(\sum_{n=0}^{\ell-m-1} |a_n| \right) \frac{\epsilon}{3K} + \left(\sum_{n=\ell-m}^{\ell} |a_n| \right) E \\ &< \frac{\epsilon}{3} + K \frac{\epsilon}{3K} + \frac{\epsilon}{3E} E = \epsilon. \end{aligned}$$

6.52 Example: Find an example of sequences $(a_n)_{n \geq 0}$ and $(b_n)_{n \geq 0}$ such that $\sum_{n \geq 0} a_n$ and $\sum_{n \geq 0} b_n$ both converge, but $\sum_{n \geq 0} c_n$ diverges where $c_n = \sum_{k=0}^n a_k b_{n-k}$.

Solution: Let $a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}$ for $n \geq 0$, and let

$$c_n = \sum_{k=0}^n a_k b_{n-k} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}.$$

Recall that for $p, q \geq 0$ we have $\sqrt{pq} \leq \frac{1}{2}(p+q)$ (indeed $(p+q)^2 - 4pq = p^2 - 2pq + q^2 = (p-q)^2 \geq 0$, so $(p+q)^2 \geq 4pq$). In particular $\sqrt{(k+1)(n-k+1)} \leq \frac{1}{2}(n+2)$ and so $|c_n| \geq \sum_{k=0}^n \frac{2}{n+2} = \frac{2(n+1)}{n+2}$. Thus $\lim_{n \rightarrow \infty} |c_n| \neq 0$ so $\sum c_n$ diverges by the Divergence Test.

6.53 Theorem: (Fubini's Theorem for Series) Let $a_{n,m} \in \mathbb{R}$ for all integers $n, m \geq 0$. Suppose that $\sum_{m \geq 0} |a_{n,m}|$ converges for each $n \geq 0$ and that $\sum_{n \geq 0} \left(\sum_{m=0}^{\infty} |a_{n,m}| \right)$ converges.

Then $\sum_{m \geq 0} a_{n,m}$ converges for all $n \geq 0$, $\sum_{n \geq 0} \left(\sum_{m=0}^{\infty} a_{n,m} \right)$ converges, $\sum_{n \geq 0} a_{n,m}$ converges for all $m \geq 0$, $\sum_{m \geq 0} \left(\sum_{n=0}^{\infty} a_{n,m} \right)$ converges, and

$$\sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} a_{n,m} \right) = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} a_{n,m} \right).$$

Proof: First we claim that $\sum_{n \geq 0} |a_{n,m}|$ converges for all $m \geq 0$, $\sum_{m \geq 0} \left(\sum_{n=0}^{\infty} |a_{n,m}| \right)$ converges,

and $\sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} |a_{n,m}| \right) = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} |a_{n,m}| \right)$. For all n, m we have $|a_{n,m}| \leq \sum_{k=0}^{\infty} |a_{n,k}|$, and

$\sum_{n \geq 0} \left(\sum_{k=0}^{\infty} |a_{n,k}| \right)$ converges, so we know that $\sum_{n \geq 0} |a_{n,m}|$ converges for all $m \geq 0$, by the

Comparison Test. Let $k \geq 0$ and let $\epsilon > 0$. Since each sum $\sum_{n \geq 0} |a_{n,m}|$ converges, we can

choose L so that when $l > L$ we have $\sum_{n=l+1}^{\infty} |a_{n,m}| < \frac{\epsilon}{k+1}$ for all $m = 0, 1, \dots, k$. Then for $l > L$ we have

$$\begin{aligned} \sum_{m=0}^k \left(\sum_{n=0}^{\infty} |a_{n,m}| \right) &= \sum_{m=0}^k \left(\sum_{n=0}^l |a_{n,m}| + \sum_{n=l+1}^{\infty} |a_{n,m}| \right) < \sum_{m=0}^k \left(\sum_{n=0}^l |a_{n,m}| + \frac{\epsilon}{k+1} \right) \\ &= \sum_{m=0}^k \left(\sum_{n=0}^l |a_{n,m}| \right) + \epsilon = \sum_{n=0}^l \left(\sum_{m=0}^k |a_{m,n}| \right) + \epsilon \\ &\leq \sum_{n=0}^l \left(\sum_{m=0}^{\infty} |a_{m,n}| \right) + \epsilon \leq \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} |a_{m,n}| \right) + \epsilon \end{aligned}$$

Since ϵ was arbitrary, we have $\sum_{m=0}^k \left(\sum_{n=0}^{\infty} |a_{n,m}| \right) \leq \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} |a_{m,n}| \right)$. Since the sequence

of partial sums $\sum_{m=0}^k \left(\sum_{n=0}^{\infty} |a_{n,m}| \right)$ is increasing and bounded above by $\sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} |a_{m,n}| \right)$,

it converges and we have $\sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} |a_{n,m}| \right) \leq \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} |a_{n,m}| \right)$. By symmetry, we obtain the opposite inequality, and the claim is proved

For all $n \geq 0$, since $\sum_{m \geq 0} |a_{n,m}|$ converges we know that $\sum_{m \geq 0} a_{n,m}$ converges and that

$\left| \sum_{m=0}^{\infty} a_{n,m} \right| \leq \sum_{m=0}^{\infty} |a_{n,m}|$ by the Absolute Convergence Theorem. Since $\sum_{n \geq 0} \left(\sum_{m=0}^{\infty} |a_{n,m}| \right)$ converges, $\sum_{n \geq 0} \left| \sum_{m=0}^{\infty} a_{n,m} \right|$ converges by the Comparison Test, and so $\sum_{n \geq 0} \left(\sum_{m=0}^{\infty} a_{n,m} \right)$ also

converges by the Absolute Convergence Theorem. Similarly, $\sum_{n \geq 0} a_{n,m}$ converges for all $m \geq 0$ and $\sum_{m \geq 0} \left(\sum_{n=0}^{\infty} a_{n,m} \right)$ converges.

Let $\epsilon > 0$. Since $\sum_{n \geq 0} \left(\sum_{m=0}^{\infty} |a_{n,m}| \right)$ and $\sum_{m \geq 0} \left(\sum_{n=0}^{\infty} |a_{n,m}| \right)$ both converge, we can choose k and l so that $\sum_{n=l+1}^{\infty} \left(\sum_{m=0}^{\infty} |a_{n,m}| \right) < \frac{\epsilon}{4}$ and $\sum_{m=k+1}^{\infty} \left(\sum_{n=0}^{\infty} |a_{n,m}| \right) < \frac{\epsilon}{4}$. Then

$$\begin{aligned} \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} a_{n,m} \right) &= \sum_{n=0}^{\infty} \left(\sum_{m=0}^k a_{n,m} + \sum_{m=k+1}^{\infty} a_{n,m} \right) \\ &= \sum_{n=0}^{\infty} \left(\sum_{m=0}^k a_{n,m} \right) + \sum_{n=0}^{\infty} \left(\sum_{m=k+1}^{\infty} a_{n,m} \right) \\ &= \sum_{n=0}^l \left(\sum_{m=0}^k a_{n,m} \right) + \sum_{n=l+1}^{\infty} \left(\sum_{m=0}^k a_{n,m} \right) + \sum_{n=0}^{\infty} \left(\sum_{m=k+1}^{\infty} a_{n,m} \right) \end{aligned}$$

and so we have

$$\begin{aligned} \left| \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} a_{n,m} \right) - \sum_{n=0}^l \left(\sum_{m=0}^k a_{n,m} \right) \right| &\leq \left| \sum_{n=l+1}^{\infty} \left(\sum_{m=0}^k a_{n,m} \right) \right| + \left| \sum_{n=0}^{\infty} \left(\sum_{m=k+1}^{\infty} a_{n,m} \right) \right| \\ &\leq \sum_{n=l+1}^{\infty} \left| \sum_{m=0}^k a_{n,m} \right| + \sum_{n=0}^{\infty} \left| \sum_{m=k+1}^{\infty} a_{n,m} \right| \\ &\leq \sum_{n=l+1}^{\infty} \left(\sum_{m=0}^k |a_{n,m}| \right) + \sum_{n=0}^{\infty} \left(\sum_{m=k+1}^{\infty} |a_{n,m}| \right) \\ &= \sum_{n=l+1}^{\infty} \left(\sum_{m=0}^k |a_{n,m}| \right) + \sum_{m=k+1}^{\infty} \left(\sum_{n=0}^{\infty} |a_{n,m}| \right) \\ &\leq \sum_{n=l+1}^{\infty} \left(\sum_{m=0}^{\infty} |a_{n,m}| \right) + \sum_{m=k+1}^{\infty} \left(\sum_{n=0}^{\infty} |a_{n,m}| \right) \\ &< \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}. \end{aligned}$$

Similarly we have $\left| \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} a_{n,m} \right) - \sum_{m=0}^l \left(\sum_{n=0}^k a_{n,m} \right) \right| < \frac{\epsilon}{2}$, and so

$$\left| \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} a_{n,m} \right) - \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} a_{n,m} \right) \right| < \epsilon.$$

Since ϵ was arbitrary, we have $\sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} a_{n,m} \right) = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} a_{n,m} \right)$ as required.