
Chapter 6. Sequences and Series of Real Numbers

Sequences (Review)

6.1 Definition: A sequence in a set A is a function a : {k, k + 1, k + 2, · · ·} → A for
some integer k. For a sequence a : {k, k + 1, · · ·} → A, we write an = a(n) for n ≥ k, we
refer to the function a as the sequence (an) or the sequence (an)n≥k, and we write

(an)n≥k =
(
ak, ak+1, ak+2, · · ·

)
.

When (an)n≥k is a sequence in R, we say the sequence (an)n≥k converges to the real
number b ∈ R, or that the limit of the sequence (an)n≥k is equal to b, and we write
lim
n→∞

an = b or we write an → b (as n→∞), when for every ε > 0 there exists an integer

m ≥ k such that for every integer n we have

n ≥ m =⇒ |an − b| < ε .

We say the sequence (an) converges (in R) if it converges to some real number b ∈ R.
We say the sequence (an) diverges to infinity, or that the limit of (an) is equal to

infinity, and write lim
n→∞

an = ∞ or an → ∞, when for every r ∈ R there exists an integer

m ≥ k such that for every integer n we have

n ≥ m =⇒ an > r .

We say that (an) diverges to negative infinity, or that the limit of (an) is equal to
negative infinity, and write lim

n→∞
an = −∞ or an → −∞, when for every r ∈ R there exists

an integer m ≥ k such that for every integer n we have

n ≥ m =⇒ an < r .

6.2 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let (an)n≥k be
a sequence in R and let ` ∈ Z+. Then lim

n→∞
an exists if and only if lim

n→∞
an+` exists, and

in this case the limits are equal.

6.3 Note: Because of the above theorem, we often omit the starting value k from our
notation and write the sequence (an)n≥k simply as (an). Also, we often choose a specific
starting value k (often k = 1) in the statements or the proofs of various theorems with the
understanding that the theorem holds for any any integer k.

6.4 Theorem: (Linearity, Products and Quotients) If (an) and (bn) are convergent se-
quences in R then

(1) for any real number c, the sequence (c an) converges with lim
n→∞

c an = c lim
n→∞

an,

(2) the sequence (an + bn) converges with lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn,

(3) the sequence (anbn) converges with lim
n→∞

(anbn) =
(

lim
n→∞

an

)(
lim
n→∞

bn

)
, and

(4) if lim
n→∞

bn 6= 0 then the sequence
(
an
bn

)
converges with lim

n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
.

6.5 Note: By defining algebraic operations in the extended real numbers R ∪ {±∞},
the above theorem can be extended to include many cases in which lim

n→∞
an = ±∞ or

lim
n→∞

bn = ±∞, but care is needed for the indeterminate forms ∞−∞, 0 · ∞, 0
0 , ∞∞ .
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6.6 Theorem: (Comparison and Squeeze) Let (an), (bn) and (cn) be sequences in R.

(1) If an ≤ bn for all n and lim
n→∞

an and lim
n→∞

bn both exist, then lim
n→∞

an ≤ lim
n→∞

bn.

(2) If an ≤ bn ≤ cn for all n and if lim
n→∞

an = lim
n→∞

cn then lim
n→∞

bn = lim
n→∞

an.

6.7 Theorem: (Sequences and Absolute Values) Let (an) be a sequence in R.

(1) If lim
n→∞

an exists then lim
n→∞

|an| =
∣∣∣ lim
n→∞

an

∣∣∣.
(2) If lim

n→∞
|an| = 0 then lim

n→∞
an = 0.

(3) If |an| ≤ bn for all n ≥ k and lim
n→∞

bn = 0 then lim
n→∞

an = 0.

6.8 Definition: Let (an)n≥k be a sequence in R. We say that (an)n≥k is increasing (or
non-decreasing) when an ≤ an+1 for all n ≥ k, or equivalently when n ≤ m =⇒ an ≤ am
for all integers n,m ≥ k. We say that (an)n≥k is strictly increasing when an < an+1

for all n ≥ k. We say that (an)n≥k is bounded above by the real number b when an ≤ b
for all n ≥ k, and in this case b is called an upper bound for the sequence. We say that
(an)n≥k is bounded above when it is bounded above by some real number b. We have
similar definitions for the terms decreasing (or nonincreasing), strictly decreasing,
bounded below and lower bound.

6.9 Theorem: (The Monotone Convergence Theorem) Let (an) be a sequence in R.

(1) If (an) is increasing and bounded above by b, then (an) converges and lim
n→∞

an ≤ b.
(2) If (an) is increasing and is not bounded above, then lim

n→∞
an =∞.

(3) If (an) is decreasing and bounded below by c, then (an) converges and lim
n→∞

an ≥ c.
(4) If (an) is decreasing and is not bounded below, then lim

n→∞
an = −∞.

6.10 Definition: A sequence (an)n≥k is said to be Cauchy when for every ε > 0 there
exists an integer N ≥ k such that for all integers n,m ≥ k we have

n,m ≥ N =⇒ |an − am| < ε .

6.11 Theorem: (The Cauchy Criterion for Sequences) Let (an) be a sequence in R. Then
(an) converges if and only if (an) is Cauchy.

6.12 Theorem: (The Sequential Characterization of Limits of Functions) Let A ⊆ R,
let f : A → R, and let a, b ∈ R ∪ {±∞} where either a ∈ A or a is a limit point of A.
Then lim

x→a
f(x) = b if and only if lim

n→∞
f(xn) = b for every sequence (xn) in A \ {a} with

lim
n→∞

xn = a.

6.13 Definition: Let (an)n≥k be a sequence in R. We define the limit supremum and
the limit infemum of (an)n≥k to be to be the the extended real numbers

lim sup
n→∞

an = lim
n→∞

sup
{
ak
∣∣ k ≥ n} , lim inf

n→∞
an = lim

n→∞
inf
{
ak
∣∣ k ≥ n}.

The above two limits do exist as extended real numbers because for bn = sup{ak|k≥ n}
the sequence (bn) is decreasing, and for cn = inf{ak|k≥n} the sequence (cn) is increasing.

6.14 Theorem: Let (an)n≥k be a sequence in R and let b ∈ R.
(2) (an) is bounded above if and only if lim sup

n→∞
an <∞,

(2) (an) is bounded below if and only if lim inf
n→∞

an > −∞,

(3) lim
n→∞

an = b if and only if lim sup
n→∞

an = lim inf
n→∞

an = b.
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Series

6.15 Definition: Let (an)n≥k be a sequence. The series
∑
n≥k

an is defined to be the

sequence (S`)`≥k where

S` =
∑̀
n=k

an = ak + ak+1 + · · ·+ a` .

The term S` is called the `th partial sum of the series
∑
n≥k

an. The sum of the series,

denoted by

S =
∞∑
n=k

an = ak + ak+1 + ak+2 + · · · ,

is the limit of the sequence of partial sums, if it exists, and we say the series converges

when the sum exists and is finite. We remark that it is quite common to write
∞∑
n=k

an

(somewhat abusively) both to denote the sequence of partial sums (which may or may not
converge) and to denote its limit (when it does converge).

6.16 Example: (Geometric Series) Show that for a 6= 0, the series
∞∑
n=1

a rn converges if

and only if |r| < 1, and that in this case

∞∑
n=k

arn = ark

1−r .

Solution: The `th partial sum is

S` =
∞∑
n=k

arn = ark + ark+1 + ark+2 + · · ·+ arl .

When r = 1 we have S` = a(l − k + 1) and so lim
`→∞

S` = ±∞ (+∞ when a > 0 and

−∞ when a < 0). When r 6= 1 we have rS` = ark+1 + ark+2 + · · · + ar` + ar`+1, so
S` − rS` = ark − ar`+1 = ark

(
1− r`−k+1

)
and so

S` = ark(1−r`−k+1)
1−r .

When r > 1, lim
`→∞

r`−k+1 = ∞ and so lim
`→∞

S` = ±∞ (+∞ when a > 0 and −∞ when

a < 0). When r ≤ −1, lim
`→∞

r`−k+1 does not exist, and so neither does lim
`→∞

S`. When

|r| < 1, we have lim
`→∞

r`−k+1 = 0 and so lim
`→∞

S` = ark

1−r , as required.

6.17 Example: Find
∞∑

n=−1

3n+1

22n−1
.

Solution: This is a geometric series. By the formula in the previous example, we have

∞∑
n=−1

3n+1

22n−1
=

∞∑
n=−1

9
2

(
3
4

)n
=

9
2

(
3
4

)−1
1− 3

4

= 9
2 ·

4
3 ·

4
1 = 24 .
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6.18 Example: (Telescoping Series) Find
∞∑
n=1

1

n2 + 2n
.

Solution: We use a partial fractions decomposition. The `th partial sum is

S` =
∑̀
n=1

1

n(n+ 2)
=
∑̀
n=1

( 1
2

n
−

1
2

n+ 2

)
= 1

2

∑̀
n=1

(
1
n −

1
n+2

)
= 1

2

( (
1− 1

3

)
+
(
1
2 −

1
4

)
+
(
1
3 −

1
5

)
+ · · ·+

(
1
`−2 −

1
`

)
+
(

1
`−1 −

1
`+1

)
+
(

1
` −

1
`+2

))
= 1

2

(
1 + 1

2 −
1
`+1 −

1
`+2

)
,

since all the other terms cancel. Thus the sum of the series is

S = lim
`→∞

S` = 1
2

(
1 + 1

2

)
= 3

4 .

6.19 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let (an)n≥k be
a sequence in R. Then for any integer m ≥ k, the series

∑
n≥k

an converges if and only if the

series
∑
n≥m

an converges, and in this case
∞∑
n=k

an =
(
ak + ak+1 + · · ·+ am−1

)
+
∞∑
n=m

an .

Proof: Let S` =
∑̀
n=k

an and let T` =
∑̀
n=m

an. Then for all ` ≥ m we have

S` =
(
ak + ak+1 + · · ·+ am−1

)
+ T` ,

and so (S`) converges if and only if (T`) converges, and in this case

lim
`→∞

S` =
(
ak + ak+1 + · · ·+ am−1

)
+ lim
`→∞

T` .

6.20 Note: Since the first finitely many terms do not affect the convergence of a series,
we often omit the subscript n ≥ k in the expression

∑
n≥k

an, and simply write
∑
an, when

we are interested in whether or not the series converges. On the other hand, we cannot

omit the subscript n = k when we are interested in the value of the sum
∞∑
n=k

an.

6.21 Definition: When we approximate a value x by the value y, the error in our
approximation is |x− y|.

6.22 Note: If
∑
n≥k

an converges and ` ≥ k then, by the above theorem, so does
∞∑

n≥`+1

an.

If we approximate the sum S =
∞∑
n=k

an by the `th partial sum S` =
∑̀
n=k

an, then the error

in our approximation is ∣∣S − S`∣∣ =

∣∣∣∣ ∞∑
n=`+1

an

∣∣∣∣ .
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6.23 Theorem: (Linearity) If
∑
an and

∑
bn are convergent series then

(1) for any real number c,
∑
can converges and

∞∑
n=k

can = c
∞∑
n=k

an , and

(2) the series
∑

(an + bn) converges and
∞∑
n=k

(an + bn) =
∞∑
n=k

an +
∞∑
n=k

bn .

Proof: This follows immediately from the Linearity Theorem for sequences.

6.24 Theorem: (Series of Positive Terms) Let
∑
an be a series.

(1) If an ≥ 0 for all n then either
∑
an converges or

∞∑
n=k

an =∞.

(2) If an ≤ 0 for all n then either
∑
an converges or

∞∑
n=k

an = −∞.

Proof: This follows from the Monotone Convergence Theorem for sequences. Indeed if
an ≥ 0 for all n ≥ k, then (S`)`≥k is increasing (since S`+1 = S` + a`+1 ≥ S` for all `).
Either (S`) is bounded above, in which case (S`) converges hence

∑
an converges, or the

sequence (S`) is unbounded, in which case lim
`→∞

S` =∞ hence
∞∑
n=k

an =∞.

6.25 Theorem: (Cauchy Criterion for Series) Let
∑
an be a series. Then

∑
an converges

if and only if for all ε > 0 there exists N such that for all `,m ∈ Z,

m > ` ≥ N =⇒
∣∣∣∣ m∑
n=`+1

an

∣∣∣∣ < ε .

Proof: This follows from the Cauchy Criterion for Sequences, applied to the sequence of
partial sums. Indeed (S`) converges if and only if for all ε > 0 there exists N such that
m > ` ≥ N =⇒ |Sm − S`| < ε, and we have

|Sm − S`| =
∣∣∣∣ m∑
n=k

an −
∑̀
n=k

an

∣∣∣∣ =

∣∣∣∣ m∑
n=`+1

an

∣∣∣∣.
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Convergence Tests

6.26 Theorem: (The Divergence Test) If
∑
an converges then lim

n→∞
an = 0. Equivalently,

if lim
n→∞

an either does not exist, or exists but is not equal to 0, then
∑
an diverges.

Proof: Suppose that
∑
an converges, and say

∞∑
n=k

an = S. Let S` be the `th partial sum.

Then we have lim
`→∞

S` = S = lim
`→∞

S`−1, and we have a` = S` − S`−1, and so

lim
`→∞

a` = lim
`→∞

S` − lim
`→∞

S`−1 = S − S = 0 .

6.27 Example: Determine whether
∑
e1/n converges.

Solution: Since lim
n→∞

e1/n = e0 = 1,
∑
e1/n diverges by the Divergence Test.

6.28 Note: The converse of the Divergence Test is false. For example, as we shall see
below,

∑
1
n diverges even though lim

n→∞
1
n = 0.

6.29 Theorem: (Integral Test) Let f(x) be positive and decreasing for x ≥ k, and let

an = f(n) for all integers n ≥ k. Then
∑
an converges if and only if

∫ ∞
k

f(x) dx converges,

and in this case, for any ` ≥ k we have∫ ∞
`+1

f(x) dx ≤
∞∑

n=`+1

an ≤
∫ ∞
`

f(x) dx .

Proof: Let Tm be the mth partial sum for
∑

n≥`+1

an, so Tm =
m∑

n=`+1

an. Note that since

f(x) is decreasing, it is integrable on any closed interval. Also, for each n ≥ ` we have

an = f(n) ≤ f(x) for all x ∈ [n− 1, n], so

∫ n

n−1
f(x) dx ≥

∫ n

n−1
an dx = an and so

Tm =
m∑

n=`+1

an ≤
m∑

n=`+1

∫ n

n−1
f(x) dx =

∫ m

`

f(x) dx ≤
∫ ∞
`

f(x) dx .

Since f(n) = an is positive, the sequence (Tm) is increasing. If

∫ ∞
k

f(x) dx converges, then

(Tn) is bounded above by

∫ ∞
`

f(x) dx, and so it converges with lim
m→∞

Tm ≤
∫ ∞
`

f(x) dx.

Similarly, for each n ≥ ` we have an = f(n) ≥ f(x) for all x ∈ [n, n + 1] so that∫ n+1

n

f(x) dx ≤
∫ n+1

n

andx = an and so

Tm =
m∑

n=`+1

an ≥
m∑

n=`+1

∫ n+1

n

f(x) dx =

∫ m+1

`+1

f(x) dx .

If

∫ ∞
k

f(x) dx converges, then lim
m→∞

Tm ≥ lim
m→∞

∫ m+1

`+1

f(x) dx =

∫ ∞
`+1

f(x) dx. If

∫ ∞
k

f(x) dx

diverges, then lim
m→∞

∫ m+1

`+1

f(x) dx =∞, and so lim
m→∞

Tm =∞ too, by Comparison.
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6.30 Example: (p-Series) Show that the series
∑
n≥1

1
np converges if and only if p > 1. In

particular, the harmonic series
∑

1
n diverges.

Solution: If p < 0 then lim
n→∞

1
np =∞ and if p = 0 then lim

n→∞
1
np = 1, so in either case

∑
1
np

diverges by the Divergence Test. Suppose that p > 0. Let an = 1
np for integers n ≥ 1,

and let f(x) = 1
xp for real numbers x ≥ 1. Note that f(x) is positive and decreasing for

x ≥ 1 and an = f(n) for all n ≥ 1. Since we know that
∫∞
1
f(x) dx converges if and only

if p > 1, it follows from the Integral Test that
∑
an converges if and only if p > 1.

6.31 Example: Approximate S =
∞∑
n=1

1
2n2 so that the error is at most 1

100 .

Solution: We let an = 1
2n2 and f(x) = 1

2x2 so that we can apply the Integral Test. If we
choose to approximate the sum S by the `th partial sum S`, then the error is

E = S − S` =
∞∑

n=`+1

an ≤
∫ ∞
`

1
2x2 dx =

[
− 1

2x

]∞
`

= 1
2` ,

and so to insure that E ≤ 1
100 we can choose ` so that 1

2` ≤
1

100 , that is ` ≥ 50. Since it
would be tedious to add up the first 50 terms of the series, we take an alternate approach.
The Integral Test gives us upper and lower bounds: we have∫ ∞

`+1

f(x) dx ≤ S − S` ≤
∫ ∞
`

f(x) dx

1
2(l+1) ≤ S − S` ≤

1
2`

S` + 1
2(`+1) ≤ S ≤ S` + 1

2` .

If approximate S using the midpoint of the upper and lower bounds, that is if we make

the approximation S ∼= S` + 1
2

(
1
2` + 1

2(`+1)

)
, then the error E will be at most half of the

difference of the bounds:

E ≤ 1
2

(
1
2` −

1
2(`+1)

)
= 1

4`(`+1) .

To get E ≤ 1
100 we want 1

4 l (l+1) ≤
1

100 , that is ` (` + 1) ≥ 25, and so we can take ` = 5.

Thus we estimate

S ∼= S5 + 1
2

(
1
10 + 1

12

)
= 1

2 + 1
8 + 1

18 + 1
32 + 1

50 + 1
20 + 1

24 = 5929
7200 .(

Incidentally, the exact value of this sum is π2

12

)
.

6.32 Theorem: (Comparison Test) Let 0 ≤ an ≤ bn for all n ≥ k. Then if
∑
bn

converges then so does
∑
an and in this case,

∞∑
n=k

an ≤
∞∑
n=k

bn .

Proof: Let S` =
∑̀
n=k

an and let T` =
∑̀
n=k

bn. Since 0 ≤ an, bn for all n, the sequences (S`)

and (T`) are increasing. Since an ≤ bn for all n we have S` ≤ T` for all `. Suppose that∑
bn converges with say

∞∑
n=k

bn = T so that lim
`→∞

T` = T . Then S` ≤ T` ≤ T for all `, so

(S`) is increasing and bounded above, hence convergent, and lim
`→∞

S` ≤ lim
`→∞

T`.
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6.33 Example: Determine whether
∑
n≥0

1√
n3+1

converges.

Solution: Note that 0 ≤ 1√
n3+1

≤ 1√
n3

= 1
n3/2 for all n ≥ 1, and

∑
1

n3/2 converges since it

is a p-series with p = 3
2 , and so

∑
1√
n3+1

also converges, by the Comparison Test.

6.34 Example: Determine whether
∑
n≥1

tan 1
n converges.

Solution: For 0 < x < π
2 we have x < tanx, so for n ≥ 1 we have 0 < 1

n < tan 1
n . Since the

harmonic series
∑

1
n diverges, the series

∑
tan 1

n also diverges by the Comparison Test.

6.35 Example: Approximate S =
∞∑
n=0

1
n! so that the error is at most 1

100 .

Solution: If we make the approximation S ∼= S` =
l∑

n=0

1
n! then the error is

E = S − S` =
∞∑

n=`+1

1
n!

= 1
(`+1)! + 1

(`+2)! + 1
(`+3)! + 1

(`+4)! + · · ·

= 1
(`+1)!

(
1 + 1

`+2 + 1
(`+2)(`+3) + 1

(`+2)(`+3)(`+4) + · · ·
)

≤ 1
(`+1)!

(
1 + 1

`+2 + 1
(`+2)2 + 1

(`+2)3 + · · ·
)

= 1
(`+1)!

1

1− 1
`+2

= `+2
(`+1)(`+1)!

where we used the Comparison Test and the formula for the sum of a geometric series. To
get E ≤ 1

100 we can choose l so that l+2
(l+1)(l+1)! ≤

1
100 . By trial and error, we find that we

can take l = 4, so we make the approximation

S ∼= S4 = 1 + 1 + 1
2 + 1

6 + 1
24 = 65

24 .

(Incidentally, the exact value of this sum is e, so we have approximated the value of e).

6.36 Theorem: (Limit Comparison Test) Let an ≥ 0 and let bn > 0 for all n ≥ k.

Suppose that lim
n→∞

an
bn

= r. Then

(1) if r =∞ and
∑
an converges then so does

∑
bn,

(2) if r = 0 and
∑
bn converges then so does

∑
an, and

(3) if 0 < r <∞ then
∑
an converges if and only if

∑
bn converges.

Proof: If lim
n→∞

an
bn

= ∞, then for large n we have an
bn

> 1 so that an > bn, and so if
∑
an

converges, then so does
∑
bn by the Comparison Test. If lim

n→∞
an
bn

= 0 then for large n we

have an
bn

< 1 so an < bn, and so if
∑
bn converges then so does

∑
an by the Comparison

Test. Suppose that lim
n→∞

an
bn

= r with 0 < r <∞. Choose m so that when n ≥ m we have∣∣an
bn
− r
∣∣ < r

2 so that r
2 <

an
bn
< 3r

2 and hence

0 < r
2bn ≤ an ≤

3r
2 bn .

If
∑
an converges, then

∑
r
2bn converges by the Comparison Test, and hence

∑
bn con-

verges by linearity. If
∑
bn converges, then

∑
3r
2 bn converges by linearity, and hence so

does
∑
an by the Comparison Test.
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6.37 Example: Determine whether
∑

1√
n3−1 converges.

Solution: Note that we cannot use the same argument that we used earlier to show that∑
1√
n3+1

converges, because 1√
n3+1

< 1
n3/2 but 1√

n3−1 >
1

n3/2 . We use a different approach.

Let an = 1√
n3−1 and let bn = 1

n3/2 . Then lim
n→∞

an
bn

= lim
n→∞

n3/2
√
n3−1 = lim

n→∞
1√
1− 1

n3

= 1, and∑
bn =

∑
1

n3/2 converges (its a p-series with p = 3
2 ), and so

∑
an converges too, by the

Limit Comparison Test.

6.38 Theorem: (Ratio Test) Let an > 0 for all n ≥ k. Suppose lim
n→∞

an+1

an
= r. Then

(1) if r < 1 then
∑
an converges, and

(2) if r > 1 then lim
n→∞

an =∞ so
∑
an =∞.

Proof: Suppose that lim
n→∞

an+1

an
= r < 1. Choose s with r < s < 1, and then choose m so

that when n ≥ m we have an+1

an
< s and hence an+1 < san. Fix k ≥ m. Then ak+1 < sak,

ak+2 < sak+1 < s2ak, ak+3 < sak+2 < s3ak, and so on, so we have an < bn = sn−kak for
all n ≥ k. Since

∑
bn is geometric with ratio s < 1, it converges, and hence so does

∑
an

by the Comparison Test.
Now suppose that lim

n→∞
an+1

an
= r > 1. Choose s with 1 < s < r, then choose m so

that when n ≥ m we have an+1

an
> s and hence an+1 > san. Fix k ≥ m. Then as above

an > bn = sn−kak for all n ≥ k, and lim
n→∞

bn =∞, so lim
n→∞

an =∞ too.

6.39 Example: Determine whether
∑

5n

n! converges.

Solution: Let an = 5n

n! . Then an+1

an
= 5n+1

(n+1)! ·
n!
5n = 5

n+1 → 0 as n → ∞, and so
∑
an

converges by the Ratio Test.

6.40 Note: If lim
n→∞

an+1

an
= 1, then

∑
an could converge or diverge. For example, if an = 1

n

then an+1

an
= n

n+1 → 1 as n→∞ and
∑
an diverges, but if bn = 1

n2 then bn+1

bn
= n2

(n+1)2 → 1

as n→∞ and
∑
bn converges.

6.41 Theorem: (Root Test) Let an ≥ 0 for all n ≥ k. Let r = lim sup
n→∞

n
√
an. Then

(1) if r < 1 then
∑
an converges, and

(2) if r > 1 then lim
n→∞

an =∞ so
∑
an =∞.

Proof: The proof is left as an exercise. It is similar to the proof of the Ratio Test.

6.42 Example: Determine whether
∑(

n
n+1

)n2

converges.

Solution: Let an =
(

n
n+1

)n2

. Then n
√
an =

(
n
n+1

)n
= en ln( n

n+1 ), and by l’Hôpital’s Rule

we have lim
n→∞

n ln
(

n
n+1

)
= lim

x→∞

ln
(

x
x+1

)
1
x

= lim
x→∞

1
x(x+1)

− 1
x2

= lim
x→∞

−x2

(x+1)2 = −1, and so

lim
n→∞

n
√
an = e−1 < 1. Thus

∑
an converges by the Root Test.
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6.43 Definition: A sequence (an)n≥k is said to be alternating when either we have
an = (−1)n|an| for all n ≥ k or we have an = (−1)n+1|an| for all n ≥ k.

6.44 Theorem: (Aternating Series Test) Let (an)n≥k be an alternating series. If the
sequence (|an|) is decreasing with lim

n→∞
|an| = 0 then

∑
n≥k

an converges, and in this case

∣∣∣ ∞∑
n=k

an

∣∣∣ ≤ |ak| .
Proof: To simplify notation, we give the proof in the case that k = 0 and an = (−1)n|an|.

Suppose the sequence
(
|an|

)
is decreasing with |an| → 0. Let S` =

∑̀
n=0

an. We consider

the sequences (S2`) and (S2`−1) of even and odd partial sums. Note that since
(
|an|

)
is

decreasing, we have
S2` − S2(`−1) = |a2`| − |a2`−1| ≤ 0

so (S2`) is decreasing, and we have

S2` = |a0| − |a1|+ |a2| − |a3|+ · · ·+ |a2`−2| − |a2`−1|+ |a2`|
=
(
|a0| − |a1|

)
+
(
|a2| − |a3|

)
+ · · ·+

(
|a2`−2| − |a2`−1|

)
+ |a2`| ≥ 0

and so (S2`) is bounded below by 0. Thus (S2`) converges by the Monotone Convergence
Theorem. Similarly, (S2`−1) is increasing and bounded above by |a0|, so it also converges,
and we have lim

`→∞
S2`−1 ≤ |a0|.

Finally we note that since |an| → 0, taking the limit on both sides of the equality
|a2`| = S2` − S2`−1 gives 0 = lim

`→∞
S2` − lim

`→∞
S2`−1, and so we have lim

`→∞
S2` = lim

`→∞
S2`−1.

It follows that (S`) converges with lim
`→∞

S` = lim
`→∞

S2` = lim
`→∞

S2`−1 ≤ |a0|.

6.45 Example: Determine whether
∑
n≥2

(−1)n lnn
√
n

converges.

Solution: Let an = (−1)n lnn
√
n

. Let f(x) = ln x√
x

so that |an| = f(n). Note that

f ′(x) =

1
x ·
√
x− lnx · 1

2
√
x

x
=

2− lnx

2x3/2
,

so we have f ′(x) < 0 for x > e2. Thus f(x) is decreasing for x > e2, and so
(
|an|

)
is

decreasing for n ≥ 8. Also, by l’Hôpital’s Rule, we have

lim
x→∞

f(x) = lim
x→∞

ln x√
x

= lim
x→∞

1
x
1

2
√
x

= lim
x→∞

2√
x

= 0

and so |an| → 0 as n→∞. Thus
∑
an converges by the Alternating Series Test.
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6.46 Example: Approximate the sum S =
∞∑
n=0

(−2)n
(2n)! so that the error is at most 1

2000 .

Solution: Let an = (−2)n
(2n)! . Note that

|an+1|
|an| = 2n+1

(2n+2)! ·
(2n)!
2n = 2

(2n+2)(2n+1) = 1
(n+1)(2n+1) .

Since |an+1|
|an| ≤ 1 for all n ≥ 0, we know that (|an|) is decreasing. Since lim

n→∞
|an+1|
|an| = 0, we

know that
∑
|an| converges by the Ratio Test, and so |an| → 0 by the Divergence Test.

This shows that we can apply the Alternating Series Test.

If we approximate S by the `th partial sum S` =
∑̀
n=0

an, then by the Alternating

Series Test, the error is

E =
∣∣S − S`∣∣ =

∣∣∣ ∞∑
n=`+1

an

∣∣∣ ≤ ∣∣a`+1

∣∣ = 2`+1

(2`+2)! .

To get E ≤ 1
2000 we can choose ` so that 2`+1

(2`+2)! ≤
1

2000 . By trial and error we find that

we can take ` = 3. Thus we make the approximation

S ∼= S3 = 1− 2
2! + 22

4! −
23

6! = 1− 1 + 1
6 −

1
90 = 7

45 .(
We shall see later that the exact value of this sum is cos

√
2
)
.

6.47 Definition: A series
∑
n≥k

an is said to converge absolutely when
∑
n≥k
|an| converges.

The series is said to converge conditionally if
∑
n≥k

an converges but
∑
n≥k
|an| diverges.

6.48 Example: For 0 < p ≤ 1, the p-series
∑

1
np diverges, but since

(
1
np

)
is decreasing

towards 0,
∑ (−1)n

np converges by the Alternating Series Test. Thus for 0 < p ≤ 1, the

alternating p-series
∑ (−1)n

np converges conditionally.

6.49 Theorem: (Absolute Convergence Implies Convergence) If
∑
|an| converges then

so does
∑
an.

Proof: Suppose that
∑
|an| converges. Note that −|an| ≤ an ≤ |an| so that

0 ≤ an + |an| ≤ 2|an| for all n .

Since
∑
|an| converges,

∑
2|an| converges by linearity, and so

∑(
an + |an|

)
converges by

the Comparison Test. Since
∑
|an| and

∑(
an + |an|

)
both converge,

∑
an converges by

linearity.

6.50 Example: Determine whether
∑

sinn
n2 converges.

Solution: Let an = sinn
n2 . Then |an| = | sinn|

n2 ≤ 1
n2 . Since

∑
1
n2 converges (its a p-series

with p = 2),
∑
|an| converges by the Comparison Test, and hence

∑
an converges too,

since absolute convergence implies convergence.
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6.51 Theorem: (Multiplication of Series) Suppose that
∑
n≥0
|an| converges and

∑
n≥0

bn

converges and define cn =
n∑
k=0

akbn−k. Then
∑
n≥0

cn converges and

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

Proof: Let A` =
∑̀
n=0

an, B` =
∑̀
n=0

bn, C` =
∑̀
n=0

cn, A =
∞∑
n=0

an, B =
∞∑
n=0

bn, K =
∞∑
n=0
|an|

and E` = B −B`. Then we have

C` = a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · ·+ (a0b` + · · ·+ a`b0)

= a0B` + a1B`−1 + a2B`−2 + · · ·+ a`B0

= a0(B − E`) + a1(B − E`−1) + · · ·+ a`(B − E0)

= A`B −
(
a0E` + a1E`−1 + · · ·+ a`E0

)
and so ∣∣C` −AB∣∣ ≤ ∣∣(A` −A)B

∣∣+
∣∣a0E` + a1E`−1 + · · ·+ a`E0

∣∣ .
Let ε > 0. Choose m so that j > m =⇒ Ej <

ε
3K . Let E = max

{
|E0|, · · · , |Em|

}
. Choose

L > m so that when ` > L we have
l∑

n=`−m
|an| < ε

3E and we have |A` − A||B| < ε
3 . Then

for ` > L,∣∣C` −AB∣∣ < ∣∣(A` −A)B
∣∣+
∣∣a0E` + · · ·+ a`−m−1Em+1

∣∣+
∣∣a`−mEm + · · ·+ a`E0

∣∣
≤ ε

3 +
( `−m−1∑

n=0
|an|

)
ε

3K +
( ∑̀
n=`−m

|an|
)
E

< ε
3 +K ε

3K + ε
3EE = ε .

6.52 Example: Find an example of sequences (an)n≥0 and (bn)n≥0 such that
∑
n≥0

an and∑
n≥0

bn both converge, but
∑
n≥0

cn diverges where cn =
n∑
k=0

akbn−k.

Solution: Let an = bn = (−1)n√
n+1

for n ≥ 0, and let

cn =
n∑
k=0

akbn−k = (−1)n
n∑
k=0

1√
(k+1)(n−k+1)

.

Recall that for p, q ≥ 0 we have
√
pq ≤ 1

2 (p+ q) (indeed (p+ q)2 − 4pq = p2 − 2pq + q2 =

(p − q)2 ≥ 0, so (p + q)2 ≥ 4pq). In particular
√

(k + 1)(n− k + 1) ≤ 1
2 (n + 2) and so

|cn| ≥
n∑
k=0

2
n+2 = 2(n+1)

n+2 . Thus lim
n→∞

|cn| 6= 0 so
∑
cn diverges by the Divergence Test.
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6.53 Theorem: (Fubini’s Theorem for Series) Let an,m ∈ R for all integers n,m ≥ 0.

Suppose that
∑
m≥0
|an,m| converges for each n ≥ 0 and that

∑
n≥0

( ∞∑
m=0
|an,m|

)
converges.

Then
∑
m≥0

an,m converges for all n ≥ 0,
∑
n≥0

( ∞∑
m=0

an,m

)
converges,

∑
n≥0

an,m converges for

all m ≥ 0,
∑
m≥0

( ∞∑
n=0

an,m

)
converges, and

∞∑
n=0

( ∞∑
m=0

an,m

)
=
∞∑
m=0

( ∞∑
n=0

an,m

)
.

Proof: First we claim that
∑
n≥0
|an,m| converges for all m ≥ 0,

∑
m≥0

( ∞∑
n=0
|an,m|

)
converges,

and
∞∑
n=0

( ∞∑
m=0
|an,m|

)
=
∞∑
m=0

( ∞∑
n=0
|an,m|

)
. For all n,m we have |an,m| ≤

∞∑
k=0

|an,k|, and

∑
n≥0

( ∞∑
k=0

|an,k|
)

converges, so we know that
∑
n≥0
|an,m| converges for all m ≥ 0, by the

Comparison Test. Let k ≥ 0 and let ε > 0. Since each sum
∑
n≥0
|an,m| converges, we can

choose L so that when l > L we have
∞∑

n=l+1

|an,m| < ε
k+1 for all m = 0, 1, · · · , k. Then for

l > L we have

k∑
m=0

( ∞∑
n=0
|an,m|

)
=

k∑
m=0

(
l∑

n=0
|an,m|+

∞∑
n=l+1

|an,m|

)
<

k∑
m=0

(
l∑

n=0
|an,m|+ ε

k+1

)

=
k∑

m=0

(
l∑

n=0
|an,m|

)
+ ε =

l∑
n=0

(
k∑

m=0
|am,n|

)
+ ε

≤
l∑

n=0

( ∞∑
m=0
|am,n|

)
+ ε ≤

∞∑
n=0

( ∞∑
m=0
|am,n|

)
+ ε

Since ε was arbitrary, we have
k∑

m=0

( ∞∑
n=0
|an,m|

)
≤
∞∑
n=0

( ∞∑
m=0
|am,n|

)
. Since the sequence

of partial sums

k∑
m=0

( ∞∑
n=0
|an,m|

)
is increasing and bounded above by

∞∑
n=0

( ∞∑
m=0
|am,n|

)
,

it converges and we have

∞∑
m=0

( ∞∑
n=0
|an,m|

)
≤
∞∑
m=0

( ∞∑
n=0
|an,m|

)
. By symmetry, we obtain

the opposite inequality, and the claim is proved
For all n ≥ 0, since

∑
m≥0
|an,m| converges we know that

∑
m≥0

an,m converges and that∣∣∣∣ ∞∑
m=0

an,m

∣∣∣∣ ≤ ∞∑
m=0
|an,m| by the Absolute Convergence Theorem. Since

∑
n≥0

( ∞∑
m=0
|an,m|

)
converges,

∑
n≥0

∣∣∣∣ ∞∑
m=0

an,m

∣∣∣∣ converges by the Comparison Test, and so
∑
n≥0

( ∞∑
m=0

an,m

)
also
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converges by the Absolute Convergence Theorem. Similarly,
∑
n≥0

an,m converges for all

m ≥ 0 and
∑
m≥0

( ∞∑
n=0

an,m

)
converges.

Let ε > 0. Since
∑
n≥0

( ∞∑
m=0
|an,m|

)
and

∑
m≥0

( ∞∑
n=0
|an,m|

)
both converge, we can

choose k and l so that
∞∑

n=l+1

( ∞∑
m=0
|an,m|

)
< ε

4 and
∞∑

m=k+1

( ∞∑
n=0
|an,m|

)
< ε

4 . Then

∞∑
n=0

( ∞∑
m=0

an,m

)
=
∞∑
n=0

(
k∑

m=0
an,m +

∞∑
m=k+1

an,m

)

=

∞∑
n=0

(
k∑

m=0
an,m

)
+

∞∑
n=0

(
∞∑

m=k+1

an,m

)

=

l∑
n=0

(
k∑

m=0
an,m

)
+

∞∑
n=l+1

(
k∑

m=0
an,m

)
+

∞∑
n=0

(
∞∑

m=k+1

an,m

)
and so we have∣∣∣∣∣

∞∑
n=0

( ∞∑
m=0

an,m

)
−

l∑
n=0

(
k∑

m=0
an,m

)∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑

n=l+1

(
k∑

m=0
an,m

)∣∣∣∣∣+

∣∣∣∣∣
∞∑
n=0

(
∞∑

m=k+1

an,m

)∣∣∣∣∣
≤

∞∑
n=l+1

∣∣∣∣ k∑
m=0

an,m

∣∣∣∣+
∞∑
n=0

∣∣∣∣∣ ∞∑
m=k+1

an,m

∣∣∣∣∣
≤

∞∑
n=l+1

(
k∑

m=0
|an,m|

)
+
∞∑
n=0

( ∞∑
m=k+1

|an,m|
)

=

∞∑
n=l+1

(
k∑

m=0
|an,m|

)
+

∞∑
m=k+1

( ∞∑
n=0
|an,m|

)

≤
∞∑

n=l+1

( ∞∑
m=0
|an,m|

)
+

∞∑
m=k+1

( ∞∑
n=0
|an,m|

)
< ε

4 + ε
4 = ε

2 .

Similarly we have

∣∣∣∣∣
∞∑
m=0

( ∞∑
n=0

an,m

)
−

l∑
m=0

(
k∑

n=0
an,m

)∣∣∣∣∣ < ε
2 , and so

∣∣∣∣∣
∞∑
n=0

( ∞∑
m=0

an,m

)
−
∞∑
m=0

( ∞∑
n=0

an,m

)∣∣∣∣∣ < ε .

Since ε was arbitrary, we have
∞∑
n=0

( ∞∑
m=0

an,m

)
=
∞∑
m=0

( ∞∑
n=0

an,m

)
as required.
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