Chapter 6. Sequences and Series of Real Numbers

Sequences (Review)

6.1 Definition: A sequence in a set A is a function a : {k,k + 1,k + 2,---} — A for
some integer k. For a sequence a : {k,k+1,---} — A, we write a,, = a(n) for n > k, we
refer to the function a as the sequence (a,) or the sequence (a,)n>k, and we write

(an)n>k = (Qks Qps1, Qg2 ).
When (a,)n>k is a sequence in R, we say the sequence (a,),>r converges to the real

number b € R, or that the limit of the sequence (ay),>r is equal to b, and we write

lim a, = b or we write a,, — b (as n — 00), when for every € > 0 there exists an integer
n—oo

m > k such that for every integer n we have
n>m= la, —b| <e.

We say the sequence (a,) converges (in R) if it converges to some real number b € R.
We say the sequence (a,,) diverges to infinity, or that the limit of (a,,) is equal to

infinity, and write lim a,, = oo or a,, — o0, when for every r» € R there exists an integer
n— oo

m > k such that for every integer n we have
n>m=— a, >T7.

We say that (a,) diverges to negative infinity, or that the limit of (a,) is equal to

negative infinity, and write lim a,, = —oc or a,, — —o0, when for every r € R there exists
n—oo

an integer m > k such that for every integer n we have
n>m—a, <Tr.

6.2 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let (ap)n>k be

a sequence in R and let £ € Z". Then lim a, exists if and only if lim a,., exists, and
n—oo n—oo

in this case the limits are equal.
6.3 Note: Because of the above theorem, we often omit the starting value k£ from our
notation and write the sequence (ay,),>k simply as (ay). Also, we often choose a specific

starting value k£ (often k = 1) in the statements or the proofs of various theorems with the
understanding that the theorem holds for any any integer k.

6.4 Theorem: (Linearity, Products and Quotients) If (a,) and (b,) are convergent se-

quences in R then
(1) for any real number ¢, the sequence (ca,,) converges with lim ca, =c¢ lim a,,

n—oo n— o0
(2) the sequence (a,, + by,) converges with lim (a, + b,) = lim a, + lim b,,
n—o00 n—00 n—o0

(3) the sequence (anb,) converges with lim (a,b,) = < lim an> < lim bn>, and

a lim a,
(4) if lim b, # 0 then the sequence ($*) converges with lim — = “=>2—.
n—00 n n—oo b, lim b,

n— oo

6.5 Note: By defining algebraic operations in the extended real numbers R U {+o00},

the above theorem can be extended to include many cases in which lim a,, = 400 or
n—oo

lim b,, = 00, but care is needed for the indeterminate forms oo — oo, 0 - oo, %, =.

n—oo



6.6 Theorem: (Comparison and Squeeze) Let (a,), (b,) and (c,) be sequences in R.
(1) If a,, < by, for all n and lim a, and lim b, both exist, then lim a, < lim b,.

n— o0 n—oo n—oo n—oo

(2) If a,, < b, < ¢, for all n and if lim a, = lim ¢, then lim b, = lim a,.
n—o00 n—oo n—00 n—00

6.7 Theorem: (Sequences and Absolute Values) Let (a,,) be a sequence in R.

(1) If hm a,, exists then hm lay,| = ‘ hm |-
(2) If hm lan| = 0 then hm a, = 0.

n—oo n—oo
(3) If |ay,| < by, for alln > k and lim b, =0 then lim a, = 0.

n—oo n—oo

6.8 Definition: Let (a,)n>r be a sequence in R. We say that (a,),> is increasing (or
non-decreasing) when a,, < a, 11 for all n > k, or equivalently when n < m = a,, < a,
for all integers n,m > k. We say that (a,)n>k is strictly increasing when a, < ap41
for all n > k. We say that (a,),>x is bounded above by the real number b when a,, <b
for all n > k, and in this case b is called an upper bound for the sequence. We say that
(@n)n>k is bounded above when it is bounded above by some real number b. We have
similar definitions for the terms decreasing (or nonincreasing), strictly decreasing,

bounded below and lower bound.

6.9 Theorem: (The Monotone Convergence Theorem) Let (a,) be a sequence in R.

(1) If (ay,) is increasing and bounded above by b, then (a,) converges and hm a, <b.

(2) If (ay,) is increasing and is not bounded above, then lim a, = co.
n—oo

(3) If (ay,) is decreasing and bounded below by ¢, then (a,) converges and lim a, > c.
n—oo

(4) If (ay,) is decreasing and is not bounded below, then lim a, = —oc.
n—oo

6.10 Definition: A sequence (ay),>x is said to be Cauchy when for every e > 0 there
exists an integer N > k such that for all integers n, m > k we have

n,m> N = |a, — an| < €.

6.11 Theorem: (The Cauchy Criterion for Sequences) Let (a,,) be a sequence in R. Then
(ayn) converges if and only if (a,) is Cauchy.

6.12 Theorem: (The Sequential Characterization of Limits of Functions) Let A C R,

let f: A— R, and let a,b € RU {£oo} where either a € A or a is a limit point of A.

Then lim f(z) = b if and only if lim f(x,) = b for every sequence (z,) in A\ {a} with
r—a n— o0

lim =z, = a.
n—oo

6.13 Definition: Let (a,)n>r be a sequence in R. We define the limit supremum and
the limit infemum of (a,),>r to be to be the the extended real numbers

limsupa, = hm sup {ak | k> n} liminf a, = hm inf {ak ’ k> n}
n—oo n—oo

The above two limits do exist as extended real numbers because for b, = sup{ag|k>n}

the sequence (by,) is decreasing, and for ¢,, = inf{ax|k>n} the sequence (¢,) is increasing.

6.14 Theorem: Let (a,)n>r be a sequence in R and let b € R.
(2) (ay,) is bounded above if and only if lim sup a,, < 0o,

n—oo
(2) (an,) is bounded below if and only if lim inf a,, > —o0,
n—oo
(3) lim a,, = b if and only if limsup a,, = liminf a,, = b.
n—oo n—oo n—oo



Series

6.15 Definition: Let (ay,),>r be a sequence. The series ) a, is defined to be the

n>k
sequence (S¢)¢>) where =

¢
Se= ) an=ay+ag1+ - +a.

n==k

The term S; is called the /' partial sum of the series > ay. The sum of the series,
denoted by nk

o.@]
S= > ap=ag+agr1+ag2+--,

n=~k
is the limit of the sequence of partial sums, if it exists, and we say the series converges

oo
when the sum exists and is finite. We remark that it is quite common to write »_ a,

n=k
(somewhat abusively) both to denote the sequence of partial sums (which may or may not

converge) and to denote its limit (when it does converge).

oo
6.16 Example: (Geometric Series) Show that for a # 0, the series > ar™ converges if
n=1

and only if |r| < 1, and that in this case
= a’r’k
zk ar-” = 1—r -
Solution: The /** partial sum is
oo
Se= > ar" =ar® +ar*tt +arkt2 4. 4 art.
n=k
When r = 1 we have Sy = a(l — k + 1) and so é]im Sy = 00 (+00 when a > 0 and
—00

—oo when a < 0). When r # 1 we have 7Sy = ar®*t! + ar®*2 + ... 4 ar® 4+ ar®!, so
Sy —rSy = ar® — art*t = ark (1 — Tﬁ_k—i—l) and so

S, = ark(ll—zi_k+1)
When r > 1, Zli)rgo rf=F 1 = 50 and so elig)lo Sy = £00 (+00 when a > 0 and —oo when
a < 0). When r < —1, Zli)rrolo r*=*+1 does not exist, and so neither does KILIEO Se. When
|| < 1, we have Kli)rgo =+ 1 = 0 and so eli)rgo Sy = fi, as required.
0 gntl
6.17 Example: Find Z 21
n=—1

Solution: This is a geometric series. By the formula in the previous example, we have

0 gntl o0 9 (3

-1
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n=—1 n=—1



— n? 4+ 2n’

= 1
6.18 Example: (Telescoping Series) Find Z
1

Solution: We use a partial fractions decomposition. The ¢!

‘ 1 : ; % 1 : 1 1
SFZMZZ(g—n—H>=§Z<H—n—+z)

partial sum is

since all the other terms cancel. Thus the sum of the series is

S Jim =4 (1+4) = 1.

6.19 Theorem: (First Finitely Many Terms do Not Affect Convergence) Let (a,)n>r be

a sequence in R. Then for any integer m > k, the series > a, converges if and only if the

series Y. a, converges, and in this case n2k

nzm 0o 00
> G = (ak+ak+1+"'+am_1) + > an.
n=~k n=m
¢ ¢
Proof: Let Sy = > a, and let Ty = > a,. Then for all £ > m we have

n=k n=m
S@ = (ak+ak+1+"'+am—1) +T£7
and so (Sp) converges if and only if (7y) converges, and in this case

lim S, = (ak +ag+1 + -+ am_l) + lim T,.
£—00 L— 00

6.20 Note: Since the first finitely many terms do not affect the convergence of a series,

we often omit the subscript n > k in the expression » . a,, and simply write »_ a,,, when
n>k
we are interested in whether or not the series converges. On the other hand, we cannot

o0
omit the subscript n = k when we are interested in the value of the sum > a,.
n=k

6.21 Definition: When we approximate a value x by the value y, the error in our
approximation is |z — y|.

6.22 Note: If >  a, converges and ¢ > k then, by the above theorem, so does >  a,,.
n>k n>0+1
00 4
If we approximate the sum S = > a, by the £ partial sum S, = 3_ a,, then the error
n=~k n=~k
in our approximation is

o
Yo ap|.

n=~+1

5- 51| =




6.23 Theorem: (Linearity) If ) a, and )b, are convergent series then
o0 oo

(1) for any real number ¢, Y ca,, converges and Y ca, =c Y. a,, and
n=~k n=k

(2) the series > (a, + by,) converges and > (an +by) = > an+ Y. by.
n=~k n=k

n==k

Proof: This follows immediately from the Linearity Theorem for sequences.
6.24 Theorem: (Series of Positive Terms) Let ) a,, be a series.
oo

(1) If a, > 0 for all n then either ) a,, converges or »_ a, = 00.
n=k

(2) If a, <0 for all n then either ) a,, converges or Y. a, = —00.
n=~k

Proof: This follows from the Monotone Convergence Theorem for sequences. Indeed if
a, > 0 for all n > k, then (Sp),> is increasing (since Syy1 = S¢ + agy1 > S for all £).
Either (S¢) is bounded above, in which case (Sy) converges hence ) a,, converges, or the
sequence (Sy) is unbounded, in which case glim Sy = oo hence > a, = co.

— 00 n=k
6.25 Theorem: (Cauchy Criterion for Series) Let  _ a,, be a series. Then ) a,, converges
if and only if for all € > 0 there exists N such that for all £, m € 7Z,

m

>, an

n=~0+1

m>{>N — < €.

Proof: This follows from the Cauchy Criterion for Sequences, applied to the sequence of
partial sums. Indeed (S;) converges if and only if for all € > 0 there exists NV such that
m>{>N = |S,, —S¢| <e¢, and we have

m 4 m
Yooan— Y. an ST an.
n=k n=k

n=~+1

|Sm - S€| =




Convergence Tests

6.26 Theorem: (The Divergence Test) If > a,, converges then lim a,, = 0. Equivalently,

n— oo

if lim a, either does not exist, or exists but is not equal to 0, then ) a,, diverges.
n—oo

oo
Proof: Suppose that ) a, converges, and say Z an = S. Let Sy be the (" partial sum.
=k

Then we have elim Sy =85= hm Se_1, and we have ag =Sy — Sp_1, and so
—00 £—00

lim ap = lim Sy — lim Sy_1=5—-5=0.
{— 00 L—00 L— 00
6.27 Example: Determine whether > e!/™ converges.

Solution: Since lim /" =¥ =1, S el/™ diverges by the Divergence Test.

n— oo

6.28 Note: The converse of the Divergence Test is false. For example, as we shall see
below, > 1 diverges even though lim 1 =0.

n—o0

6.29 Theorem: (Integral Test) Let f(x) be positive and decreasing for x > k, and let
a, = f(n) for all integersn > k. Then > a,, converges if and only if / f(x) dz converges,
k

and in this case, for any { > k we have

- flx)dz < i an < /oof(x)dx
+1 n=~¢+1 V4

Proof: Let T}, be the m'™ partial sum for > ap,s0T, = > a,. Note that since
n>0+1 n=~¢(+1
f(x) is decreasing, it is integrable on any closed interval. Also, for each n > ¢ we have

an = f(n) < f(x) for all z € [n — 1,n], SO/ flx dx>/n a, dr = a, and so

Tm: Z/fdx—/f dm</f
=041
Since f(n) = a,, is positive, the sequence (73,,) is increasing. If / f(x) dx converges, then

(T},) is bounded above by / f(x)dz, and so it converges with hm T, < / f(z
‘

Similarly, for each n > ¢ we have a,, = f(n) > f(x) for all x € [n,n + 1] so that
n+1 n+1
/ f(z)dx < / andr = a, and so

Tn= = /n da:—/m+1f(x)dx.

- n=~0+1 £+1

(o) m—+1 [ee) (')
If/ f(x) dx converges, then hm T > lim f(x)dx = f(z) dx. If/ f(x)dx
k 0+1 k

m+1
diverges, then lim f(x)dxr = o0, and so lim T, = oo too, by Comparison.



6.30 Example: (p-Series) Show that the series ) nip converges if and only if p > 1. In
. . . 1 3. n>1
particular, the harmonic series ) - diverges.

Solution: If p < 0 then nli_)n;o nip = oo and if p = 0 then nh_}rxgo nip = 1, so in either case ) nip

diverges by the Divergence Test. Suppose that p > 0. Let a, = n—lp for integers n > 1,
and let f(z) = = for real numbers z > 1. Note that f(x) is positive and decreasing for
z > 1 and a, = f(n) for all n > 1. Since we know that [, f(z)dxz converges if and only
if p > 1, it follows from the Integral Test that ) a, converges if and only if p > 1.

L

[o.@]
6.31 Example: Approximate S = ) # so that the error is at most {55-
n=1

Solution: We let a,, = # and f(r) = 517 so that we can apply the Integral Test. If we

212
choose to approximate the sum S by the ¢*" partial sum Sy, then the error is

= * 11%° 1
E:S—Se: Z ang/ mdl’:[—%} :ﬂ7
n=_+1 ) ¢

and so to insure that £ < Wlo we can choose ¢ so that i < ﬁ, that is ¢ > 50. Since it
would be tedious to add up the first 50 terms of the series, we take an alternate approach.

The Integral Test gives us upper and lower bounds: we have

B f(@)de < S-S, < /Oof(a:)da:
l+1 ¢

1
2(11+1) SS-=51<4

1 1

Sg—Fm <5< Sg—{—ﬁ.
If approximate S using the midpoint of the upper and lower bounds, that is if we make
the approximation S = S, + % (ﬁ + 2(%”), then the error E will be at most half of the

difference of the bounds:

B < % <% - 2(411)) - 4£(£1+1) :

To get £ < Flo we want 4l(l1+1) < ﬁ, that is £ (£ 4+ 1) > 25, and so we can take £ = 5.
Thus we estimate

~ 1/1 1y 1,1 1 1 1 1 1 _ 5929
S=S+5(f5+1)=s+s+tsTamtataota— o0

(Incidentally, the exact value of this sum is 71’—2 )

6.32 Theorem: (Comparison Test) Let 0 < a,, < b, for all n > k. Then if > b,
converges then so does Y a,, and in this case,

(e @]
an < > by .
k n=~k

oo

n=

¢ ¢
Proof: Let Sy = > a, and let Ty = > b,. Since 0 < ay, b, for all n, the sequences (Sy)
n=~k

n==k

and (T}) are increasing. Since a,, < b, for all n we have Sy < T} for all £. Suppose that
> b, converges with say > b, = T so that Zlim T, =T. Then S, < T, < T for all ¢, so
— 00

n==k
(S¢) is increasing and bounded above, hence convergent, and lim Sy, < lim Tj.
{— 00 f— 00



6.33 Example: Determine whether )’
n>0

\/n}”i—i—l converges.

Solution: Note that 0 < 7 3+1 < \/%3 = n31/2 foralln > 1, and > # converges since it
is a p-series with p = %, and so ) \/n%”T also converges, by the Comparison Test.

6.34 Example: Determine whether ) tan% converges.
n>1

Solution: For 0 < z < 5 we have x < tanz, so for n >1wehave 0 < = < tan =. Since the
harmonic series > + - diverges, the series Z tan — also diverges by the Comparlson Test.

o.@]
6.35 Example: Approximate S = Zo % so that the error is at most {55
!
Solution: If we make the approximation S = S, = ) % then the error is
n=0
>
E=S-5= Y %

n!
n=~0+1

_ 1
- (zj&n! + (eiz)! + (0+3)! + (ej4)! +

1 1 1 1
(S]] (1 t e T e T Ty T )

1 1 1 1
S @ (1 et e e T )

_ 1 1
 (e+1)! 1
M-
_ 042
= rn)E+1!
where we used the Comparison Test and the formula for the sum of a geometric series. To
get B < m we can choose [ so that % < 100 By trial and error, we find that we

can take [ = 4, so we make the approximation
~ 65
S8y =1+1+5+5+5 =5
(Incidentally, the exact value of this sum is e, so we have approximated the value of e).

6.36 Theorem: (Limit Comparison Test) Let a, > 0 and let b, > 0 for all n > k.
Suppose that lim % _ . Then

n—oo n
(1) if r = o0 and Y _ a,, converges then so does » . by,
(2) if r =0 and ) b,, converges then so does ) a,, and
(3) if 0 < r < oo then ) a, converges if and only if > b, converges.

Proof: If lim §» = oo, then for large n we have 3= > 1 so that a, > by, and so if > an
n—oo °n n
converges, then so does > b,, by the Comparison Test. If lim (;—: = 0 then for large n we

have a— < 1s0 a, < by, and so if Y _ b, converges then so does > a, by the Comparison

Test. Suppose that lim Z” =r with 0 < r < co. Choose m so that when n > m we have
n—oo “mn

b r| 5 so that a” < 3T and hence
0< b, <ap < b,

If > ay converges, then ) £b, converges by the Comparison Test, and hence }_ b, con-
verges by linearity. If Y b, converges, then ) %’“bn converges by linearity, and hence so
does ) a,, by the Comparison Test.



6.37 Example: Determine whether ) \/ﬁ converges.

Solution: Note that we cannot use the same argument that we used earlier to show that
> \/%H converges, because 7n ;13 = < n3/2 but 7 3 = > o5 /2 We use a different approach.

Let a, =

and let b, = —3 /2 Then lim ¢ = lim —A— = lim L =1, and

;
vVn3—1 b —_
n—oo °n n—oo n— oo 1——3
n

> bn = Y —37 converges (its a p-series with p = 3), and so Ean converges too, by the
Limit Comparison Test.

6.38 Theorem: (Ratio Test) Let a,, > 0 for all n > k. Suppose lim ““+1 =r. Then
n—oo 9n
(1) if r < 1 then ) a, converges, and
(2) if r > 1 then lim a, = o0 50 ) a, = 0.
n—oo

An+41

Proof: Suppose that lim =r < 1. Choose s with r < s < 1, and then choose m so

n— o0 n
that when n > m we have a;—:l < s and hence a,4+1 < sa,. Fix k > m. Then ay1 < sag,
Ao < Sapiq < S2ap, Apes < Sapgpo < sSay, and so on, so we have a,, < b, = s" *a,, for
all n > k. Since > b, is geometric with ratio s < 1, it converges, and hence so does ) a,
by the Comparison Test.

Now suppose that lim a;“ =r > 1. Choose s with 1 < s < r, then choose m so
n—oo n

that when n > m we have Z—“ > s and hence a, 11 > sa,. Fix k > m. Then as above

an > by, = s" ¥*qy, for all n > k, and lim b,, = 0o, so lim a, = oo too.
n—oo n—oo

6.39 Example: Determine whether 5n—T,L converges.

s _ 5" ant1 _ 5"Ft pl 5
Solution: Let a, = >r. Then o T D B T aaT 0 as m — oo, and so Y a,

converges by the Ratio Test.

S|=

6.40 Note: If lim a;‘# =1, then > a,, could converge or diverge. For example, if a,, =
n—oo “n

— lasn — oo and ) a,, diverges, but if b,, = - —7 then Z“ = > — 1

An+4+1
then = n+1 n+1)2 +1)

as n — oo and ) b, converges.

6.41 Theorem: (Root Test) Let a,, > 0 for all n > k. Let r = limsup {/a,,. Then

n— oo

(1) if r <1 then ) a, converges, and
(2) if r > 1 then lim a, = 00 50 ) a, = 0.
n—oo

Proof: The proof is left as an exercise. It is similar to the proof of the Ratio Test.

2
6.42 Example: Determine whether » (L converges.

n+1)n

2 n
Solution: Let a, = (nLH)n . Then a, = (nLH)n = e”ln(m), and by I’'Hopital’s Rule

IERT +1 IERT z(z+1) —x2
we have nhm nln( +1) = th —l = th mlz = wlm @rn? = —1, and so
lim {/a, =e ' < 1. Thus > an converges by the Root Test.

n—oo



6.43 Definition: A sequence (a,),>x is said to be alternating when either we have
an = (=1)"|ay| for all n > k or we have a,, = (—1)""1|a,| for all n > k.

6.44 Theorem: (Aternating Series Test) Let (a,)n>r be an alternating series. If the

sequence (|a,|) is decreasing with lim |a,| =0 then > a, converges, and in this case
n— oo
n>k

oo

> an

n==k

<lag|.

Proof: To simplify notation, we give the proof in the case that k£ = 0 and a,, = (—1)"|a,|.

¢
Suppose the sequence (]an|) is decreasing with |a,| — 0. Let Sy = >_ a,,. We consider
n=0
the sequences (S¢) and (S2¢—1) of even and odd partial sums. Note that since (|a,|) is
decreasing, we have

Sop — Sap—1) = |aze| — |aze—1| <0
so (S2¢) is decreasing, and we have
Sop = |ao| — |ar| + |az| — |as| + - -+ + |aze—2| — |age—1| + |aze]
= (lao| = la1]) + (laz| = las|) + -+~ + (laze—2| = |aze—1]) + |aze[ = 0

and so (S2¢) is bounded below by 0. Thus (S2¢) converges by the Monotone Convergence
Theorem. Similarly, (Se¢—1) is increasing and bounded above by |ag|, so it also converges,
and we have elim Sae—1 < lag].

— 00

Finally we note that since |a,| — 0, taking the limit on both sides of the equality
|age| = Sa¢ — Sap—1 gives 0 = lim Sop — lim Soy_1, and so we have lim Sy = lim Sop_;.
f— 00 {— 00 f— 00 {— 00

It follows that (S¢) converges with lim Sy = lim Sop = lim Syp—1 < |ag|.
L— 00 £— 00 £—00

6.45 Example: Determine whether ) % converges.

n>2
. —1)"1lnn nz
Solution: Let a, = % Let f(x) = lﬁ so that |a,| = f(n). Note that
, _%‘ﬁ_lnm'ﬁ_Z—lnx
(@) = x Co2x3/2

so we have f'(z) < 0 for z > e?. Thus f(z) is decreasing for z > €2, and so (|a,|) is
decreasing for n > 8. Also, by I’'Hopital’s Rule, we have
1

5 ) = o Ve = g = i e =0
2V

and so |a,| — 0 as n — oo. Thus ) a, converges by the Alternating Series Test.

10



6.46 Example: Approximate the sum S = Z (2 ), so that the error is at most

000
Solution: Let a, = ((2 )), . Note that
lant1] _ _2m+tt  (@2n)! _ 2 _ 1
lan] — (@ni2) 27 T @nt2)@ntl) . (niD)(2ntl) -
Since % <1 for all n > 0, we know that (|a,|) is decreasing. Since lim lansil — g we
n n—oo

lan|
know that ) |a,| converges by the Ratio Test, and so |a,| — 0 by the Divergence Test.
This shows that we can apply the Alternating Series Test.

¢
partial sum S; = > a,, then by the Alternating
n=0

If we approximate S by the ¢*h

Series Test, the error is

gl+1
S — S| = ‘ an| < laess .
=158 =] o < Jacns| = iy
To get £ < 2000 we can choose ¢ so that (QZE—:;)! < 2000 By trial and error we find that
we can take ¢ = 3. Thus we make the approximation
~ _ 2, 22 1 _ 7
;32253——1——§T+‘m'— _‘1__1+____§i_'ﬂ§

(We shall see later that the exact value of this sum is cos \/5)

6.47 Definition: A series ) a, is said to converge absolutely when ) |a,| converges.

n>k n>k
The series is said to converge conditionally if >  a, converges but »_ |a,| diverges.
n>k n>k

6.48 Example: For 0 < p < 1, the p-series ) nip diverges, but since (ni) is decreasing

P

towards 0, > (_nlp)n converges by the Alternating Series Test. Thus for 0 < p < 1, the

alternating p-series » (_n% converges conditionally.

6.49 Theorem: (Absolute Convergence Implies Convergence) If > |a,| converges then
so does > ay.

Proof: Suppose that Y |a,| converges. Note that —|a,| < a,, < |a,| so that
0 <ay + |ay| < 2|ay| for all n.

Since ) |ay,| converges, > 2|a,| converges by linearity, and so ) | (an + |an\) converges by
the Comparison Test. Since Y |a,| and Y (ay + |a,|) both converge, 3 a, converges by
linearity.

6.50 Example: Determine whether ) % converges.

Solution: Let a, = =%*. Then |a,| = % < L. Since ) - converges (its a p-series
with p = 2), > |a,| converges by the Comparison Test, and hence > a,, converges too,
since absolute convergence implies convergence.
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6.51 Theorem: (Multiplication of Series) Suppose that > |ay| converges and »_ b,
n>0 n>0

n
converges and define ¢, = »_ apb,_. Then Y ¢, converges and
k=0 n>0

Zenm(Ze) (Em)

Proof: Tet A = 5 am Be = 3 by Co= 3 ems A= St B= 3 by K = 32 [an]
and £y = B — BZ.L:TOhen we haggo " " " "
Cy = aobo + (aob1 + aibo) + (aobz + aiby + azbg) + - - - + (agbe + - - - + agbo)
=aoBy+a1By—1 +aBy_o+ -+ ayBy
=ao(B—E))+a1(B—Ei_1)+ -+ a(B — Ep)
= AB — (aoE + a1Ep—1 + - + agEyp)
and so

|Ce — AB| < (A — A)B| + |aoEr + a1Eg—1 + - -+ + agEp| .

Let € > 0. Choose m so that j > m = E; < 5%. Let E = max {|Ey|,---,|Em|}. Choose
!
L > m so that when £ > L we have ) |a,| < 5% and we have |4, — A|[B| < §. Then

for ¢ > L,
|Ce — AB| < |(A¢ — A)B| + |aoEe + -+ + ar—m-1Emi1| + |ae—mBEm + - + arEo|

n=~4{—m

f—m—1 14
<5+ (X lol)gie + (3 Jaul)E

<5+ K3z +s5F=c¢.

6.52 Example: Find an example of sequences (ay,,),>0 and (by,),>0 such that > a, and
n>0

n
> by, both converge, but > ¢, diverges where ¢, = > agby_.

n>0 n>0 k=0
Solution: Let a,, = b,, = i/_% for n > 0, and let
= 3 bt = (—1)" 3 L .
= bk = V" L e

Recall that for p,q > 0 we have /pq < %(p +q) (indeed (p + q)? — 4pq = p? — 2pq + ¢ =
(p—q)? > 0,50 (p+q)* > 4pg). In particular \/(k+1)(n—k+1) < 2(n+2) and so

n
len| > >0 n%_? = 204D Thus lim len| # 0 so > ¢, diverges by the Divergence Test.
k=0 n—oo

n+2

12



6.53 Theorem: (Fubini’s Theorem for Series) Let a, , € R for all integers n,m > 0.

o0
Suppose that . |aym| converges for each n > 0 and that Z ( > |an7m|> converges.
m>0 n>0 N

Then Y apm converges for all n > 0, Z ( > ap m) converges, > an m converges for

m>0 n>0 m=0 n>0

allm >0, Z (E an, m) converges, and

m>0 n=0

S (5 nn) =3 (S 0

n=0 m=0

[ee]
Proof: First we claim that )" |a, | converges for all m > 0, Z ( |an7m|) converges,
0

n>0 m>0 n=

and Z ( z_: \an,m]> = Z (Z ]an,m|) . For all n,m we have |an m| < > |ank|, and

m=0 n=0 k=0

Z (Z lan, k\) converges, so we know that ) |a, | converges for all m > 0, by the
n>0 n>0

Comparison Test. Let £ > 0 and let € > 0. Since each sum ) |ay ,| converges, we can
n>0
choose L so that when [ > L we have 3. |ap,| < 757 for allm =0,1,---, k. Then for
n=Il+1
[ > L we have

k

Z (nij:o Ian,m|)

m=0

I
M»

0

m

(z gl + |anm|) oy (3 lanml+ 251

n=Il+1 m=0 \T 0

(gmy) +e:§(mizo al) e
)+

k o0
Since € was arbitrary, we have Z (Z |an,m|) Z ( Z |am, n|) Since the sequence
n=0

=l

m=

! o0 o o0
<30 (5 famal) e 3
n=0 \m=0 n=0 \m=0

m=0 n=0
o0
of partial sums Z (Z lan, m]) is increasing and bounded above by Z ( Z |am, n[)
m=0 \n=0 n=0
it converges and we have Z (Z lan, m|) Z (Z lan, m|) By symmetry, we obtain

m=0 m=0
the opposite inequality, and the claim is proved

For all n > 0, since ) |anm| converges we know that > a ., converges and that
m>0 m>0

> an,m‘ < Z |a@n,m| by the Absolute Convergence Theorem. Since Z ( > an, m|)
m=0 m=0

n>0 \m=0

converges,

converges by the Comparison Test, and so Z ( > an m> also
n>0 m=0

3
[ \/
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converges by the Absolute Convergence Theorem. Similarly, > a, ., converges for all
n>0

m > 0 and Z (Z an, m> converges.

m>0 n=0

Let € > 0. Since Z ( > ]anm|) and Z (Z |anm|) both converge, we can
n>0 m>0 =0
> o0
choose k and [ so that Z (Z |anm|) < § and Z (Z |anm|> . Then
n=Il+1 m=k+1
o0 o0 k 0o
Z(Z anm):z<2 Anm+ Y an’m>
n—0 n—0 m=0 m=k+1
et k o o
3 (o) 13 (5 o)
! k o0 k o0 o
S (Zan)+ 3 () (£ an
n=0 \m=0 n=l+1 \m=0 n—0 \m=k+1
and so we have
e o) k 0 k 0 [e'e)
Z < Z an,m) - Z ( Z an,m) S Z ( Z an,m) + Z an,m
n=0 \"M=0 n=0 \m=0 n=l41 \"=0 n=0 \"m=k+1
0 k 0 e’
<)X an,m""'z > tnm
n=Il+1 m=0 n=0 |m=Fk+1
<y (z \an,mi) +Z( > \an,ml)
n=l4+1 \M= n=0 \m=k+l1
o k 0 [e%s)
= > (Slanl)+ X (£ fannl)
n=Il+1 m=0 m=k+1 n=0
> o0 > o
<3 (Slanl)+ X (£ lannl)
—I+ m=0 m=k+1 n=0

Similarly we have

S (S o) - 3 (£ 00)

m=0 n=0 m=0 n=0
& o0 > o0
Ej(Zan,m)—E:(Zam) <
n=0 m=0 m=0 n=0

Since € was arbitrary, we have E ( Y nm

n—0 m=0

N———
I
[]e
3/_\
1078
S
S
3
N———
&
n
=
@
Q
=
=
@
(o]
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