
Chapter 5. Differential Equations

Differential Equations

5.1 Definition: An (ordinary) differential equation, or DE, is an equation which
involves a function, say y = y(x), of a single variable x, along with some of its derivatives
y′(x), y′′(x), etc. The order of a DE is the highest of the orders of the derivatives which
occur in the equation. For example, the equation y′′(x) + 2y′(x)y(x)3 = sinx is a second
order DE.

A solution to a DE is a function y = y(x) which makes the equation true for all
x in some interval. A DE can have many solutions. To solve a DE you must find the
general solution, which means to find all possible solutions. Often, the general solution
will involve arbitrary constants and the number of arbitrary constants will be equal to the
order of the DE.

Sometimes we require that a solution to a DE satisfies one or more additional condi-
tions, called initial conditions. A DE together with an initial condition (or a set of initial
conditions) is called an initial value problem, or an IVP. Often, in an IVP, the number
of initial conditions is equal to the order of the DE, and there is exactly one solution.

5.2 Example: Find a solution of the form y = ax2 + bx+ c to the DE y′′y′ + x2 = y.

Solution: Let y = ax2 + bx + c. Then y′ = 2ax + b and y′′ = 2a and so we have
y′′y′+x2 = y ⇐⇒ 2a(2ax+ b) +x2 = ax2 + bx+ c ⇐⇒ x2 + 4a2 x+ 2ab = ax2 + bx+ c.
Equating coefficients gives 1 = a, 4a2 = b and 2ab = c, and so we must have a = 1, b = 4
and c = 8. Thus the only such solution is y = x2 + 4x+ 8.

5.3 Example: Find two distinct constants r1 and r2 such that y = er1x and er2x are both
solutions to the DE y′′ + 3y′ + 2y = 0, show that y = a er1x + b er2x is a solution for any
constants a and b, and then find a solution to the DE with y(0) = 1 and y′(0) = 0.

Solution: Let y = erx. Then y′ = r erx and y′′ = r2 erx and so y′′ + 3y′ + 2y = 0 ⇐⇒
r2 erx+3r erx+2 erx = 0 ⇐⇒ (r2+3r+2)erx = 0 ⇐⇒ (r+1)(r+2) erx = 0 ⇐⇒ r = −1
or r = −2. Thus we can take r1 = −1 and r2 = −2.

Now, let y = a er1x + b er2x = a e−x + b e−2x. Then y′ = −a e−x − 2b e−2x and
y′′ = a e−x + 4b e−2x and so we have

y′′ + 3y′ + 2y = a e−x + 4b e−2x − 3a e−x − 6b e−2x + 2a e−x + 2b e−2x = 0 .

This shows that y = a e−x + b e−2x is a solution to the DE. Also, note that y(0) = a + b
and y′(0) = −a − 2b, and so to get y(0) = 1 and y′(0) = 0 we need a + b = 1 and
−a − 2b = 0. Solve these two equations to get a = 2 and b = −1. Thus the required
solution is y = 2 e−x − e−2x.
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5.4 Example: A rock is thrown downwards at 5 m/s from the top of a 100 m cliff and
it falls to the ground. Assuming that the rock accelerates downwards at 10 m/s2, find the
speed of the rock when it lands.

Solution: Let x(t) be the height of the rock, in meters, after t seconds. We must solve
the IVP which consists of the 2nd order DE x′′(t) = −10 and the two initial conditions
x′(t) = −5 and x(0) = 100. We have

x′′(t) = −10∫
x′′(t) dt =

∫
−10 dt

x′(t) = −10t+ c1

where c1 is a constant. Since x′(0) = −5 we find that c1 = −5, so we have

x′(t) = −10t− 5∫
x′(t) dt =

∫
−10t− 5 dt

x(t) = −5t2 − 5t+ c2

where c2 is another constant. Since x(0) = 100 we have c2 = 100 and so the solution to
the IVP is x(t) = −5t2 − 5t+ 100. To find out when the rock lands, we solve x(t) = 0:

0 = −5t2 − 5t+ 100

0 = t2 + t− 20

= (t+ 5)(t− 4)

so it lands when t = 4. Since x′(4) = −45, the rock lands at a speed of 45 m/s.
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Direction Fields

5.5 Definition: The graph of a solution y = y(x) to a DE is called a solution curve.

5.6 Note: It is easy to sketch the solution curves to any DE of the form

y′(x) = F (x, y(x))

in the following way. First choose many points (x, y), and for each point (x, y) find the
value of F (x, y). If y = y(x) is any solution to the DE, so that y′(x) = F (x, y), then
F (x, y) is the slope of the solution curve at the point (x, y). At each point (x, y), draw a
short line segment with slope F (x, y). The resulting picture is called the slope field or
the direction field of the DE. If we choose enough points (x, y) it should be possible to
visualize the solution curves; they follow the direction of the short line segments.

To draw the direction field of the DE y′(x) = F (x, y) by hand, it helps to first lightly
draw several isoclines; these are the curves F (x, y) = m, where m is a constant. Along
the isocline F (x, y) = m we then draw many short line segments of slope m.

To draw the graph of the solution to the IVP y′(x) = F (x, y), with y(x0) = y0, sketch
the direction field for the DE y′(x) = F (x, y) and then draw the solution curve which
passes through the point (x0, y0).

5.7 Example: Sketch the direction field for the DE y′ = x− y, then sketch the solution
curves through each of the points (x0, y0) = (0,−2), (0,−1), (0, 0) and (0, 1).

Solution: The isoclines are the lines x − y = m. To sketch the direction field, we first
lightly draw the lines x − y = m for several values of m. These are shown below in
yellow for m = − 7

2 ,−
6
2 ,−

5
2 , · · · ,

5
2 ,

6
2 ,

7
2 . Then, along each isocline, we draw many short

line segments of the appropriate slope; on the isocline x − y = m we draw line segments
of slope m. These are shown in green. The solution curves through each of the points
(x0, y0) = (0,−2), (0,−1), (0, 0) and (0, 1) are shown below in blue.
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Euler’s Method

5.8 Note: We can approximate the solution to the IVP y′(x) = F
(
x, y(x)

)
with y(a) = b

using the following method, which is known as Euler’s Method. Pick a small value ∆x,
which we call the step size. Let x0 = a and y0 = b. Having found xn and yn, we let

xn+1 = xn + ∆x

yn+1 = yn + F (xn, yn) ∆x .

The solution curve y = f(x) is then approximated for values x ≥ a by the piecewise
linear curve whose graph has vertices at the points (xn, yn). Note that the slope of the
line segment from (xn, yn) to (xn+1, yn+1) is equal to the slope of the direction field at
the point (xn, yn). If we also wish to approximate the solution for values x ≤ a, we can
construct points (xn, yn) with n < 0 by letting

xn−1 = xn −∆x

yn−1 = yn − F (xn, yn) ∆x .

5.9 Example: Consider the IVP y′ = x − y2 with y(0) = 0. Sketch the direction field
for the given DE along with the graph of the solution curve y = f(x). With the help of a
calculator, apply Euler’s method with step size ∆x = 1

2 to approximate the value of f(3).

Solution: The isocline (curve of constant slope) y′ = m is the sideways parabola m = x−y2,
or x = y2 + m. The isoclines are shown in yellow, the slope field is shown in green, and
the solution curve with y(0) = 0 is shown in blue.

We let x0 = 0 and y0 = 0. For k ≥ 0 we set xk+1 = xk+∆x and yk+1 = yk+F (xk, yk)∆x,
where F (x, y) = x− y2. We make a table listing the values of xk, yk and F (xk, yk).

k xk yk F (xk, yk) = xk − yk2

0 0 0 0
1 0.5 0 0.5
2 1.0 0.25 0.9375
3 1.5 0.71875 0.9833984375
4 2.0 1.210449219 0.534812688
5 2.5 1.477855563 0.315942935
6 3.0 1.635827030

Thus we have f(3) ∼= y6 ∼= 1.6.
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Separable First Order Equations

5.10 Definition: A separable first order DE is a DE which can be written in the form

f
(
y(x)

)
y′(x) = g(x) .

for some continuous functions f(y) and g(x).

5.11 Note: y = y(x) is a solution to the separable DE f(y) y′ = g(x) when∫
f(y(x)) y′(x) dx =

∫
g(x) dx ,

and by the change of variables formula, we have

∫
f(y(x)) y′(x) dx =

∫
f(y) dy. So to

solve the DE, we rewrite it as f(y) dy = g(x) dx and then integrate both sides.

5.12 Example: Solve the DE y′ = x2y.

Solution: We write the DE as
dy

y
= x2 dx, assuming y 6= 0, and integrate both sides to get

ln |y| = 1
3x

3 + c

|y| = e
1
3x+c

y = ±ecex
3/3 = Aex

3/3 ,

where c is an arbitrary constant, and we set A = ±ec, so A is an arbitrary non-zero
constant. Notice that y = 0 is also a solution to the DE, so the general solution is
y = Aex

3/3, where A is an arbitrary constant.

5.13 Example: Solve the IVP
dy

dx
=

6x2

2y + cos y
with y(1) = π.

Solution: We rewrite the DE as (2y + cos y)dy = 6x2 dx then integrate both sides to get∫
(2y + cos y)dy =

∫
6x2 dx

y2 + sin y = 2x3 + c

where c is any constant. In this example we cannot solve for y explicitly as a function of x.
To find the solution which satisfies the initial condition y(1) = π, we substitute x = 1 and
y = π into the above implicit solution to get π2 + sinπ = 2 + c so we find that c = π2 − 2.

Thus the solution to the IVP
dy

dx
=

6x2

2y + cos y
, y(1) = π is given implicitly by

y2 + sin y = 2x3 + π2 − 2 .
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Linear First Order Equations

5.14 Definition: A linear first order DE is a DE which can be written in the form

y′(x) + p(x) y(x) = q(x)

for some continuous functions p(x) and q(x).

5.15 Note: There is a trick which can be used to solve the linear DE y′ + py = q. The
trick is to find a function λ = λ(x), called an integrating factor, such that λ′ = λ p so
that (λ y)′ = λ y′+λ′y = λ y′+λ p y. If we can find λ then we can solve the DE as follows:

y′ + p y = q

λ y′ + λ p y = λ q

(λ y)′ = λ q

λ y =

∫
λ q dx

y =
1

λ

∫
λ q dx

To find an integrating factor λ we must find a solution to the DE λ′(x) = λ(x)p(x). This
is a separable DE, so we rewrite it as (1/λ)dλ = p(x) dx and integrate both sides∫

dλ

λ
=

∫
p(x) dx

ln |λ| =
∫
p(x) dx

|λ| = e

∫
p(x) dx

λ = ±e
∫
p(x) dx

Since any integrating factor will do , we can take λ = e

∫
p(x) dx

, and when we solve the
integral

∫
p(x) dx it is not necessary to keep track of the constant of integration. We

summarize this in the following theorem.

5.16 Theorem: The general solution to the linear DE y′(x) + p(x)y(x) = q(x) is

y(x) =
1

λ(x)

∫
λ(x)q(x) dx , where λ(x) = e

∫
p(x) dx

.

5.17 Example: Find the general solution to the DE y′ − x2y = 0.

Solution: This DE is both separable and linear. We already found the solution to this DE
in the previous section by treating it at a separable DE. Now we will solve it again, using

our method for solving linear DEs. An integrating factor is λ = e

∫
−x2 dx

= e
−x3/3

, and

the solution is y =
1

λ

∫
0 dx = ex

3/3 c, where c is a constant.

6



5.18 Example: Find the solution to the IVP y′ + 2y = e−5x, y(0) = 1.

Solution: An integrating factor is λ = e

∫
2 dx

= e2x, and the solution to the DE is

y =
1

λ

∫
λ e−5x dx = e−2x

∫
e−3x dx = e−2x

(
− 1

3e
−3x + c

)
= − 1

3e
−5x + c e−2x ,

where c is an arbitrary constant. Since y(0) = 1, we have 1 = − 1
3 + c and so c = 4

3 . Thus
the solution to the IVP is y = 4

3e
−2x − 1

3e
−5x.

5.19 Example: Find the solution to the IVP y′ − 2xy = x, y(0) = 0.

Solution: An integrating factor is λ = e

∫
−2x dx

= e−x
2

, and the solution to the DE is

y =
1

λ

∫
xλ dx = ex

2

∫
x e−x

2

dx = ex
2(− 1

2e
−x2

+ c
)

= c ex
2 − 1

2 .

Since y(0) = 0 we have c = 1
2 so the solution to the IVP is y = 1

2 (ex
2 − 1).

5.20 Example: Solve the IVP xy′′ + y′ = 4x with y(1) = y(2) = 1.

Solution: Write u = y′ so that u′ = y′′. Then the DE can be written as xu′+u = 4x. This is

linear since we can write it as u′+ 1
x u = 4. An integrating factor is λ = e

∫
1
x dx

= eln x = x,
and the solution is

u =
1

x

∫
4x dx =

1

x
(2x2 + a) = 2x+

a

x

where a is a constant, that is y′ = 2x+
a

x
. Thus

y =

∫
2x+

a

x
dx = x2 + a lnx+ b

where b is a constant. To get y(1) = 1 we need 1 + b = 1 so b = 0, and to get y(2) = 1 we
need 4 + a ln 2 = 1 so a = − 3

ln 2 . Thus the solution is

y = x2 − 3 lnx

ln 2
= x2 − 3 log2 x .
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Applications

5.21 Definition: An orthogonal trajectory of a family of curves is a curve that in-
tersects each curve of the family orthogonally. For example, each straight line y = mx
through the origin is an orthogonal trajectory of the family of circles x2 + y2 = r2, where
r can be any positive constant.

5.22 Example: Find the orthogonal trajectories of the family of parabolas x = k y2,
where k is an arbitrary constant.

Solution: Differentiating x = k y2 we obtain 1 = 2ky y′ so the parabola x = k y2 has slope

y′ =
1

2ky
at each point. Since k =

x

y2
, the parabola has slope y′ =

1

2ky
=

y

2x
. Since the

orthogonal trajectories are perpendicular to the parabolas, their slope is y′ = −2x

y
. So to

find the orthogonal trajectories, we solve the DE y′ = −2x

y
. This is a separable DE, so we

rewrite it as y dy = −2x dx and integrate:∫
y dy =

∫
−2x dx

1

2
y2 = −x2 + c

x2+
y2

2
= c

Thus the orthogonal trajectories are the ellipses x2 +
y2

2
= c, where c is an arbitrary

positive constant. Some of the parabolas and ellipses in these families are shown below.
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5.23 Definition: A quantity y = y(t) is said to grow or decay exponentially if it
satisfies the DE y′(t) = k y(t) for some constant k. This DE is both separable and linear.
Let us solve it as a linear DE (as an exercise, try solving it as a separable DE). An

integrating factor is λ = e

∫
−k dt

= e−kt, and the general solution is

y =
1

λ

∫
λ · 0 dt = ekt

∫
0 dt = c ekt

where c is an arbitrary constant. Notice that c is equal to y(0), so the solution is

y(t) = y(0) ekt .

When f(0) and k are positive, we say that y grows exponentially. When f(0) > 0 and
k < 0 we say that y decays exponentially.

5.24 Example: Suppose that a bacteria culture grows exponentially. After 2 hours there
are 600 bacteria and after 8 hours the count is 75,000. Find a formula for the number of
bacteria after t hours, and determine when the count was 3,000.

Solution: Let y(t) be the count after t hours. Since the count grows exponentially, we have
y(t) = c ekt for some positive constants c and k. Since y(2) = 600 we have c e2k = 600,
and since y(8) = 75, 000 we have c e8k = 75, 000. We divide these two equations to get

c e8k

c e2k
=

75, 000

6, 000

e6k = 125

e2k = 5

so k = 1
2 ln 5. Since c e2k = 600 we have 5c = 600 so c = 120. Thus y(t) = 120e(

1
2 ln 5)t =

120(5t/2). The count was 3,000 when 120 · 5t/2 = 3000. Solve this to find that t = 4.

5.25 Example: A certain proportion of the carbon in all living plant and animal material
is the radioactive isotope C14. It is believed that this proportion has not changed in the
last several hundred thousand years. After a plant or animal dies, the amount of C14

decays exponentially. The half-life of C14 is about 5730 years, which means that after
5730 years, one half of the initial C14 will be left.

Suppose that a parchment is found which contains 70% as much C14 as it did initially.
Determine the age of the parchment.

Solution: Let y(t) be the amount of C14 remaining in the parchment after t years. Since
it decays exponentially, we have y(t) = y(0) ekt. Since y(5730) = 1

2y(0), we have

y(0) e5730 k =
y(0)

2

e5730 k =
1

2
5730 k = − ln 2

k =− ln 2

5730
.
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We want to find the value of t such that y(t) = .70 y(0), so we solve for t:

y(0)ekt = .7 y(0)

ekt = .7

kt = ln(.7)

t =
ln(.7)

k
= −5730 ln(.7)

ln 2
∼= 2950 .

Thus the parchment is about 2950 years old.

5.26 Note: Newton’s Law of Cooling (or Warming) states that the rate of cooling
(or warming) of an object is proportional to the temperature difference between the object
and its surroundings. That is, if T (t) is the temperature of the object at time t, and if K
is the constant temperature of the surroundings, then

T ′(t) = k(K − T )

for some constant k.

5.27 Example: A glass of water is taken from the refrigerator, where the temperature
is 4◦, and placed on a table, where the temperature is 20◦. After 6 minutes, the water is
found to be 11◦. Find the temperature of the water after another 3 minutes.

Solution: Let T (t) be the temperature of the water after t minutes. Then T ′(t) = k(20−T )
for some constant k. This is a linear DE since we can write it as T ′ + kT = 20k (its also

separable). An integrating factor is λ(t) = e

∫
k dt

= ekt, and the general solution is

T =
1

λ(t)

∫
20k λ(t) dt = e−kt

∫
20k ekt dt = e−kt(20ekt + c) = 20 + c ekt ,

where c is a constant. Since T (0) = 4 we have 4 = 20+c so c = −16. Thus T (t) = 20−16ekt.
Since T (6) = 11 we have 11 = 20− 16e6k, so e6k = 9

16 , and k = 1
6 ln( 9

16 ). Thus

T (t) = 20− 16e(
1
6 ln 9

16 )t = 20− 16
(

9
16

)t/6
= 20− 16

(
3
4

)t/3
,

and so T (9) = 20− 16
(
3
4

)3
= 20− 27

4 = 53
4 . The temperature after 9 minutes is 13.25◦.

5.28 Example: In a simple electric circuit with a battery, producing a voltage of E volts,
a resistor, of resistence R ohms, and an inductor, with an inductance of L henries, the
current I(t) at time t satisfies the DE

LI ′(t) +RI(t) = E .

Given that E = 12, R = 4, L = 2 and I(0) = 0, find I(t).

Solution: This DE is quite similar to the one that appears in Newton’s Law of Cooling (or
Warming). Put in the given values for E, R and L into the given DE to get 2 I ′+4 I = 12.

This is linear since we can write it as I ′+2 I = 6. An integrating factor is λ = e
∫

2 dt = e2t

and the general solution is

I = e−2t
∫

6 e2t dt = e−2t
(
3e2t + c

)
= 3 + c e−2t .

Put in I(0) = 0 to get 3 + c = 0 so that c = −3, and so we have I(t) = 3− 3 e−2t.
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5.29 Note: In a typical mixing problem, a solution containing a given concentration
c1 of some substance (maybe salt in water) enters a tank at a fixed rate r1. The mixture
is kept stirred, and it is drained at another rate r2. The problem is to find the amount
y(t) of substance in the tank at time t. We solve it by solving the DE y′(t) = r1c1 − r2c2,

where c2 is the concentration of the substance in the tank; that is c2 =
y

V
, where V is

the volume of the solution in the tank. If r1 and r2 are constant, then the volume is
V = V (0) + (r1 − r2)t. In general, V satisfies the DE V ′(t) = r1(t)− r2(t).

5.30 Example: A tank contains 20 kg of salt dissolved in 5000 L of water. Brine, at a
concentration of .03 kg/L, enters that tank at a rate of 25 L/min. The solution is kept
well mixed and drains from the tank at the same rate. Find the amount of salt in the tank
after 5 hours.

Solution: Let y(t) be the amount of salt in the tank, in kilograms, after t minutes. We
must solve the IVP y′ = r1c1 − r2c2, with y(0) = 20, where r1 = r2 = 25, c1 = .03,

and c2 =
y

V
=

y

5000
. The DE becomes y′ = (25)(.03) − (25)

y

5000
= .75 − y

200
, or

equivalently y′+ 1
200 y = 3

4 . This DE is linear (its also separable). An integrating factor is

λ = e

∫
1

200 dt
= et/200, and the general solution to the DE is

y(t) =
1

λ(t)

∫
3
4λ(t) dt = e−t/200

∫
3
4e
t/200 dt = e−t/200

(
150 et/200 + c

)
= 150 + c e−t/200 .

Since y(0) = 20 we have 150 + c = 20 and so c = −130. Thus the solution is

y(t) = 150− 130 e−t/200 .

After 5 hours (that’s 300 minutes), we have y(300) = 150− 130 e−3/2 ∼= 121, so there will
be about 121 kg of salt in the tank.

5.31 Note: According to Toricelli’s Law, when a liquid drains through a hole in a tank
of liquid, it flows through the hole at a speed which is proportional to the square root of
the depth of the water above the hole. If the liquid is non-viscous, the speed is

v ∼=
√

2gy

where g is the gravitational constant and y is the depth.

5.32 Example: A tank, in the shape of an inverted cone of radius 1 m and height 4 m,
is filled with water. Water then drains from a hole of area 25 cm2 at the bottom tip of
the tank. If the water drains at a velocity of v = 4

√
y m/s, where y m is the depth of the

water in the tank, then find the time at which the tank will be empty.

Solution: Since the water drains at speed v = 4
√
y from a hole of area A = 25

10000 = 1
400 (in

m2), we have V ′ = −Av = − 1
100

√
y, where V = V (t) is the volume of water in the tank at

time t. On the other hand, when the water is y m deep, the water in the tank forms a cone

of height y and radius 1
4 y, so the volume is V = 1

3 π
(
1
4 y
)2
y = 1

48 πy
3, and so we have

V ′ = 1
16 πy

2 y′. Equating these two expressions for V ′ we find that 1
16 πy

2 y′ = − 1
100 y

1/2,

so y satisfies the DE π
16 y

2 y′ = − 1
100

√
y which we can write as y

3
2 dy = − 4

25π dt. Integrate

both sides to get 2
5 y

5/2 = − 4
25π t + c. Put in y(0) = 4 to get c = 2

5 · 32, so we have
2
5 y

5/2 = 2
5 · 32− 4

25π t, that is y =
(
32− 2

5π t
)2/5

. The tank will be empty when y = 0, and
this happens when 2

5π t = 32, that is when t = 80π so it takes 80π seconds (that is about
4 minutes and 11 seconds) for the tank to empty.
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