
Chapter 3. Applications of the Definite Integral

Area Between Curves

3.1 Note: Suppose that f and g are integrable on [a, b] with f(x) ≤ g(x) for all x ∈ [a, b].
We can approximate the area of the region R given by

a ≤ x ≤ b , f(x) ≤ y ≤ g(x)

as follows. Choose a partition

a = x0 < x1 < · · · < xn = b

of [a, b] and choose sample points ck ∈ [xk−1, xk]. We divide the region R into strips with
the kth strip given by

xk−1 ≤ x ≤ xk , f(x) ≤ y ≤ g(x) .

The area ∆kA of the kth strip is approximately equal to the area of the rectangle with
base ∆kx = xk − xk−1 and height g(ck)− f(ck), that is

∆kA ∼=
(
g(ck)− f(ck)

)
∆kx .

The area of the entire region R is

A =
n∑
k=1

∆kA ∼=
n∑
k=1

(
g(ck)− f(ck)

)
∆kx .

We notice that the sum on the right is a Riemann sum for the function g(x)− f(x) on the
interval [a, b], so we define the exact area of the region R to be the limit of these Riemann
sums.

3.2 Definition: Suppose that f and g are integrable on [a, b] with f(x) ≤ g(x) for all
x ∈ [a, b]. We define the area of the region R given by

a ≤ x ≤ b , f(x) ≤ y ≤ g(x)

to be

A =

∫ b

a

g(x)− f(x) dx .

3.3 Example: Find the area of the region R which lies between the x-axis and the
parabola y = 1− x2.

Solution: The region R is given by −1 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2 and so the area is

A =

∫ 1

−1
1− x2 dx =

[
x− 1

3 x
3
]1
−1

=
(
1− 1

3

)
−
(
−1 + 1

3

)
= 4

3 .
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3.4 Example: Find the area of the region R which lies between the curves y = x2+3x+2
and y = x3 − 3x+ 2.

Solution: Let f(x) = x2 + 3x + 2 and g(x) = x3 − 3x + 2. First, let us find the points of
intersection of the two curves and determine where f(x) ≥ g(x). We have

f(x)− g(x) = (x2 + 3x+ 2)− (x3 − 3x+ 2) = −(x3 − x2 − 6x) = −x(x− 3)(x+ 2)

and so f(x) = g(x) when x ∈ {−2, 0, 3} with f(x) ≥ g(x) for x ∈ (−∞,−2] ∪ [0, 3] and
f(x) ≤ g(x) for x ∈ [−2, 0]∪ [3,∞). Next we make a table of values and sketch the curves.
The curve y = f(x) is shown in blue and the curve y = g(x) is shown in green.

x f(x) g(x)

−3 2 −16
−2 0 0
−1 0 4

0 2 2
1 6 0
2 12 4
3 20 20

20

10

0 2 4

The region R consists of two parts with the first part given by −2 ≤ x ≤ 0, f(x) ≤ y ≤ g(x)
and the second part given by 0 ≤ x ≤ 3, g(x) ≤ y ≤ f(x) and so the total area is

A =

∫ 0

−2
g(x)− f(x) dx+

∫ 3

0

f(x)− g(x) dx

=

∫ 0

−2
x3 − x2 − 6x dx+

∫ 3

0

−x3 + x2 + 6x dx

=
[
1
4 x

4 − 1
3 x

3 − 3x2
]0
−2

+
[
− 1

4 x
4 + 1

3 x
3 + 3x2

]3
0

= −
(
4 + 8

3 − 12
)

+
(
− 81

4 + 9 + 27
)

= 16
3 + 63

4 = 253
12 .

3.5 Example: Find the area of a circle of radius r.

Solution: The area of a circle of radius r is equal to 4 times the area of the region given
by 0 ≤ x ≤ r, 0 ≤ y ≤

√
r2 − x2, and so the area of the circle is

A = 4

∫ r

0

√
r2 − x2 dx .

To solve the integral, we make the substitution r sin θ = x so that r cos θ =
√
r2 − x2 and

r cos θ dθ = dx to get

A =

∫ r

x=0

4
√
r2 − x2 dx =

∫ π/2

θ=0

4r cos θ · r cos θ dθ =

∫ π
2

0

4r2
(
1
2 −

1
2 cos 2θ

)
dθ

= r2
∫ π/2

0

2− 2 cos 2θ dθ = r2
[
2θ − sin 2θ

]π/2
0

= r2(π − 0) = π r2 .
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3.6 Example: Find the area of the region R which lies between the curves y = x− 1 and
y2 = x+ 1.

Solution: The line y = x − 1 is shown in blue and the parabola y2 = x + 1 is shown in
green. y = x− 1

y =
√
x+ 1

y = −
√
x+ 1

We now find the area in two ways. For the first solution, we divide the given region along
the y-axis into two regions with the first given by −1 ≤ x ≤ 0, −

√
x+ 1 ≤ y ≤

√
x+ 1,

and the second given by 0 ≤ x ≤ 3, x− 1 ≤ y ≤
√
x+ 1. The area of the first region is

A1 =

∫ 0

−1

√
x+ 1− (−

√
x+ 1) dx =

∫ 0

−1
2(x+ 1)1/2 dx =

[
4
3 (x+ 1)3/2

]0
−1

= 4
3 ,

and the area of the second region is

A2 =

∫ 3

0

√
x+ 1− (x− 1) dx =

[
2
3 (x+ 1)3/2 − 1

2 x
2 + x

]3
0

=
(
16
3 −

9
2 + 3

)
−
(
2
3

)
= 19

6 ,

and so the total area is
A = A1 +A2 = 4

3 + 19
6 = 27

6 = 9
2 .

For the second solution we shall interchange the roles of x and y, thinking of x as a function
of y. The line is given by x = y+ 1 and the parabola is given by x = y2 − 1, so the region
R is given by −1 ≤ y ≤ 2, y2 − 1 ≤ x ≤ y + 1, and hence the area is

A =

∫ 2

y=−1
(y + 1)− (y2 − 1) dy =

∫ 2

−1
−y2 + y + 2 dy =

[
− 1

3 y
3 + 1

2 y
2 + 2y

]2
−1

=
(
− 8

3 + 2 + 4
)
−
(
1
3 + 1

2 − 2
)

= 9
2 .
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Volume by Cross-Section

3.7 Note: Suppose that a solid S lies in space between x = a and x = b, and its
cross-sectional area at x (that is the area of the intersection of the solid with the plane
perpendicular to the x-axis at the position x) is equal to A(x), where A is integrable on
[a, b]. We can approximate the volume of S as follows. Choose a partition

a = x0 < x1 < · · · < xn = b

of [a, b] and choose sample points ck ∈ [xk−1, xk]. Divide the solid into strips where the
kth strip lies between x = xk−1 and x = xk and has thickness ∆kx = xk − xk−1. The
volume of the kth strip is

∆kV ∼= A(ck)∆kx

and the total volume of S is

V =
n∑
k=1

∆kV ∼=
n∑
k=1

A(ck)∆kx .

We notice that the sum on the right is a Riemann sum for the function A(x) on [a, b], so
we define the exact volume of S to be the limit of these Riemann sums.

3.8 Definition: Suppose that a solid S lies in space between x = a and x = b, and that
its cross-sectional area at x is equal to A(x), where A is integrable on [a, b]. We define the
volume of S to be

V =

∫ b

a

A(x) dx .

3.9 Example: Let f and g be integrable on [a, b] with 0 ≤ f(x) ≤ g(x) for all x ∈ [a, b].
Let R be the region in the xy-plane given by

a ≤ x ≤ b , f(x) ≤ y ≤ g(x)

and let S be the solid obtained by revolving R about the x-axis. Then the cross-section of
S at position x is an annulus (that is the region between two concentric circles) with inner
radius f(x) and outer radius g(x), so the cross-sectional area is

A(x) = πg(x)2 − πf(x)2 .

Thus the volume of S is

V =

∫ b

a

π
(
g(x)2 − f(x)2

)
dx .

3.10 Example: Find the volume of a cone of base radius r and height h.

Solution: Such a cone (lying on its side) can be obtained by revolving the triangular region
R given by 0 ≤ x ≤ h, 0 ≤ y ≤ r

h x about the x-axis, so the volume is

V =

∫ h

0

π
(
r
h x
)2
dx = π r2

h2

[
1
3 x

3
]h
0

= π r2

h2

(
1
3 h

3
)

= 1
3 π r

2h .

3.11 Example: Find the volume of a sphere of radius r.

Solution: One half of such a sphere can be obtained by revolving the region R given by
0 ≤ x ≤ r, 0 ≤ y ≤

√
r2 − x2 about the x-axis, and so the volume is

V = 2

∫ r

0

π(r2 − x2) dx = 2π
[
r2x− 1

3 x
3
]r
0

= 2π
(
r3 − 1

3 r
3
)

= 4
3 π r

3 .
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3.12 Example: Find the volume of the football-shaped solid S which is obtained by
revolving the region R which lies under one arch of the sine curve about the x-axis.

Solution: The region R is given by 0 ≤ x ≤ π, 0 ≤ y ≤ sinx and so the volume is

V =

∫ π

0

π sin2 x dx =

∫ π

0

π
(
1
2 −

1
2 cos 2x

)
dx = π

[
1
2 x−

1
4 sin 2x

]π
0

= π2

2 .

3.13 Example: Let R be the (infinitely long) region given by 1 ≤ x, 0 ≤ y ≤ 1
x , and let

S be the solid obtained by revolving R about the x-axis.

Solution: The area of the region R is

A =

∫ ∞
1

1

x
dx =

[
lnx
]∞
1

=∞

because lim
x→∞

lnx =∞. The volume of the solid, on the other hand, is

V =

∫ ∞
1

π · 1

x2
dx = π

[
− 1

x

]∞
1

= π

because lim
x→∞

1
x = 0.

3.14 Remark: The above example gives rise to the following amusing paradox. It would
require an infinite amount of paint to cover the region R but only a finite amount of paint
to fill the solid S. But surely if we fill S with paint we have also covered R with paint!
The resolution to this paradox lies in the fact that our calculation holds for mathematical
paint which can flow down into an arbitrarily small tube.

3.15 Example: Find the volume of the solid S given by x2 + y2 ≤ r2, x2 + z2 ≤ r2 (this
is the intersection of two cylinders).

Solution: To find the cross-section at x (where −r ≤ x ≤ r) we treat x as a fixed constant,
and then the cross-section is given by y2 ≤ r2 − x2 and z2 ≤ r2 − x2, or equivalently
by |y| ≤

√
r2 − x2 and |z| ≤

√
r2 − x2. Thus we see (somewhat surprisingly) that the

cross-section at x is the square given by |y| ≤
√
r2 − x2 and |z| ≤

√
r2 − x2. This square

has sides of length 2
√
r2 − x2 so the cross-sectional area is

A(x) = 4(r2 − x2) .

Thus the volume of S is

V =

∫ r

−r
A(x) dx =

∫ r

−r
4(r2 − x2) dx = 4

[
r2 x− 1

3 x
3
]r
−r

= 4
(
2
3 r

3 −
(
− 2

3 r
3
))

= 16
3 r

3 .
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Volume by Cylindrical Shells

3.16 Note: Suppose that f and g are integrable on [a, b] with f(x) ≤ g(x) for all x ∈ [a, b],
let R be the region in the xy-plane given by

0 ≤ a ≤ x ≤ b , f(x) ≤ y ≤ g(x) ,

and let S be the solid obtained by revolving R about the y-axis. We can approximate the
volume of S as follows. We choose a partition a = x0 < x1 < · · · < xn = b of [a, b], and we
choose intermediate points ck ∈ [xk−1, xk]. We divide the region into strips where the kth

strip Rk is given by xk−1 ≤ x ≤ xk, f(x) ≤ y ≤ g(x). We divide the solid into “cylindrical
shells” where the kth shell Sk is obtained by revolving Rk about the y-axis. The volume
of the kth shell is

∆kV ∼= 2π ck
(
g(ck)−f(ck)

)
∆kx

where ∆kx = xk−xk−1. The total volume of S is

S =

n∑
k=1

∆kV ∼=
n∑
k=1

2π ck
(
g(ck)−f(ck)

)
∆kx .

The sum on the right is a Riemann sum for the function 2π x
(
g(x)−f(x)

)
on [a, b].

3.17 Definition: Suppose that f and g are integrable on [a, b] with f(x) ≤ g(x) for all
x ∈ [a, b], let R be the region in the xy-plane given by

0 ≤ a ≤ x ≤ b , f(x) ≤ y ≤ g(x) ,

and let S be the solid obtained by revolving R about the y-axis. We define the volume
of S to be

V =

∫ b

a

2π x
(
g(x)− f(x)

)
dx .

3.18 Example: Find the volume of a sphere of radius r.

Solution: One half of such a sphere can be obtained by revolving the region R given by
0 ≤ x ≤ r, 0 ≤ y ≤

√
r2 − x2 about the y-axis, so the volume is

V = 2

∫ r

0

2πx
√
r2 − x2 dx .

To solve the integral, we let u = r2 − x2 so that du = −2x dx, and we have

V =

∫ r

0

4πx
√
r2 − x2 dx =

∫ 0

r2
−2π

√
u du =

[
4
3 π u

3/2
]r
0

= 4
3 π r

3 .

3.19 Example: Find the volume of the discus-shaped solid S obtained by revolving the
region R given by 0 ≤ x ≤ π

2 , − cosx ≤ y ≤ cosx about the y-axis.

Solution: The volume is

V =

∫ π/2

0

2π x
(

cosx− (− cosx)
)
dx =

∫ π/2

0

4π x cosx dx .

To solve the integral, we integrate by parts using u = x and dv = cosx dx to get

V = 4π

[
x sinx−

∫
sinx dx

]π/2
0

= 4π
[
x sinx+ cosx

]π/2
0

= 4π
(
π
2 − 1

)
= 2π2 − 4π .
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3.20 Example: A bowl is in the shape of the surface obtained by revolving the part of
the parabola y = x2 with 0 ≤ x ≤ 2 about the y-axis. Find the capacity of the bowl.

Solution: The capacity of the bowl is the volume of the liquid in the bowl when it is
full. The liquid is in the shape of the solid S obtained by revolving the region R given
by 0 ≤ x ≤ 2, x2 ≤ y ≤ 4 about the y-axis. We find the volume in two ways. Using the
method of cylindrical shells, we have

V =

∫ 2

x=0

2π x(4− x2) dx = π

∫ 2

0

8x− 2x3 dx = π
[
4x2 − 1

2 x
4
]2
0

= 8π .

For the second solution, we interchange the roles of x and y. Note that the region R is
also given by 0 ≤ y ≤ 4,0 ≤ x ≤ √y. Using the method of cross-sections we obtain

V =

∫ 4

y=0

π
(√
y
)2
dy = π

∫ 4

0

y dy = π
[
1
2 y

2
]4
0

= 8π .

3.21 Example: Find the volume of the solid torus (that is the doughnut-shaped solid) S
with inner radius R− r and outer radius R+ r, where 0 < r < R.

Solution: Note that such a torus can be obtained by revolving the disc D given by

(x−R)2 + y2 ≤ r2

about the y-axis. We find the volume in two ways. First we use the method of cylindrical
shells. The disc D is given by

R− r ≤ x ≤ R+ r and −
√
r2 − (x−R)2 ≤ y ≤

√
r2 − (x−R)2

so the volume of the taurus is

V =

∫ R+r

x=R−r
2π x · 2

√
r2 − (x−R)2 dx .

To solve this integral we let r sin θ = (x − R) so that r cos θ =
√
r2 − (x−R)2 and

r cos θ dθ = dx to get

V =

∫ R+r

x=R−r
4π x

√
r2 − (x−R)2 dx =

∫ π/2

θ=−π/2
4π · (R+ r sin θ) · r cos θ · r cos θ dθ

= 4π r2
∫ π/2

−π/2
R cos2 θ + r sin θ cos2 θ dθ = 4π r2

∫ π/2

−π/2
R
(
1
2 + 1

2 cos 2θ
)

+ r sin θ cos2 θ dθ

= 4π r2
[
R
(
1
2θ + 1

4 sin 2θ
)

+ r · 13 cos3 θ
]π/2
−π/2

= 4π r2 ·R
(
π
4 + π

4

)
= 2π2 r2R .

For the second solution, we interchange the roles of x and y and use the cross-section
method. The disc D is given by

−r ≤ y ≤ r and R−
√
r2 − y2 ≤ x ≤ R+

√
r2 − y2

and so the volume is

V =

∫ r

y=−r
π
(

(R+
√
r2 − y2)2 − (R−

√
r2 − y2)2

)
dy =

∫ r

−r
4πR

√
r2 − y2 dy

= 4πR · 12πr
2 = 2π2r2R .

We used the fact that

∫ r

−r

√
r2 − y2 dy measures the area of a semicircle.
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Arclength

3.22 Note: Let f be differentiable on [a, b] (or let f be differentiable in (a, b) and con-
tinuous on [a, b]). Let C be the curve y = f(x) with a ≤ x ≤ b. We approximate the
length of C as follows. Choose a partition a = x0 < x1 < · · · < xn = b of [a, b]. Write
∆kx = xk − xk−1 and ∆ky = f(xk) − f(xk−1). By the Mean Value Theorem, we can
choose sample points ck ∈ [xk−1, xk] so that

f ′(ck) =
f(xk)− f(xk−1)

xk − xk−1
=

∆ky

∆kx
.

Let Ck be the part of the curve y = f(x) with xk−1 ≤ x ≤ xk, and let Dk be the line
segment from

(
xk−1, f(xk−1)

)
to
(
xk, f(xk)

)
. The length ∆kL of Ck is approximately

equal to the length of Dk, that is

∆kL ∼=
√

(∆kx)2 + (∆ky)2 =

√
1 +

(
∆ky

∆kx

)2

·∆kx =
√

1 + f ′(ck)2 ·∆kx

and so the total length of C is

L =
n∑
k=1

Lk ∼=
n∑
k=1

√
1 + f ′(ck)2 ·∆kx .

The sum on the right is a Riemann sum for the function
√

1 + f ′(x)2 on [a, b].

3.23 Definition: Let f be differentiable on [a, b] (or let f be differentiable in (a, b) and
continuous on [a, b]). We define the length (or the arclength) of the curve y = f(x) from
x = a to x = b to be

L =

∫ b

a

√
1 + f ′(x)2 dx .

We say that f is rectifiable when the length L is finite.

3.24 Example: Find the length of the curve y = x2 with 0 ≤ x ≤ 2.

Solution: Let f(x) = x2 so f ′(x) = 2x. The length of the curve is

L =

∫ 2

0

√
1 + f ′(x)2 dx =

∫ 2

0

√
1 + 4x2 dx .

To solve the integral, let tan θ = 2x so sec θ =
√

1 + 4x2 and sec2 θ dθ = 2 dx to get∫ √
1 + 4x2 dx =

∫
1
2 sec3 θ dθ = 1

4 sec θ tan θ + 1
4 ln

∣∣ sec θ + tan θ
∣∣+ c

= 1
2 x
√

1 + 4x2 + 1
4 ln

∣∣2x+
√

1 + 4x2
∣∣+ c

so that

L =

∫ 2

0

√
1 + 4x2 dx =

[
1
2 x
√

1 + 4x2 + 1
4 ln

(
2x+

√
1 + 4x2

)]2
0

=
√

17 + 1
4 ln

(
4 +
√

17
)
.
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Surface Area

3.25 Note: The area of (the lateral surface of) a cone of base radius r and slant height l
is given by A = πrl. More generally, the area of a slice of a cone with base radius r, top
radius s, and slant height l, is given by

A = π(r + s) l .

3.26 Note: Let f be differentiable on [a, b] (or let f be differentiable in (a, b) and con-
tinuous on [a, b]). Let C be the curve in the xy-plane given by y = f(x) with a ≤ x ≤ b.
Let S be the surface obtained by revolving C about the x-axis. We can approximate the
area of the surface S as follows. Choose a partition a = x0 < x1 < · · · < xn = b of
[a, b]. Write ∆kx = xk−xk−1 and ∆ky = f(xk)−f(xk−1). Use the Mean Value Theorem

to select ck ∈ [xk−1, xk] so that f ′(ck) =
∆ky

∆kx
. Let Ck be the part of the curve C with

xk−1 ≤ x ≤ xk, and let Sk denote the slice of the surface S which is obtained by revolving
Ck about the x-axis. Let Dk be the line segment from

(
xk−1, f(xk−1)

)
to
(
xk, f(xk)

)
and

let Tk be the slice of a cone obtained by revolving Dk about the x-axis. The area ∆kA of
the slice Sk is approximately equal to the area of Tk, that is

∆kA ∼= π
(
f(xk−1) + f(xk)

)
∆kL

= π
(
f(xk−1) + f(xk)

)√
1 + f ′(ck)2 ∆kx

∼= 2πf(ck)
√

1 + f ′(ck)2 ∆kx .

The final sum is a Riemann sum for 2πf(x)
√

1 + f ′(x)2 on [a, b].

3.27 Definition: Let f be differentiable on [a, b] (or let f be differentiable in (a, b) and
continuous on [a, b]). Let C be the curve given by y = f(x) with a ≤ x ≤ b. Let S be the
surface obtained by revolving C about the x-axis. We define the area of the surface S to
be

A =

∫ b

a

2πf(x)
√

1 + f ′(x)2 dx .

3.28 Note: A similar argument to the one given above shows that we can approximate the
area of the surface S obtained by revolving the curve C given by y = f(x) with a ≤ x ≤ b
about the y-axis by a Riemann sum for the function 2π x

√
1 + f ′(x)2 on [a, b].

3.29 Definition: Let f be differentiable on [a, b] (or let f be differentiable in (a, b) and
continuous on [a, b]). Let C be the curve given by y = f(x) with a ≤ x ≤ b. Let S be the
surface obtained by revolving C about the y-axis. We define the area of the surface S to
be

A =

∫ b

a

2π x
√

1 + f ′(x)2 dx .
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3.30 Example: Find the area of a sphere of radius r.

Solution: Such a sphere can be obtained by revolving the portion of the curve y =
√
r2 − x2

with −r ≤ x ≤ r about the x-axis. Let f(x) =
√
r2 − x2 so that f ′(x) = − x√

r2 − x2
and

√
1 + f ′(x)2 =

√
1 +

x2

r2 − x2
=

√
r2

r2 − x2
=

r√
r2 − x2

.

Using the first of the above two definitions, the surface area is

A =

∫ r

−r
2π f(x)

√
1 + f ′(x)2 dx =

∫ r

−r
2π
√
r2 − x2 · r√

r2 − x2
dx =

∫ r

−r
2π r dx = 4π r2 .

Alternatively, we can obtain half of such a sphere by revolving the curve y =
√
r2 − x2

with 0 ≤ x ≤ r about the y-axis. Using the second of the above two definitions, the area
of the sphere is

A = 2

∫ r

x=0

2π x
√

1 + f ′(x)2 dx =

∫ r

0

4π x · r√
r2 − x2

dx .

To solve the integral, we let u = r2 − x2 so du = −2x dx to get

A =

∫ r

x=0

4πr x√
r2 − x2

dx =

∫ 0

u=r2
−2π r u−1/2 du =

[
− 4π r u1/2

]0
r2

= 4π r2 .

3.31 Example: Find the area of a torus of inner radius R− r and outer radius R+ r.

Solution: Half of such a torus can be obtained by revolving the curve y =
√
r2 − (R− x)2

with R− r ≤ x ≤ R+ r about the y-axis. Let f(x) =
√
r2 − (x−R)2. Then we have

f ′(x) =
−(x−R)√
r2 − (x−R)2

so √
1 + f ′(x)2 =

√
1 +

(x−R)2

r2 − (x−R)2
=

√
r2

r2 − (x−R)2
=

r√
r2 − (x−R)2

and so, using the second of the above two definitions, the surface area is

A = 2

∫ R+r

R−r
2π x · r√

r2 − (x−R)2
dx = 4π r

∫ R−r

R−r

x dx√
r2 − (x−R)2

.

To solve the integral, make the substitution r sin θ = x − R so r cos θ =
√
r2 − (x−R)2

and r cos θ dθ = dx. Then we obtain

A = 4π r

∫ R+r

x=R−r

x dx√
r2 − (x−R)2

= 4π r

∫ π/2

θ=−π/2

(R+ r sin θ) · r cos θ dθ

r cos θ

= 4π r

∫ π/2

−π/2
R+ r sin θ dθ = 4π r

[
Rθ − r cos θ

]π/2
−π/2

= 4π2r R .

10



Mass and Density

3.32 Example: Suppose a rod lies along the x-axis from x = a to x = b, and the
linear density (that is mass per unit length) of the rod is equal to ρ(x), where ρ(x) is
integrable on [a.b]. We can approximate the mass of the rod as follows. Choose a partition
a = x0 < x1 < · · · < xn = b and choose sample points ck ∈ [xk−1, xk]. The mass of the
part of the rod between x = xk−1 and x = xk is

∆kM ∼= ρ(ck)∆kx

and so the total mass of the rod is

M =

n∑
k=1

∆kM ∼=
n∑
k=1

ρ(ck)∆kx .

The sum on the right is a Riemann sum for the function ρ(x). The exact mass of the rod
is the limit of these Riemann sums, that is

M =

∫ b

a

ρ(x) dx .

3.33 Example: Suppose that a ball of radius R has varying density, and the density at
each point which lies at a distance of r units from the origin is equal to ρ(r), where we
suppose that ρ is integrable on [0, R]. We can approximate the mass of the ball as follows.
Choose a partition 0 = r0 < r1 < · · · < rn = R of the interval [0, R], and choose sample
points ck ∈ [rk−1, rk]. Divide the sphere into spherical shells using concentric spheres of
radius rk. The volume of the kth spherical shell is ∆kV ∼= 4πck

2∆kr so its mass is

∆kM ∼= ρ(ck)∆kV ∼= 4πck
2ρ(ck)∆kr .

The total mass of the ball is

M =

n∑
k=1

∆kM ∼=
n∑
k=1

4πck
2ρ(ck)∆kr .

This is a Riemann sum, and the exact mass of the ball is the limit of these Riemann sums,
that is

M =

∫ b

a

4πr2ρ(r) dr .
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Force

3.34 Example: A tank is in the shape of the parabolic sheet given by y = x2, −2 ≤ x ≤ 2,
−5 ≤ z ≤ 5 together with the two ends given by −2 ≤ x ≤ 2, x2 ≤ y ≤ 4 with z = ±5
(where the y-axis is pointing upwards). The tank is filled with a liquid of density ρ. The
pressure P (h) (force per unit area) exerted by the liquid on each wall at all points which
lie at a depth h is given by

P = ρgh

where g is the gravitational constant. Find the total force exerted by the liquid on each of
the ends of the tank.

Solution: We provide a less formal solution than we gave in previous examples. Although
we make no mention of a Riemann sum, it should be apparent that we are in fact approx-
imating the total force by a Riemann sum and then calculating the exact force as a limit
of Riemann sums. Along one of the ends of the tank, consider a thin horizontal slice at
position y of thickness ∆y. The slice is at a depth of h = 4−y so the pressure at all points
is P = ρgh = ρg(4− y). The width of the slice is equal to 2

√
y, so the area of the slice is

∆A = 2
√
y∆y, and so the force exerted by the water on the slice is

∆F = P ∆A = ρg(4− y) · 2√y∆y .

The total force exerted on the end of the tank is

F =

∫ 4

y=0

ρg(4− y) · 2√y dy = ρg

∫ 4

0

8 y1/2 − 2 y3/2 dy

= ρg
[
16
3 y

3/2 − 4
5 y

5/2
]4
0

= ρg
(
128
3 −

128
5

)
= 256

15 ρg .

3.35 Example: A charged rod, of charge Q (with its charge evenly distributed along its
length) lies along the x-axis from x = 0 to x = 2. A small object of charge q lies at position
(x, y) = (2, 1). Find the force exerted by the rod on the object. Use the fact that the force
exerted by one small object of charge q1 at position p1 on another of charge q2 at position
p2 is equal to

F =
k q1q2
|u|2

· u
|u|

where k is a constant and u is the direction vector from p1 to p2, that is u = p2 − p1.

Solution: Again, we provide a less formal solution, making no mention of Riemann sums.
Consider a small slice of rod at position x of thickness ∆x. Since the rod has length 2,
the charge per unit length is Q

2 and so the charge on the slice of rod is ∆Q = Q
2 ∆x. The

distance from the slice, which is at position (x, 0) to the small object, which is at position
(2, 1), is equal to r = |u| =

√
(2− x)2 + 1 and so the magnitude of the force exerted by

the slice on the object is

∆F =
kq · Q2 ∆x

(2− x)2 + 1
.

By similar triangles, the x and y-components of the force, exerted by the slice of rod on
the object, are given by

∆Fx =
2− x√

(2− x)2 + 1
∆F =

kqQ (2− x) ∆x

2
(
(2− x)2 + 1

)3/2
∆Fy =

1√
(2− x)2 + 1

∆F =
kqQ∆x

2
(
(2− x)2 + 1

)3/2 .
12



The x-component of the total force is

Fx =

∫ 2

x=0

kqQ (2− x) dx

2
(
(2− x)2 + 1

)3/2 .
To solve the integral, we let u = (2− x)2 + 1 so that du = −2(2− x) dx to get

Fx =

∫ 2

x=0

kqQ (2− x) dx

2
(
(2− x)2 + 1

)3/2 =

∫ 1

u=5

−kqQ · 12 du
2u3/2

= kqQ

∫ 1

5

− 1
4 u
−3/2 du

= kqQ
[
1
2 u
−1/2

]1
5

= 1
2 kqQ

(
1− 1√

5

)
.

The y-component of the total force is

Fy =

∫ 2

x=0

kqQ dx

2
(
(2− x)2 + 1

)3/2 .
To solve this integral, we let tan θ = 2− x so sec θ =

√
(2− x)2 + 1 and sec2 θ dθ = −dx.

Then ∫
kqQ dx

2
(
(2− x)2 + 1

)3/2 =

∫
−kqQ sec2 θ dθ

2 sec3 θ
=

∫
− 1

2 kqQ cos θ dθ

= − 1
2 kqQ sin θ + c = − 1

2 kqQ ·
2−x√

(2−x)2+1
+ c

and so

Fy =

∫ 2

x=0

kqQ dx

2
(
(2− x)2 + 1

)3/2 =

[
− 1

2 kqQ ·
2−x√

(2−x)2+1

]2
0

= 1
2 kqQ ·

2√
5
.

Thus the total force exerted by the rod on the object, expressed as a vector, is

F =
(
Fx, Fy

)
= 1

2 kqQ
(

1− 1√
5
, 2√

5

)
.
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Work

3.36 Example: A tank is in the shape of the parabolic sheet given by y = x2, −2 ≤ x ≤ 2,
−5 ≤ z ≤ 5 together with the two ends given by −2 ≤ x ≤ 2, x2 ≤ y ≤ 4 with z = ±5
(where the y-axis is pointing vertically). The tank is filled with a liquid of density ρ. Find
the work required to pump all the liquid out of the tank, bringing it all to the level of the
top of the tank. Use the fact that the work required to raise a small object of mass m
from height h1 to height h2 is equal to

W = mgh

where h = h2 − h1.

Solution: We provide an informal solution. Consider a thin slice of liquid at position y
of thickness ∆y. The slice is in the shape of a thin rectangle of length l = 10, width
w = 2

√
y and thickness ∆y, so its volume is ∆V = 20

√
y∆y, and so its mass is given by

∆M = ρ∆V = 20ρ
√
y∆y. All the water in this slice must be raised from height h1 = 4−y

to height h2 = 4, and so the work done in pumping the water in this slice is

∆W = gh∆M = 20ρg (4− y)
√
y∆y .

The total work required to pump all the water in the tank is

W =

∫ 4

y=0

20ρg (4− y)
√
y dy = 20ρg

∫ 4

0

4 y1/2 − y3/2 dy

= 20ρg
[
8
3 y

3/2 − 2
5 y

5/2
]4
0

= 20ρg
(
64
3 −

64
5

)
= 2560

3 ρg .

3.37 Example: A chain, of length π and mass M , lies along the x-axis. Find the work
required to lift the chain and lie it along the top half of the circle x2 + (y− 1)2 = 1 (where
the y-axis points upwards).

Solution: Let θ be as shown below. For a thin slice of the chain (when it is lying on the
top half of the circle) at position θ of thickness ∆θ, the mass of the slice is ∆M = M

π ∆θ,
and the height of the slice above the x-axis is y = 1 + sin θ, so the work done in lifting the
slice from the x-axis is ∆W = gy∆M = gM

π (1 + sin θ)∆θ. The total work is

W =

∫ θ=π

θ=0

gM
π (1 + sin θ) dθ = gM

π

[
θ − cos θ

]π
θ=0

= gM
π (π + 2) .

y

θ

x
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