
Chapter 2. Methods of Integration

Basic Integrals

2.1 Note: We have the following list of Basic Integrals∫
xp dx =

xp+1

p+ 1
+ c , for p 6= −1

∫
sec2 x dx = tanx+ c∫

dx

x
= ln |x|+ c

∫
secx tanx dx = secx+ c∫

ex dx = ex + c

∫
tanx dx = ln | secx|+ c∫

ax dx =
ax

ln a
+ c

∫
secx dx = ln | secx+ tanx|+ c∫

lnx dx = x lnx− x+ c

∫
dx

1 + x2
= tan−1 x+ c∫

sinx dx = − cosx+ c

∫
dx√

1− x2
= sin−1 x+ c∫

cosx dx = sinx+ c

∫
dx

x
√
x2 − 1

= sec−1 x+ c

Proof: Each of these equalities is easy to verify by taking the derivative of the right side. For

example, we have

∫
lnx dx = x lnx−x+c since

d

dx
(x lnx−x) = 1·lnx+x· 1x−1 = lnx, and

we have

∫
tanx dx = ln | secx|+ c since

d

dx
(ln | secx|) =

secx tanx

secx
= tanx, and we have∫

secx dx = ln | secx+tanx|+c since
d

dx
(ln | secx+tanx|) =

secx tanx+ sec2 x

secx+ tanx
= secx.

2.2 Example: Find

∫ 4

1

x2 − 5√
x

dx.

Solution: By the Fundamental Theorem of Calculus and Linearity, we have∫ 4

1

x2 − 5√
x

dx =

∫ 4

1

x3/2 − 5x−1/2 dx =
[
2
5x

5/2 − 10x1/2
]4
1

=
(
64
5 − 20

)
−
(
2
5 − 10

)
= 12

5 .

2.3 Example: Find

∫ √π/3
π/6

sin 2x+ cos 3x dx.

Solution: We find antiderivatives for sin 2x and cos 3x. Since d
dx cos 2x = −2 sin 2x we have

d
dx

(
− 1

2 cos 2x
)

= sin 2x and since d
dx sin 3x = 3 cos 3x we have d

dx

(
1
3 sin 3x

)
cos 3x, and so∫ π/3

π/6

sin 2x+ cos 3x dx =
[
− 1

2 cos 2x+ 1
3 sin 3x

]π/3
π/6

=
(
1
4 + 0

)
−
(
− 1

4 + 1
3

)
= 1

6 .
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Substitution

2.4 Theorem: (Substitution, or Change of Variables) Let u = g(x) be differentiable on
an interval and let f(u) be continuous on the range of g(x). Then∫

f(g(x))g′(x) dx =

∫
f(u) du

and if g′ is integrable then∫ b

x=a

f(g(x))g′(x) dx =

∫ g(b)

u=g(a)

f(u) du .

Proof: Let F (u) be an antiderivative of f(u) so F ′(u) = f(u) and

∫
f(u) du = F (u) + c.

Then from the Chain Rule, we have
d

dx
F (g(x)) = F ′(g(x))g′(x) = f(g(x))g′(x), and so∫

f(g(x))g′(x) dx = F (g(x)) + c = F (u) + c =

∫
f(u) du

and ∫ b

x=a

f(g(x))g′(x) dx =
[
F (g(x))

]b
x=a

= F (g(b))− F (g(a))

=
[
F (u)

]g(b)
u=g(a)

=

∫ g(b)

u=g(a)

f(u) du .

2.5 Notation: For u = g(x) we write du = g′(x) dx. More generally, for f(u) = g(x) we
write f ′(u) du = g′(x) dx. This notation makes the above theorem easy to remember and
to apply.

2.6 Example: Find

∫ √
2x+ 3 dx.

Solution: Make the substitution u = 2x+ 3 so du = 2dx. Then∫ √
2x+ 3 dx =

∫
1
2u

1/2 du = 1
3 u

3/2 + c = 1
3 (2x+ 3)3/2 + c .

(In applying the Substitution Rule, we used u = g(x) = 2x + 3 and f(u) =
√
u = u1/2,

but the notation du = g′(x) dx allows us to avoid explicit mention of the function f(u) in
our solution).

2.7 Example: Find

∫
x ex

2

dx.

Solution: Make the substitution u = x2 so du = 2x dx. Then∫
x ex

2

dx =

∫
1
2e
u du = 1

2e
u + c = 1

2e
x2

+ c .
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2.8 Example: Find

∫
lnx

x
dx.

Solution: Let u = lnx so du =
1

x
dx. Then∫

lnx

x
dx =

∫
u du = 1

2u
2 + c = 1

2 (lnx)2 + c .

2.9 Example: Find

∫
tanx dx.

Solution: We have tanx =
sinx

cosx
. Let u = cosx so du = − sinx dx. Then∫

tanx dx =

∫
sinx dx

cosx
=

∫
−du
u

= − ln |u|+ c = − ln | cosx|+ c = ln | secx|+ c .

2.10 Example: Find

∫
dx

x+
√
x

.

Solution: Let u =
√
x so u2 = x and 2u du = dx. Then∫

dx

x+
√
x

=

∫
2u du

u2 + u
=

∫
2 du

u+ 1
.

Now let v = u+ 1 do dv = du. Then∫
dx

x+
√
x

=

∫
2 du

u+ 1
=

∫
2

v
dv = 2 ln |v|+ c = 2 ln |u+ 1|+ c = 2 ln(

√
x+ 1) + c .

2.11 Example: Find

∫ 2

0

x dx√
2x2 + 1

.

Solution: Let u = 2x2 + 1 so du = 4x dx. Then∫ 2

x=0

x dx√
2x2 + 1

=

∫ 9

u=1

1
4 du√
u

=

∫ 9

1

1
4 u
−1/2 du =

[
1
2 u

1/2
]9
1

= 3
2 −

1
2 = 1 .

2.12 Example: Find

∫ 1

0

dx

1 + 3x2
.

Solution: Let u =
√

3x so du =
√

3 dx. Then∫ 1

0

dx

1 + 3x2
=

∫ √3

0

1√
3
du

1 + u2
=
[

1√
3

tan−1 u
]√3

0
= 1√

3
π
3 = π

3
√
3
.
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Integration by Parts

2.13 Theorem: (Integration by Parts) Let f(x) and g(x) be differentiable in an interval.
Then ∫

f(x)g′(x) dx = f(x)g(x)−
∫
g(x)f ′(x) dx

and if f ′ and g′ are integrable then∫ b

x=a

f(x)g′(x) dx =

[
f(x)g(x)−

∫
g(x)f ′(x) dx

]b
x=a

.

Proof: By the Product Rule, we have
d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x) and so∫

f ′(x)g(x) + f(x)g′(x) dx = f(x)g(x) + c ,

which can be rewritten as∫
f(x)g′(x) dx = f(x)g(x)−

∫
g(x)f ′(x) dx .

(We do not need to include the arbitrary constant c since there is now an integral on both
sides of the equation).

2.14 Notation: If we write u = f(x), du = f ′(x) dx, v = g(x) and dv = g′(x) dx, then
the top formula in the above theorem becomes∫

u dv = uv −
∫
v du .

2.15 Note: To find the integral of a polynomial multiplied by an exponential function
or a trigonometric function, try Integrating by parts with u equal to the polynomial (you
may need to integrate by parts repeatedly if the polynomial is of high degree).

To integrate a polynomial (or an algebraic) function times a logarithmic or inverse
trigonometric function, try integrating by parts letting u be the logarithmic or inverse
trigonometric function.

To integrate an exponential function times a sine or cosine function, try integrating
by parts twice, letting u be the exponential function both times.

2.16 Example: Find

∫
x sinx dx.

Solution: Integrate by parts using u = x, du = dx, v = − cosx and dv = sinx dx to get∫
x sinx dx =

∫
u dv = uv −

∫
v du = −x cosx+

∫
cosx dx = −x cosx+ sinx+ c .
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2.17 Example: Find

∫
(x2 + 1)e2x dx.

Solution: Integrate by parts using u = x2 + 1, du = 2x dx, v = 1
2e

2x and dv = e2x dx to
get ∫

(x2 + 1)e2x dx =

∫
u dv = uv −

∫
v du = 1

2 (x2 + 1)e2x −
∫
x e2x dx .

To find

∫
x e2x dx we integrate by parts again, this time using u2 = x, du2 = dx, v2 = 1

2e
2x

and dv2 = e2x dx to get∫
(x2 + 1)e2x dx = 1

2 (x2 + 1)e2x −
∫
x e2x dx

= 1
2 (x2 + 1)e2x −

(
1
2 xe

2x −
∫

1
2e

2x dx

)
= 1

2 (x2 + 1)e2x −
(

1
2 xe

2x − 1
4e

2x

)
+ c

= 1
4

(
2x2 − 2x+ 3

)
e2x + c

2.18 Example: Find

∫
lnx dx.

Solution: Integrate by parts using u = lnx, du =
1

x
dx, v = x and dv = dx to get∫

lnx dx = x lnx−
∫

1 dx = x lnx− x+ c .

2.19 Example: Find

∫ 4

1

√
x lnx dx.

Solution: Integrate by parts using u = lnx, du =
1

x
dx, v = 2

3x
3/2 and dv = x1/2 dx to get∫ 4

1

√
x lnx dx =

[
2
3x

3/2 lnx−
∫

2
3x

1/2 dx

]4
1

=

[
2
3x

3/2 lnx− 4
9x

3/2

]4
1

=
(
16
3 ln 4− 32

9

)
−
(
2
3 ln 1− 4

9

)
= 16

3 ln 4− 28
9 .

2.20 Example: Find

∫
ex sinx dx

Solution: Write I =

∫
ex sinx dx. Integrate by parts twice, first using u1 = ex, du = ex dx,

v = − cosx and dv = sinx dx, and next using u2 = ex, du2 = ex dx, v2 = sinx and
dv2 = cosx dx to get

I = −ex cosx+

∫
ex cosx dx

= −ex cosx+

(
ex sinx−

∫
ex sinx dx

)
= −ex cosx+ ex sinx− I

.

Thus 2I = −ex cosx+ ex sinx+ c and so I = 1
2 (sinx− cosx)ex + d.
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2.21 Example: Let n ≥ 2 be an integer. Find a formula for

∫
sinn x dx in terms of∫

sinn−2 x dx, and hence find

∫
sin2 x dx and

∫
sin4 x dx.

Solution: Let I =

∫
sinn x dx =

∫
sinn−1 x sinx dx. Integrate by parts using u = sinn−1 x,

du = (n− 1) sinn−2 x cosx dx, v = − cosx and dv = sinx dx to get

I = − sinn−1 x cosx+

∫
(n− 1) sinn−2 x cos2 x dx

= − sinn−1 x cosx+

∫
(n− 1) sinn−2 x(1− sin2 x) dx

= − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x dx− (n− 1)I .

Add (n− 1)I to both sides to get nI = − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x dx, that is∫

sinn x dx = − 1
n sinn−1 x cosx+ n−1

n

∫
sinn−2 x dx .

In particular, when n = 2 we get∫
sin2 x dx = − 1

2 sinx cosx+ 1
2

∫
1 dx = − 1

2 sinx cosx+ 1
2x+ c

and when n = 4 we get∫
sin4 x dx = − 1

4 sin3 x cosx+ 3
4

∫
sin2 x dx = − 1

4 sin3 x cosx− 3
8 sinx cosx+ 3

8x+ c .

2.22 Example: Let n ≥ 2 be an integer. Find a formula for

∫
secn x dx in terms of∫

secn−2 x dx, and hence find

∫
sec3 x dx.

Solution: Let I =

∫
secn x dx =

∫
secn−2 x sec2 x dx. Using Integrate by Parts with

u = secn−2 x, du = (n− 2) secn−2 x tanx dx, v = tanx and dv = sec2 x dx, we obtain

I = secn−2 x tanx−
∫

(n− 2) secn−2 x tan2 x dx

= secn−2 x tanx−
∫

(n− 2) secn−2 x(sec2 x− 1) dx

= secn−2 x tanx− (n− 2)I + (n− 2)

∫
secn−2 x dx

Add (n− 2)I to both sides to get (n− 1)I = secn−2 x tanx+ (n− 2)

∫
secn−2 x dx, that is∫

secn x dx = 1
n−1 secn−2 x tanx+ n−2

n−1

∫
secn−2 x dx .

In particular, when n = 3 we get∫
sec3 x dx = 1

2 secx tanx+ 1
2

∫
secx dx = 1

2 secx tanx+ 1
2 ln

∣∣ secx+ tanx
∣∣+ c
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Trigonometric Integrals

2.23 Note: To find

∫
f(sinx) cos2n+1 x dx, write cos2n+1 x = (1− sin2 x)n cosx then try

the substitution u = sinx, du = cosx dx.

To find

∫
f(cosx) sin2n+1 x dx, write sin2n+1 x = (1 − cos2 x)n sinx then try the

substitution u = cosx, du = − sinx dx.

To find

∫
sin2m x cos2n x dx, try using the trigonometric identities sin2 θ = 1

2−
1
2 cos 2θ

and cos2 θ = 1
2 + 1

2 cos 2θ. Alternatively, write cos2n x = (1− sin2 x)n and use the formula
from Example 2.21.

To find

∫
f(tanx) sec2n+2 x dx, write sec2n+2 x = (1 + tan2 x)n sec2 x dx and try the

substitution u = tanx, du = sec2 x dx.

To find

∫
f(secx) tan2n+1 x dx, write tan2n+1 x =

(sec2 x− 1)n

secx
secx tanx dx and

try the substitution u = secx, du = secx tanx dx.

To find

∫
sec2n+1 x tan2n x dx, write tan2n x = (sec2 x−1)n and use the formula from

Example 2.22.

2.24 Example: Find

∫ π/3

0

sin3 x

cos2 x
dx.

Solution: Make the substitution u = cosx so du = − sinx dx. Then∫ π/3

0

sin3 x

cos2 x
dx =

∫ π/3

0

(1− cos2 x) sinx dx

cos2 x
=

∫ 1/2

1

− (1− u2) du

u2
=

∫ 1/2

1

− 1

u2
+ 1 du

=
[
1
u + u

]1/2
1

=
(
2 + 1

2

)
− (1 + 1) = 1

2 .

2.25 Example: Find

∫
sin6 x dx.

Solution: We could use the method of example 2.21, but we choose instead to use the
half-angle formulas. We have∫ π/4

0

sin6 x dx =

∫ π/4

0

(
1
2 −

1
2 cos 2x

)3
dx =

∫ π/4

0

1
8 −

3
8 cos 2x+ 3

8 cos2 2x− 1
8 cos3 2x dx

=

∫ π/4

0

1
8 −

3
8 cos 2x+ 3

8

(
1
2 + 1

2 cos 4x
)
− 1

8

(
1− sin2 2x

)
cos 2x dx

=

∫ π/4

0

5
16 −

1
2 cos 2x+ 3

16 cos 4x+ 1
8 sin2 2x cos 2x dx

=
[

5
15x−

1
4 sin 2x+ 3

64 sin 4x+ 1
48 sin3 2x

]π/4
0

= 5π
64 −

1
4 + 1

48 = 5π
64 −

11
48 .
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2.26 Example: Find

∫ π/4

0

tan4 x dx.

Solution: Note first that

tan4 x = tan2 x(sec2 x− 1) = tan2 x sec2 x− tan2 x = tan2 x sec2 x− sec2 x+ 1 .

To find

∫
tan2 x sec2 x dx, make the substitution u = tan θ, du = sec2 θ dθ to get∫

tan2 x sec2 x dx =

∫
u2 du = 1

3u
3 + c = 1

3 tan3 x+ c .

Thus we have∫ π/4

0

tan4 x dx =

∫ π/4

0

tan2 x sec2 x− sec2 x+ 1

=
[
1
3 tan3 x− tanx+ x

]π/4
0

= 1
3 − 1 + π

4 = π
4 −

2
3 .

2.27 Example: Find

∫ π/4

0

sec4 x√
tanx+ 1

dx.

Solution: Make the substitution u = tanx so du = sec2 x dx. Then∫ π/4

0

sec4 x√
tanx+ 1

dx =

∫ π/4

0

(tan2 x+ 1) sec2 x dx√
tanx+ 1

=

∫ 1

0

(u2 + 1) du√
u+ 1

Now make the substitution v = u+ 1 so u = v − 1 and du = dv. Then∫ 1

0

u2 + 1√
u+ 1

du =

∫ 2

1

(v − 1)2 + 1√
v

dv =

∫ 2

1

v3/2 − 2 v1/2 + 2 v−1/2 dv

=
[
2
5 v

5/2 − 4
3 v

3/2 + 4 v1/2
]2
1

=
(
2·4
√
2

5 − 4·2
√
2

3 + 4
√

2
)
−
(
2
5 −

4
3 + 4

)
= (24−40+60)

√
2

15) − 6−20+60
15 = 44

√
2−46
15 .
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2.28 Note: To find

∫
sin(ax) sin(bx) dx ,

∫
cos(ax) cos(bx) dx , or

∫
sin(ax) cos(bx) dx,

use one of the identities

cos(A−B)− cos(A+B) = 2 sinA sinB

cos(A−B) + cos(A+B) = 2 cosA cosB

sin(A−B) + sin(A+B) = 2 sinA cosB .

2.29 Example: Find

∫ π/6

0

cos 3x cos 2x dx.

Solution: Since 2 cos 3x cos 2x = cos(3x− 2x) + cos(3x+ 2x) = cosx+ cos 5x, we have∫ π/6

0

cos 2x cos 3x dx =

∫ π/6

0

1
2 (cosx+cos 5x) dx =

[
1
2 sinx+ 1

10 sin 5x
]π/6
0

= 1
4 + 1

20 = 3
10 .

2.30 Note: The Weirstrass substitution u = tan x
2 , x = 2 tan−1 u, dx =

2du

1 + u2
converts sinx and cosx into rational functions of u: indeed we have sin x

2 = u√
1−u2

and

cos x2 = 1√
1−u2

so that sinx = 2 sin x
2 cos x2 = 2u

1+u2 and cosx = cos2 x2 − sin2 x
2 = 1−u2

1+u2 .

2.31 Example: Find

∫
dx

1− cosx
.

Solution: We use the Weirstrass substitution u = tan x
2 , dx = 2

1+u2 du, and cosx = 1−u2

1+u2

to get∫
dx

1− cosx
=

∫ 2
1+u2 du

1− 1−u2

1+u2

=

∫
2 du

(1 + u2)− (1− u2)
=

∫
du

u2
= − 1

u
+ c = − cot

x

2
+ c .

9



Inverse Trigonometric Substitution

2.32 Note: To solve an integral involving
√
a2 + b2(x+ c)2 or 1/(a2 + b2(x+ c)2), try the

substitution θ = tan−1 b(x+c)a so that a tan θ = b(x + c), a sec θ =
√
a2 + b2(x+ c)2 and

a sec2 θ dθ = b dx.
For an integral involving

√
a2 − b2(x+ c)2, try the substitution θ = sin−1 b(x+c)a so

that a sin θ = b(x+ c), a cos θ =
√
a2 − b2(x+ c)2 and a cos θ dθ = b dx.

For an integral involving
√
b2(x+ c)2 − a2, try the substitution θ = sec−1 b(x+c)a so

that a sec θ = b(x+ c), a tan θ =
√
b2(x+ c)2 − a2 and a sec θ tan θ dθ = b dx.

2.33 Example: Find

∫ 1

0

dx

(4− 3x2)3/2
.

Solution: Let 2 sin θ =
√

3x so 2 cos θ =
√

4− 3x2 and 2 cos θ dθ =
√

3 dx. Then∫ 1

0

dx

(4− 3x2)3/2
=

∫ π/3

0

2√
3

cos θ dθ

(2 cos θ)3
=

∫ π/3

0

1
4
√
3

sec2 θ dθ =
[

1
4
√
3

tan θ
]π/3
0

= 1
4 .

2.34 Example: Find

∫ √3

1

dx

x2
√
x2 + 3

.

Solution: Let
√

3 tan θ = x so
√

3 sec θ =
√
x2 + 3 and

√
3 sec2 θ dθ = dx, and also let

u = sin θ so du = cos θ dθ. Then∫ √3

1

dx

x2
√
x2 + 3

=

∫ π/4

π/6

√
3 sec2 θ dθ

3 tan2 θ
√

3 sec θ
=

∫ π/4

π/6

1

3

sec θ

tan2 θ
dθ =

∫ π/4

π/6

1

3

cos θ dθ

sin2 θ

=

∫ 1/
√
2

1/2

1

3u2
du =

[
− 1

3u

]1/√2

1/2

= −
√
2
3 + 2

3 = 2−
√
2

3 .

2.35 Example: Find

∫ 4

2

√
x2 − 4

x2
dx.

Solution: Let 2 sec θ = x so 2 tan θ =
√
x2 − 4 and 2 sec θ tan θ dθ = dx. Then∫ 4

2

√
x2 − 4

x2
dx =

∫ π/3

0

tan2 θ sec θ dθ

sec2 θ
=

∫ π/3

0

tan2 θ

sec θ
dθ =

∫ π/3

0

sec2 θ − 1

sec θ
dθ

=

∫ π/3

0

sec θ − cos θ dθ =
[

ln | sec θ + tan θ| − sin θ
]π/3
0

= ln(2 +
√

3)−
√
3
2 .

2.36 Example: Find

∫ 3

2

(4x− x2)3/2 dx.

Solution: Let 2 sin θ = x− 2 so 2 cos θ =
√

4x− x2 and 2 cos θ dθ = dx. Then∫ 3

2

(4x− x2)3/2 dx =

∫ π/6

0

16 cos4 θ dθ =

∫ π/6

0

4 (1 + cos 2θ)2 dθ

=

∫
4 + 8 cos 2θ + 4 cos2 2θ dθ =

∫
4 + 8 cos 2θ + 2 + 2 cos 4θ dθ

=
[
6θ + 4 sin 2θ + 1

2 sin 4θ
]π/6
0

= π + 2
√

3 +
√
3
4 = π + 9

√
3

4 .
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Partial Fractions

2.37 Note: We can find the integral of a rational function
f(x)

g(x)
as follows:

Step 1: use long division to find polynomials q(x) and r(x) with deg r(x) < deg g(x) such

that f(x) = g(x)q(x) + r(x) for all x, and note that
f(x)

g(x)
= q(x) +

r(x)

g(x)
so∫

f(x)

g(x)
dx =

∫
q(x) +

r(x)

g(x)
dx .

(If deg f(x) < deg g(x) then q(x) = 0 and r(x) = f(x)).

Step 2: factor g(x) into linear and irreducible quadratic factors.

Step 3: write
r(x)

g(x)
as a sum of terms so that for each linear factor (ax+ b)k we have the

k terms
A1

(ax+ b)
+

A2

(ax+ b)2
+ · · ·+ Ak

(ax+ b)k

and for each irreducible quadratic factor (ax2 + bx+ c)k we have the k terms

B1x+ C1

(ax2 + bx+ c)
+

B2x+ C2

(ax2 + bx+ c)2
+ · · ·+ Bkx+ Ck

(ax2 + bx+ c)k
.

Writing
r(x)

g(x)
in this form is called splitting

r(x)

g(x)
into its partial fractions decomposition.

Step 4: solve the integral.

2.38 Example: If g(x) = x(x− 1)3(x2 + 2x+ 3)2 then in step 3 we would write

r(x)

g(x)
=
A

x
+

B

x− 1
+

C

(x− 1)2
+

D

(x− 1)3
+

Ex+ F

x2 + 2x+ 3
+

Gx+H

(x2 + 2x+ 3)2
.

and then solve for the various constants.

2.39 Example: Find

∫ 3

2

x− 7

(x− 1)2(x+ 2)
dx.

Solution: In order to get
x− 7

(x− 1)2(x+ 2)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 2
we need

A(x− 1)(x+ 2) +B(x+ 2) + C(x− 1)2 = x− 7 .

Equating coefficients gives A+C = 0, A+B − 2C = 1 and −2A+ 2B +C = −7. Solving
these three equations gives A = 1, B = −2 and C = −1, and so we have∫ 3

2

x− 7

(x− 1)2(x+ 2)
dx =

∫ 3

2

A

x− 1
+

B

(x− 1)2
+

C

x+ 2

=

∫ 3

2

1

x− 1
− 2

(x− 1)2
− 1

x+ 2
dx =

[
ln(x− 1) + 2

x−1 − ln(x+ 2)
]3
2

= (ln 2 + 1− ln 5)− (2− ln 4) = ln
8

5
− 1 .
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2.40 Example: Find

∫ √3

1

x4 − x3 + 1

x3 + x
dx.

Solution: Use long division of polynomials to show that
x4 − x3 + 1

x3 + x
= x−1+

−x2 + x+ 1

x3 + x
.

Next, note that to get
A

x
+
Bx+ C

x2 + 1
=
−x2 + x+ 1

x3 + x
we need A(x2 + 1) + (Bx+ C)(x) =

−x2 + x + 1. Equating coefficients gives A + B = −1, C = 1 and A = 1. Solving these
three equations gives A = 1, B = −2 and C = 1. Thus∫ √3

1

x4 − x3 + 1

x3 + x
dx =

∫ √3

1

x− 1 +
1

x
− 2x

x2 + 1
+

1

x2 + 1
dx

=
[
1
2 x

2 − x+ lnx− ln(x2 + 1) + tan−1 x
]√3

1

=
(
3
2 −
√

3 + ln
√

3− ln 4 + π
3

)
−
(
1
2 − 1− ln 2 + π

4

)
= 2−

√
3 + ln

√
3
2 + π

12 .

2.41 Example: Find I =

∫ 2

1

x5 + x4 − 2x3 − 2x2 − 5x− 25

x2(x2 − 2x+ 5)2
dx.

Solution: To get

A

x
+
B

x2
+

Cx+D

x2 − 2x+ 5
+

Ex+ F

(x2 − 2x+ 5)2
=
x5 + x4 − 2x3 − 2x2 − 5x− 25

x2(x2 − 2x+ 5)2

we need Ax(x2−2x+ 5)2 +B(x2−2x+ 5)2 + (Cx+D)(x2)(x2−2x+ 5) + (Ex+F )(x2) =
x5 + x4 − 2x3 − 2x2 − 5x − 25. Expanding the left hand side then equating coefficients
gives the 5 equations

A+ C = 1 , −4A+B − 2C +D = 1 , 14A− 4B + 5C − 2D + E = −2

− 20A+ 14B + 5D + F = −2 , 25A− 20B = −5 , 25B = −25

Solving these equations gives A = −1, B = −1, C = 2, D = 2, E = 2 and F = −18, so

I =

∫ 2

1

− 1

x
− 1

x2
+

2x+ 2

x2 − 2x+ 5
+

2x− 18

(x2 − 2x+ 5)2
dx

=

∫ 2

1

− 1

x
− 1

x2
+

2x− 2 + 4

x2 − 2x+ 5
+

2x− 2− 16

(x2 − 2x+ 5)2
dx

=

∫ 2

1

− 1

x
− 1

x2
+

2x− 2

x2 − 2x+ 5
+

4

x2 − 2x+ 5
+

2x− 2

(x2 − 2x+ 5)2
− 16

(x2 − 2x+ 5)2
dx

We have

∫
1

x
dx = lnx+c and

∫
1

x2
dx = − 1

x
+c. Make the substitution u = x2−2x+5,

du = (2x− 2) dx to get∫
(2x− 2) dx

x2 − 2x+ 5
=

∫
du

u
= lnu+ c = ln(x2 − 2x+ 5) + c

and ∫
(2x− 2) dx

(x2 − 2x+ 5)2
=

∫
du

u2
=
−1

u
+ c =

−1

x2 − 2x+ 5
+ c.

Make the substitution 2 tan θ = x− 1, 2 sec θ =
√
x2 − 2x+ 5, 2 sec2 θ dθ = dx to get∫

4 dx

x2 − 2x+ 5
=

∫
4 · 2 sec2 θ dθ

(2 sec θ)2
=

∫
2 dθ = 2θ + c = 2 tan−1

(
x−1
2

)
+ c

12



and∫
16 dx

(x2 − 2x+ 5)2
=

∫
16 · 2 sec2 θ dθ

(2 sec θ)4
dθ =

∫
2 dθ

sec2 θ
=

∫
2 cos2 θ dθ =

∫
1 + cos 2θ dθ

= θ + 1
2 sin 2θ + c = θ + sin θ cos θ + c = tan−1

(
x−1
2

)
+ 2(x−1)

x2−2x+5 + c .

Thus we have

I =

[
− lnx+

1

x
+ ln(x2 − 2x+ 5) + 2 tan−1

x− 1

2

− 1

x2 − 2x+ 5
− tan−1

x− 1

2
− 2(x− 1)

x2 − 2x+ 5

]2
1

=

[
ln
x2 − 2x+ 5

x
+

1

x
− 2x− 1

x2 − 2x+ 5
+ tan−1

x− 1

2

]2
1

=
(
ln 5

2 + 1
2 −

3
5 + tan−1 1

2

)
−
(
ln 4 + 1− 1

4

)
= ln 5

8 −
17
20 + tan−1 1

2 .

2.42 Example: Find

∫
sec3 x dx

secx− 1
.

Solution: Multiply the numerator and denominator by secx+ 1 to get∫
sec3 x dx

secx− 1
=

∫
sec3 x(secx+ 1)

(sec2 x− 1)
dx =

∫
sec4 x+ sec3 x

tan2 x
dx =

∫
sec4 x

tan2 x
dx+

∫
sec3 x

tan2 x
dx .

Make the substitution u = tanx, du = sec2 x dx to get∫
sec4 x

tan2 x
dx =

∫
(tan2 x+ 1) sec2 x dx

tan2 x
=

∫
u2 + 1

u2
du

=

∫
1 +

1

u2
du = u− 1

u
+ c = tanx− cotx+ c .

Make the substitution v = sinx, dv = cosx dx and integrate by parts to get∫
sec3 x

tan2 x
dx =

∫
dx

cosx sin2 x
=

∫
cosx dx

(1− sin2 x) sin2 x
=

∫
dv

(1− v2) v2

=

∫
1

1− v2
+

1

v2
dv =

∫ 1
2

1− v
+

1
2

1 + v
+

1

v2
dv

= − 1
2 ln |1− v|+ 1

2 ln |1 + v| − 1
v + c = 1

2 ln
∣∣∣ 1+v1−v

∣∣∣− 1
v + c

= 1
2 ln 1+sin x

1−sin x − cscx+ c = 1
2 ln (1+sin x)2

(cos x)2 − cscx+ c = ln
∣∣∣ 1+sin x

cos x

∣∣∣− cscx+ c .

Thus

∫
sec3 x

secx− 1
dx = tanx− cotx+ ln | secx+ tanx| − cscx+ c.
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Approximate Integration

2.43 Definition: Let f be integrable on [a, b]. We can approximate the integral of f on
[a, b] by any Riemann sum

I =

∫ b

a

f(x) dx ∼=
n∑
k=1

f(ck)∆kx

where a = x0 < x1 < · · · < xn = b, ∆kx = xk − xk−1 and ck ∈ [xk−1, xk]. The nth

Left Endpoint Approximation Ln, the nth Right Endpoint Approximation Rn,

and the nth Midpoint Approximation Mn, for the integral I =

∫ b

a

f(x) dx are the

Riemann sums for f obtained by using the partition of [a, b] into n equal sized subintervals
and by choosing ck to be the left endpoint, the right endpoint, or the midpoint of the kth

subinterval [xk−1, xk]. We have

Ln =
n∑
k=1

f(xk−1)∆x =
b− a
n

(
f(x0) + f(x1) + · · ·+ f(xn−1)

)
Rn =

n∑
k=1

f(xk)∆x =
b− a
n

(
f(x1) + f(x2) + · · ·+ f(xn)

)
Mn =

n∑
k=1

f
(xk−1 + xk

2

)
∆x =

b− a
n

(
f
(
x0+x1

2

)
+ f

(
x1+x2

2

)
+ · · ·+ f

(xn−1+xn
2

))
where xk = a+ b−a

n k and ∆x = b−a
n .

2.44 Definition: Let f be integrable on [a, b]. The Trapezoidal Approximation Tn

for the integral I =

∫ b

a

f(x) dx is defined as follows. We use the partition of [a, b] into n

equal-sized subintervals, so we let xk = a + b−a
n k and ∆x = b−a

n . Let gk be the linear
polynomial with gk(xk−1) = f(xk−1) and gk(xk) = f(xk). Let g be the piecewise-linear
function defined by g(x) = gk(x) for x ∈ [xk−1, xk]. We define

Tn =

∫ b

a

g(x) dx .

Note that ∫ xk

xk−1

g(x) dx =

∫ xk

xk−1

gk(x) dx =
f(xk−1) + f(xk)

2
∆x

(indeed, the integral measures the area of a trapezoid) so we have

Tn =

n∑
k=1

∫ xk

xk−1

g(x) dx =

n∑
k=1

f(xk−1) + f(xk)

2
∆x =

Ln +Rn
2

=
b− a
2n

(
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

)
.
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2.45 Definition: Let f be integrable on [a, b]. For an even positive integer n, we define

the Simpson Approximation Sn for the integral I =

∫ b

a

f(x) dx as follows. We partition

[a, b] into n equal-sized subintervals. Let xk = a+ b−a
n k and ∆x = b−a

n . For k = 1, 2, · · · , n2 ,
let gk be the quadratic polynomial with g(x2k−2) = f(x2k−2), g(x2k−1) = f(x2k−1) and
g(x2k) = f(x2k). Let g be the piecewise-quadratic function given by g(x) = gk(x) for
x ∈ [x2k−2, x2k]. We define

Sn =

∫ b

a

g(x) dx .

Note that if h(x) = Ax2 +Bx+ C is the quadratic polynomial with h(−1) = u, h(0) = v
and h(1) = w, then we must have u = h(−1) = A−B +C, v = h(0) = C and w = h(1) =
A+B+C. Solving these three equations gives A = u−2v+w

2 , B = w−u
2 and Cv so we have∫ 1

−1
h(x) dx =

∫ 1

−1

u−2v+w
2 x2 + w−u

2 x+ v dx

=
[
u−2v+w

6 x3 + w−u
4 x2 + v x

]1
−1

= u−2v+w
3 + 2v = u+4v+w

3 .

It follows, by shifting and scaling, that∫ x2k

x2k−2

gk(x) dx =
f(x2k−2) + 4f(x2k−1) + f(x2k)

3
∆x .

Thus

Sn =

n/2∑
k=1

∫ x2k

x2k−2

g(x) dx =

n/2∑
k=1

f(x2k−2) + 4f(x2k−1) + f(x2k)

3
∆x

=
b− a
3n

(
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)

)
.

2.46 Theorem: (Error Bounds for Approximate Integration) Suppose that the higher

order derivatives of f exist and are continuous on [a, b]. Let I =

∫ b

a

f(x) dx. and let

Ln, Rn, Tn, Mn and Sn be the left endpoint, right endpoint, midpoint, trapezoidal and
Simpson approximation of I. Then∣∣Ln − I∣∣ ≤ (b− a)2

2n
max
a≤x≤b

∣∣f ′(x)
∣∣

∣∣Rn − I∣∣ ≤ (b− a)2

2n
max
a≤x≤b

∣∣f ′(x)
∣∣

∣∣Tn − I∣∣ ≤ (b− a)3

12n2
max
a≤x≤b

∣∣f ′′(x)
∣∣

∣∣Mn − I
∣∣ ≤ (b− a)3

24n2
max
a≤x≤b

∣∣f ′′(x)
∣∣

∣∣Sn − I∣∣ ≤ (b− a)5

180n4
max
a≤x≤b

∣∣f ′′′′(x)
∣∣

Proof: We may assign some proofs as exercises and we may provide some proofs later.
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2.47 Example: Let f(x) = sin2 x. Find the exact value I =

∫ 4π/3

0

f(x) dx, find the

approximations L8, R8, M8, T8 and S8, and find a bound on the error for each of these
approximations.

Solution: The exact value of the integral is

I =

∫ 4π/3

0

sin2 x dx =

∫ 4π/3

0

1
2 −

1
2 cos 2x dx =

[
1
2 x−

1
4 sin 2x

]4π/3
0

= 4π
3 −

√
3
8 .

When we divide the interval
[
0, 4π/3

]
into 8 equal subintervals, the size each of the subin-

tervals is ∆x = π
6 and the endpoints of the subintervals are 0, π6 ,

π
3 ,

π
2 ,

2π
3 ,

5π
6 , π,

7π
6 ,

4π
3 .

Thus the approximations are

L8 = π
6

(
f(0)+ f

(
π
6

)
+ f
(
π
3

)
+ f
(
π
2

)
+ f
(
2π
3

)
+ f
(
5π
6

)
+ f(π)+ f

(
7π
6

) )
= π

6

(
0 + 1

4 + 3
4 + 1 + 3

4 + 1
4 + 0 + 1

4

)
= 13π

24 ,

R8 = π
6

(
f
(
π
6

)
+ f
(
π
3

)
+ f
(
π
2

)
+ f
(
2π
3

)
+ f
(
5π
6

)
+ f(π)+ f

(
7π
6

)
+ f
(
4π
3

) )
= π

6

(
1
4 + 3

4 + 1 + 3
4 + 1

4 + 0 + 1
4 + 3

4

)
= 2π

3 ,

T8 = 1
2

(
L8 +R8

)
= 29π

48 ,

M8 = π
6

(
f
(
π
12

)
+ f
(
π
4

)
+ f
(
5π
12

)
+ f
(
7π
12

)
+ f
(
3π
4

)
+ f
(
11π
12

)
+ f
(
13π
12

)
+ f
(
15π
12

) )
= π

6

(
2−
√
3

4 + 1
2 + 2+

√
3

4 + 2+
√
3

4 + 1
2 + 2−

√
3

4 + 2−
√
3

4 + 1
2

)
= π

6

(
4−

√
3
4

)
,

S8 = π
18

(
f(0)+ 4f

(
π
6

)
+ 2f

(
π
3

)
+ 4f

(
π
2

)
+ 2f

(
2π
3

)
+ 4f

(
5π
6

)
+ 2f(π) + 4f

(
7π
6

)
+ f
(
4π
3

) )
= π

18

(
0 + 1 + 3

2 + 4 + 3
2 + 1 + 0 + 1 + 3

4

)
= 43π

72 .

Note that to find the values of f needed for the midpoint approximation M8, we used the
identity f(x) = sin2 x = 1

2 −
1
2 cos 2x. From this same identity, we obtain f ′(x) = sin 2x

and then f ′′(x) = 2 cos 2x, f ′′′(x) = −4 sin 2x and f ′′′′(x) = −8 cos 2x. Thus we find that

max
0≤x≤4π/3

∣∣f ′(x)
∣∣ = 1 , max

0≤x≤4π/3

∣∣f ′′(x)
∣∣ = 2 and max

0≤x≤4π/3

∣∣f ′′′′(x)
∣∣ = 8 .

The above theorem gives the following error bounds.∣∣L8 − I
∣∣ ≤ (4π/3)2

16
· 1 = π2

9∣∣Rr − I∣∣ ≤ (4π/3)2

16
· 1 = π2

9∣∣Tn − I∣∣ ≤ (4π/3)3

12 · 62
· 2 = 8π3

36∣∣Mn − I
∣∣ ≤ (4π/3)3

24 · 62
· 2 = 4π3

36∣∣Sn − I∣∣ ≤ (4π/3)5

180 · 64
· 8 = 27π5

5·311
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Improper Integration

2.48 Definition: Suppose that f : [a, b) → R is integrable on every closed interval
contained in [a, b). Then we define the improper integral of f on [a, b) to be∫ b

a

f = lim
t→b−

∫ t

a

f

provided the limit exists and, when the improper integral exists and is finite, we say
that f is improperly integrable on [a, b), (or that the improper integral of f on [a, b)
converges). In this definition we also allow the case that b =∞, and then we have∫ ∞

a

f = lim
t→∞

∫ t

a

f .

Similarly, if f : (a, b]→ R is integrable on every closed interval in (a, b] then we define the
improper integral of f on (a, b] to be∫ b

a

f = lim
t→a+

∫ b

t

f

provided the limit exists, and we say that f is improperly integrable on (a, b] when the
improper integral is finite. In this definition we also allow the case that a = −∞. For a
function f : (a, b) → R, which is integrable on every closed interval in (a, b), we choose a
point c ∈ (a, b), then we define the improper integral of f on (a, b) to be∫ b

a

f =

∫ c

a

f +

∫ b

c

f

provided that both of the improper integrals on the right exist and can be added, and we
say that f is improperly integrable on (a, b) when both of the improper integrals on
the right are finite. As an exercise, you should verify that the value of this integral does
not depend on the choice of c.

2.49 Notation: For a function F : (a, b)→ R write[
F (x)

]b−
a+

= lim
x→b−

F (x)− lim
x→a+

F (x) .

We use similar notation when F : [a, b)→ R and when F : (a, b]→ R.

2.50 Note: Suppose that f : (a, b) → R is integrable on every closed interval contained
in (a, b) and that F is differentiable with F ′ = f on (a, b). Then∫ b

a

f =
[
F (x)

]b−
a+
.

A similar result holds for functions defined on half-open intervals [a, b) and (a, b].

Proof: Choose c ∈ (a, b). By the Fundamental Theorem of Calculus we have∫ b

a

f =

∫ c

a

f +

∫ b

c

f = lim
s→a+

∫ c

s

f + lim
t→b−

∫ t

c

f

= lim
s→a+

(
F (c)− F (s)

)
+ lim
t→b−

(
F (t)− F (c)

)
= lim
t→b−

F (t)− lim
s→a+

F (s) =
[
F (x)

]b−
a+
.
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2.51 Example: Find

∫ 1

0

dx

x
and find

∫ 1

0

dx√
x

.

Solution: We have ∫ 1

0

dx

x
=
[

lnx
]1
0+

= 0− (−∞) =∞

and ∫ 1

0

dx√
x

=
[
2
√
x
]1
0+

= 2− 0 = 2 .

2.52 Example: Show that

∫ 1

0

dx

xp
converges if and only if p < 1.

Solution: The case that p = 1 was dealt with in the previous example. If p > 1 so that
p− 1 > 0 then we have∫ 1

0

dx

xp
=

[
−1

(p− 1)xp−1

]1
0+

=
(
− 1
p−1

)
−
(
−∞

)
=∞

and if p < 1 so that 1− p > 0 then we have∫ 1

0

dx

xp
=

[
x1−p

1− p

]1
0+

=
(

1
1−p

)
−
(
0
)

= 1
1−p .

2.53 Example: Show that

∫ ∞
1

dx

xp
converges if and only if p > 1.

Solution: When p = 1 we have∫ ∞
1

dx

xp
=

∫ ∞
1

1

x
=
[

lnx
]∞
1

=∞− 0 =∞ .

When p > 1 so that p− 1 > 0 we have∫ ∞
1

dx

xp
=

[
−1

(p− 1)xp−1

]∞
1

= (0)−
(
− 1
p−1

)
= 1

p−1

and if p < 1 so that 1− p > 0 then we have∫ ∞
1

dx

xp
=

[
x1−p

1− p

]∞
1

=
(
∞
)
−
(

1
1−p

)
=∞ .
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2.54 Example: Find

∫ ∞
0

e−x dx.

Solution: We have ∫ ∞
0

e−x dx =
[
− e−x

]∞
0

= 0− (−1) = 1 .

2.55 Example: Find

∫ 1

0

lnx dx.

Solution: We have ∫ 1

0

lnx dx =
[
x lnx− x

]1
0+

= (−1)− (0) = −1 ,

since l’Hôpital’s Rule gives lim
x→0+

x lnx = lim
x→0+

lnx
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

−x = 0.

2.56 Theorem: (Comparison) Let f and g be integrable on closed subintervals of (a, b),
and suppose that 0 ≤ f(x) ≤ g(x) for all x ∈ (a, b). If g is improperly integrable on (a, b)
then so is f and then we have ∫ b

a

f ≤
∫ b

a

g .

On the other hand, if

∫ b

a

f diverges then

∫ b

a

g diverges, too. A similar result holds for

functions f and g defined on half-open intervals.

Proof: The proof is left as an exercise.

2.57 Example: Determine whether

∫ π/2

0

√
secx dx converges.

Solution: For 0 ≤ x < π
2 we have cosx ≥ 1− 2

π x so secx ≤ 1
1− 2

π x
hence

√
secx ≤ 1√

1− 2
π x

.

Let u = 1− 2
π x so that du = − 2

π dx. Then∫ π/2

x=0

1√
1− 2

π x
dx =

∫ 0

u=1

−π2 u
−1/2 =

[
− π u1/2

]0
1

= π

which is finite. It follows that

∫ π/2

0

√
secx dx converges, by comparison.

2.58 Example: Determine whether

∫ ∞
0

e−x
2

dx converges.

Solution: For 0 ≤ u we have eu ≥ 1+u, so for 0 ≤ x we have ex
2 ≥ 1+x2, so e−x

2 ≤ 1

1 + x2
.

Since ∫ ∞
0

dx

1 + x2
=
[

tan−1 x
]∞
0

= π
2 ,

which is finite, we see that

∫ ∞
0

e−x
2

dx converges, by comparison.
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2.59 Theorem: (Estimation) Let f be integrable on closed subintervals of (a, b). If |f | is
improperly integrable on (a, b) then so is f , and then we have∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f | .

A similar result holds for functions defined on half-open intervals.

Proof: The proof is left as an exercise.

2.60 Example: Show that

∫ ∞
0

sinx

x
dx converges.

Solution: We shall show that both of the integrals

∫ 1

0

sinx

x
dx and

∫ ∞
1

sinx

x
dx converge.

Since lim
x→0+

sinx

x
= 1, the function f defined by f(0) = 1 and f(x) =

sinx

x
for x > 0 is

continuous (hence integrable) on [0, 1]. By part 1 of the Fundamental Theorem of Calculus,

the function

∫ 1

r

f(x) dx is a continuous function of r for r ∈ [0, 1] and so we have∫ 1

0

sinx

x
dx = lim

r→0+

∫ 1

r

sinx

x
dx = lim

r→0+

∫ 1

r

f(x) dx =

∫ 1

0

f(x) dx ,

which is finite, so

∫ 1

0

sinx

x
dx converges.

Integrate by parts using u = 1
x , du = − 1

x2 dx, v = − sinx and dv = cosx dx to get∫ ∞
1

sinx

x
dx =

[
− cosx

x

]∞
1

−
∫ ∞
1

cosx

x2
dx = cos(1)−

∫ ∞
1

cosx

x2
dx .

Since
∣∣∣cosx

x2

∣∣∣ ≤ 1

x2
and

∫ ∞
1

dx

x2
converges, we see that

∫ ∞
1

∣∣∣cosx

x2

∣∣∣ dx converges too, by

comparison. Thus

∫ ∞
1

cosx

x2
dx also converges by the Estimation Theorem.
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