Chapter 2. Methods of Integration

Basic Integrals

2.1 Note: We have the following list of Basic Integrals

dz 1

cosx dr =sinz + ¢ =sec "x+c¢

/:L’pd:v: +c, for p#—1 /seczxd:p:tanx—l—c
p+1
dz
— =Inlz|+¢ secxtanx dr = secx + ¢
x
/exdx:egc—i—c /tana:da::ln|secm|—|—c
aZC
/a‘”dmzl +c /secxdmzln\secx—i—tanﬂ—l—c
na
dz -1
Inzxdr=xlnhx—z+c =tan "z +c
1+ 22
/. d n / dx o —1 +
sinx dr = —cosz + ¢ —— =sin zr+c
V1—z?

zvax? —1
Proof: Each of these equalities is easy to verify by taking the derivative of the right side. For

example, we have /lnac dx = xIlnx—x+c since d—(xln x—x) = 1:In x—Hc-%—l = Inz, and
x

. secx tan x
we have [ tanz dx = In|secz|+ ¢ since — (In|secx|) = ————— = tanx, and we have
dx sec x
: d secx tan x + sec?
secx dr = In|sec x+tan x|+ c since —(In|secx+tanz|) = = secx.
dx secx + tanx

dx.

z2—5
NE

Solution: By the Fundamental Theorem of Calculus and Linearity, we have

ta? -5 ! 3/2 —-1/2 2.5/2 172]% 64 2 12
/1 NG dxz/l x°/* — bx dr = ga:/ —1017/}1:(?—20)_(5_10):?'

4
2.2 Example: Find /
1

VT/3
2.3 Example: Find / sin 2z + cos 3z dzx.
/6

Solution: We find antiderivatives for sin 2z and cos 3z. Since % cos 2z = —2sin 2z we have
i( — Lcos 2:6) = sin 2z and since 2 sin 3z = 3 cos 3z we have % (l sin 3:1;) cos 3x, and so
dz 2 dz dz \ 3 )

/3 w/3
/ sin 2z + cos 3x dx = [—lCOSQQJ—l—lSin&CE]

2 3 =(G+0)-(-i+3) =5
/6 /6



Substitution

2.4 Theorem: (Substitution, or Change of Variables) Let u = g(x) be differentiable on
an interval and let f(u) be continuous on the range of g(z). Then

[ Hotang @ ds = [ fw)du
and if ¢’ is integrable then

/ f(g )da:_/ug:(:za) f(u)du.

Proof: Let F(u) be an antiderivative of f(u) so F'(u) = f(u) and /f (u) + c.

Then from the Chain Rule, we have %F(g( )) = F'(g9(x))g' (z) = f(g9(x))g'(z), and so

/ flg(@))g () dz = F(g(x)) + ¢ = F(u) + ¢ = / fu

and
b

b
| fla@)g @) do = [Flg(o))] = Flg(t) - Flgla)
g9(b)

g(b)
B [F(u)} u=gla) /u—g@) Flu)du

2.5 Notation: For u = g(x) we write du = ¢'(x) dz. More generally, for f(u) = g(x) we
write f'(u)du = ¢'(z) dz. This notation makes the above theorem easy to remember and

to apply.
2.6 Example: Find/ V2z + 3dz.
Solution: Make the substitution u = 2x + 3 so du = 2dz. Then
/\/de :/%ul/Qdu: Tud? 4 e=1(22+3)3 4 c.
(In applying the Substitution Rule, we used u = g(x) = 2z + 3 and f(u) = vu = u'/?,

but the notation du = ¢'(x) dx allows us to avoid explicit mention of the function f(u) in
our solution).

2.7 Example: Find /a:ex2 dx.

Solution: Make the substitution u = x2 so du = 2z dx. Then

2 2
/xe”J dazz/%e“du:%e“+c:%em +c.



Inz

2.8 Example: Find / —dx.
. 1
Solution: Let u =Inx so du = — dx. Then
|
/ﬂdac—/udu: Jut+c=3(lnz)? +ec.

2.9 Example: Find /tanx dx.

sin

Solution: We have tanx = . Let uw =cosz so du = —sinz dz. Then
cos T
sinxz dx —du
tanz dox = = [ — =—Inju|+c=—In|cosz| + ¢ =1n|secx| + c.
CcoST U
dx

2.10 E le: Find .
xample: Fin /x—k\/f

Solution: Let u = v/ so u?> = z and 2udu = dz. Then

/ dx B 2u du _/ 2du
r+vr ) wrtu ) u+l’
Now let v = u + 1 do dv = du. Then

d 2d 2
/:Jc—f—gi/E: u+“1 :/;dv:21n|v]—I—c:2ln|u—l—1]+c:21n(\/§+1)+c

2

d

2.11 Example: Find T

222 +1
Solution: Let u = 222 4+ 1 so du = 4x dz. Then

9 1 9

_zdz Z_d“:/ 1 —1/2du_[1u1/2]9:§_1:1,
—0 V222 +1 w1 VU - 2 I
1

d

2.12 Example: Find / T
o 14322

Solution: Let u = v/3x so du = v/3dz. Then

L du V3
/ - / = %tan’lu} =L 1=
0 1+3a: 1+u 3 0 3 3v3




Integration by Parts

2.13 Theorem: (Integration by Parts) Let f(x) and g(x) be differentiable in an interval.
Then

/ f(2)g (2) dx = f(z)g(z) - / g(2)f'(z) da

and if f" and ¢’ are integrable then

/::a f(x)d (z)dx = {f(x)g(x) — /g(x)fl(x) da:}

b
r=a

d
Proof: By the Product Rule, we have %f(x)g(:z:) = f'(z)g(x) + f(x)¢'(z) and so

/ f'(@)9(@) + f(2)d (@) dz = f(2)g(z) + ¢,
which can be rewritten as
/ f(@)g (2) dx = f(z)g(z) - / o(@)f'(x) de

(We do not need to include the arbitrary constant ¢ since there is now an integral on both
sides of the equation).

2.14 Notation: If we write u = f(x), du = f'(z)dz, v = g(x) and dv = ¢'(z) dz, then
the top formula in the above theorem becomes

/udv:uv—/vdu.

2.15 Note: To find the integral of a polynomial multiplied by an exponential function
or a trigonometric function, try Integrating by parts with u equal to the polynomial (you
may need to integrate by parts repeatedly if the polynomial is of high degree).

To integrate a polynomial (or an algebraic) function times a logarithmic or inverse
trigonometric function, try integrating by parts letting u be the logarithmic or inverse
trigonometric function.

To integrate an exponential function times a sine or cosine function, try integrating
by parts twice, letting v be the exponential function both times.

2.16 Example: Find /xsinx dx.

Solution: Integrate by parts using u = x, du = dx, v = —cosz and dv = sinx dz to get

/xsinx dx:/udv:uv—/vdu:—xcosx—i—/cosx dr = —xcosx +sinx + c.



2.17 Example: Find /(a:2 + 1)e** da.

Solution: Integrate by parts using u = 22 + 1, du = 2z dz, v = %e% and dv = e?* dx to

get
/(132—1—1)62"“’6133:/udv:uv—/vdu: %(5172+1)62m—/$€2$d(13.

62m

N|—=

To find [ ze?* dx we integrate by parts again, this time using up = z, dus = dzx, vy =

and dvs = €2? dz to get

/(ac2 +1)e* dr = (2% + 1)e** — /xe% dz

(22 +1)e2* — (% re?® — /% 2z dx)

(22 +1)e** — <% re’® — i62m> +c

N[ —

N~

:i(2m2—2x+3)e2‘”+c

2.18 Example: Find /ln:c dx.

1
Solution: Integrate by parts using v = Inx, du = — dz, v = x and dv = dx to get
x

/lnx dw=xlnx—/1dw=xlnx—x+c.

4
2.19 Example: Find/ Vo lnz dr.
1

1
Solution: Integrate by parts using u = Inx, du = —dzx, v = %xg/z and dv = /2 dz to get
x

4 4 4
/ Vrlnz de = [§x3/21nm—/§x1/2dx] = {%xz)’plnx— gx?’/z
1 1 1
_ (16 32 2 4\ _ 16 28
= (¥n4—F) - (3Inl-3)=Fnd—F.
2.20 Example: Find /ex sinx dx
Solution: Write I = [ e”sinx dz. Integrate by parts twice, first using u; = e, du = e* dx,
v = —cosz and dv = sinx dx, and next using us = €%, dus = e*dx, vo = sinx and

dvy = cosx dx to get

I:—e:‘cosx-i—/excosx dx
= —e"cosx + <emsinx—/emsinx dx) :

= —¢e%cosx+eFsinz — 1

Thus 2] = —e® cosz + e*sinz + ¢ and so I = L (sinz — cosz)e” + d.

5



2.21 Example: Let n > 2 be an integer. Find a formula for / sin” x dz in terms of
/ sin” "2z dz, and hence find / sin? z dz and / sin* z dx.
Solution: Let I = /sin" xdr = /sin"_1 zsinz dz. Integrate by parts using v = sin” ! z,
du= (n—1)sin" 2z coszdr, v=—cosz and dv = sinz dz to get
I=—sin""tacosx + /(n —1)sin" ?zcos’z dx
= —sin" !z cosx + /(n —1)sin" 2 2(1 — sin® z) dz

= —sin" !'xcosx + (n —1) /sin”_Qxdx —(n—1)I.

Add (n — 1)I to both sides to get n] = —sin" 'z cosz + (n — 1) /s.in”2 x dz, that is
/sin” x dr = —% sin" !z cosx + "T_l sin" %z dx .
In particular, when n = 2 we get
/sian dr = —%sinxcosw + %/ldx = —%Sin:ccosx + %x +c
and when n = 4 we get

/sin4x dx = —}lsin3xcosx+§/sin2x dxr = —isinsxcosx—%sinxcosx—l—%x—l—c.

2.22 Example: Let n > 2 be an integer. Find a formula for / sec x dx in terms of

/sec"2 x dx, and hence find /sec3 xr dr.

Solution: Let I = / sec" x dr = / sec" 2 xsec’x dr. Using Integrate by Parts with

u=sec" 2z, du= (n—2)sec" ?ztanz dr, v = tanx and dv = sec? x dz, we obtain

I =sec" ?ztanx — /(n —2)sec" 2 ztan®z dx
=sec" 2ztanz — /(n —2)sec" 2 x(sec’z — 1) da
=sec" 2ztanz — (n — 2)I + (n — 2) /secn_2 x dx
Add (n—2)I to both sides to get (n—1)I = sec” 2z tanz + (n — 2) /sec”_2 x dx, that is

/secn x dx = ﬁ sec" 2 rtanx + Z—j sec" 2z dx.

In particular, when n = 3 we get

/SeC3£L‘ dx = %secxtanx+%/secx der = %secxtanx+%ln}secx+tanx +c



Trigonometric Integrals

2.23 Note: To find /f(sin ) cos®™ ! x dx, write cos? ! & = (1 —sin® z)" cos z then try

the substitution v = sinx, du = cosx dx.

To find /f(cos z)sin®" 'z dx, write sin® ™'z = (1 — cos?z)"sinz then try the
substitution © = cosz, du = —sinx dx.
To find / sin®™ x cos®™ x d, try using the trigonometric identities sin® § = %—% cos 26

and cos®§ = 1 + % cos20. Alternatively, write cos®™ z = (1 — sin® z)" and use the formula
from Example 2.21.

To find /f(tan x) sec?™ 2 x dx, write sec?”t2 2 = (1 4 tan® )" sec? 2 dz and try the
substitution u = tan z, du = sec? = dz.

2
— 1 n
To find /f(sec x)tan®" 'z dx, write tan®" gz = M

secx

secrtanz dx and
try the substitution u = secx, du = secxtanz dz.
To find / sec?™ ™!z tan®" 2 dx, write tan?" x = (sec? z — 1) and use the formula from

Example 2.22.

w/3 1.3
2.24 Example: Find / s1n2:1: dx.
0 cos? x
Solution: Make the substitution v = cosz so du = —sinz dx. Then
/3 sin® @ ™/3 (1 — cos? ) sin  dx 12 (1 —u?)du 12
2 dx = 2 = - 5 = - +1 du
0 cos? x 0 cos? x 1 U 1 U
1 1/2 1 1
:[5+u]1 — @2+ -a+1=1.

2.25 Example: Find /sinG:I: dx.

Solution: We could use the method of example 2.21, but we choose instead to use the
half-angle formulas. We have

/4 /4 3 /4
sin® z dx = (l —1cos 290) dx = L3 cos2x + 3 cos?2x — L cos® 22 dx
0 o 27 2 0 8 8 8 8

w/4
:/0 %—%(308290—#%(%—1—%008490)—%(l—sin22x)cos2mdm

w/4
:/ i—%COSZQZ—F13—GCOS4$—|—%811122$COSZZCCZ£C

/4
= [ix— isin2x+g’—4$in4x+ 4—188i113 23:]

0
57 1 1 _ 5r 11
64 11718 = 6a 48 -



w/4
2.26 Example: Find/ tan® = dz.
0

Solution: Note first that

tan™ x = tan x(secQ.q:—l) = tan® rsec’ z — tan® 2 = tan® x sec® r —sec’ z + 1

To find / tan® z sec? x dx, make the substitution v = tan, du = sec? 6 df to get

/tanzxsec2x da::/quu: 1

sud +c=3tan®z 4 c.
Thus we have

w/4 /4
/ tan* x dz = / tan® xsec? z — sec® x +1
0 0

/4
= [% tan?’x—tana:—i—x}o :%—1—#% % %
w/4 4
_osectx
2.27 Example: Find
P 0 \/tanx +1
Solution: Make the substitution v = tanz so du = sec” x dz. Then
sec x /4 (tan2x+1)seczxdx_/1( 24+ 1) du
\/tanx+ 0 Vvtanx + 1 N 0 vVu+1
Now make the substitution v =u +1souvw =v —1 and du = dv. Then
2 2 2
tutl Mdv:/ W32 _9ul/2 49172 gy
vu—+1 1 NG 1
2.5/2 _ 4,3/2 1/2 2 2:4vV2 _ 422 2 4
- [gv — 40 ] = (42528 0B - (- +9)
_ (24-40460)v2 _ 620460 _ 441246
15) 15 = :



2.28 Note: To find /sin(aa:) sin(bx) dx | /cos(ax) cos(bx) dx , or /sin(ax) cos(bx) dx,
use one of the identities
cos(A — B) —cos(A+ B) =2sin Asin B
cos(A — B) + cos(A + B) = 2cos Acos B
sin(A — B) + sin(A+ B) = 2sin Acos B.
/6
2.29 Example: Find /o cos 3x cos 2x dx.

Solution: Since 2 cos 3z cos 2x = cos(3z — 2x) + cos(3z + 2x) = cos x + cos bz, we have

w/6 /6 /6
/0 cos?xcos?wdx:/o 2 (cosz+cosbz) dr = [%sinx#—%sin@c]o =it:=5.
. S {B 1 2du
2.30 Note: The Weirstrass substitution v = tan3, v = 2tan™ " u, dz = T2
u
converts sinz and cosz into rational functions of u: indeed we have sin § = \/1117 and
2
cos 5 = \/11_7 so that sinz = 2sin § cos § = 1?&2 and cosx = cos? 5 — sin? 5= L—rZQ
dx
2.31 Example: Find/ .
1 —coszx
Solution: We use the Weirstrass substitution v = tan 5, dz = H% du, and cosx = i—zz
to get
/ dx /ﬁdu / 2 du /du L T
— = —/— = =[] w=——+4c=—cot=-+c.
1 —cosx 1 — 1=u? (1+u2) — (1 —u?) u? u 2

14+u?



Inverse Trigonometric Substitution

2.32 Note: To solve an integral involving \/a? + b2(z + ¢)? or 1/(a? +b*(z +¢)?), try the
substitution § = tan™! @ so that atand = b(x + ¢), asecd = \/a? + b?(x + ¢)? and
asec®0df = bdz.

For an integral involving \/a? — b%(z + ¢)2, try the substitution § = sin™! —b(xjc) SO
that asin® = b(z + ¢), acosf = \/a? — b2(z + ¢)? and acosf df = bdx.
For an integral involving \/b2(m + 6)2 — a2, try the substitution 6 = sec—1 b(m;—c) 0

that asecf = b(z + ¢), atanf = \/b?(z + ¢)? — a? and asecftanddf = bdzx.
1
. dx
2.33 Example: Flnd/o m
Solution: Let 2sinf = /32 so 2cosf = /4 — 322 and 2cos 6 df = v/3dx. Then

! ©/3 2 cos 6 df /3
dx _ /3 cosvav . /s
/o (4—322)32 /0 (2cos0)3 /o a3 e’ 01l = LM tan 9] -

2.34 Example: Find

N

/ 5 da

1 22Vx?2+3 .

Solution: Let v/3 tanf = z so v/3 secd = vz2 + 3 and v/3 sec?20dl = dz, and also let
u = sin# so du = cosdf. Then

/ / V3 sec?6do _/”/41 sec 6 _/"/4lcos(9d9
xQ\/xQ x/6 3tan? 0+/3sect 7/6 3 tan?6 /6 3 sin” 9
1/V2 1/v2
:// R N S RV PSR §
1/2 3U2 3U 1/2 3 3 3

2.35 Example: Find

1?14
Tz @

Solution: Let 2sec = x so 2tanf = vVx2 — 4 and 2secftanf df = dx. Then

/ Vva? -4 /”/Stan O secdb /”/3tan29d9_/”/3sec26—1
0 0

sec? 6 sec 0 sec 0

do

/3
:/ secf — cos 0 d@—[ln|se€«9+tan9|—sme} zln(2+\/§)—\/7§.
0

3
2.36 Example: Find/ (42 — 2%)3/2 d.
2
Solution: Let 2sinf = x — 2 so 2cosf = V4x — x2 and 2cosf dO = dx. Then
3 /6 /6
/ (4z — 22)3/2 dx = / 16 cos* 0 df = / 4 (1 + cos20)*do
2 0 0
= /4+8cos29+4cos,229 dh = /4+800829+2+200840 do

/6
- [60+4sin29+%sin49] —r+2V3+ B =g 08
0

10



Partial Fractions

()

2.37 Note: We can find the integral of a rational function /

as follows:
g(x)
Step 1: use long division to find polynomials ¢(x) and r(z) with degr(z) < deg g(x) such
f(x) r(z)
that f(x) = g(z)q(x) 4+ r(z) for all x, and note that =q(x) + —= so
() = glaa(z) + r(a) P g+ o

5@ o~ oo+ ") g
[ ey e= [ o+ G e
(If deg f(x) < degg(x) then g(x) =0 and r(z) = f(x)).

Step 2: factor g(x) into linear and irreducible quadratic factors.

Step 3: write rgxg as a sum of terms so that for each linear factor (ax + b)* we have the
g(x
k terms
A A A
(ax +b)  (ax +b)? (ax + b)k

and for each irreducible quadratic factor (az? + bz + ¢)* we have the k terms
Bix + (4 Box + Cy Brx + Cy,

(ax? + bx + ) * (ax? + bx + ¢)? L (az? + bx + )k’
Loor(z) . . ) or(z) .. . ) .
Writing @) in this form is called splitting @) into its partial fractions decomposition.
gl gz

Step 4: solve the integral.

2.38 Example: If g(z) = z(z — 1)3(2? + 22 + 3)? then in step 3 we would write
r(z) A B C D Ex+ F Gr+ H
=4+ + + + + :
glz) = -1 (x—1)2 (z—-1)3 22+4+2x+4+3 (22+2x+3)?

and then solve for the various constants.

3
2.39 Example: Find/ (
2

-7 A B C
Solution: In order to get v = + + we need
(r—1)2(x+2) z—-1 (x—12 z+2

Az —1)(z+2)+Bz+2)+Cx - 1) =2 7.
Equating coefficients gives A+ C =0, A+ B—2C =1 and —2A+ 2B + C = —7. Solving

these three equations gives A =1, B = —2 and C = —1, and so we have
/3 x—7 p /3 A B C
€Tr =
9 (x—=1)2(z+2) s x—1 (z—1)2 x+42
3
1 2 1 3
- - - d :[1 D42 Iz 42
/230—1 @—12 z+2"" Bz —1)+ 35 — I+ )2

:(ln2+1—1n5)—(2—1n4):ln§—1.

11



V3 .4 3.
2.40 Example: Find / I?)L dx.
1 T2+
4 3 2
— 1 — 1
Solution: Use long division of polynomials to show that rorhl r—1+ M
3+ x 3+ x

B C —z? 1
ST =~ weneed A(a? + 1) + (Ba + C)(x) =

—22 + 2 + 1. Equating coefficients gives A+ B = —1, C = 1 and A = 1. Solving these
three equations gives A =1, B = —2 and C' = 1. Thus

V3 4 3 V3
zt—z° +1 1 2z 1
LA L L d
/1 Bz /1 . +x x2+1+x2+1 “

A
Next, note that to get — +
x

V3

1
=(2-V3+Ilnv3-n4+%)— (1 -1-I2+7)

=23+ 4+ L.

= [% 2> —z+Inz—1In(z? + 1) + tan™! a:}

2 .5 4 3 2
Solution: To get
A,B, CetD Ex+F _ 2°+a'—22° 22" 5025
z ooz a? =245 (22 =22 45)° 22(22 — 21 4 5)?

we need Az(z? —2x+5)?+ B(2? —22+5)? + (Cx+ D)(2?)(2? =22 +5) + (Ex + F)(2?) =
x® + 2 — 223 — 222 — 5z — 25. Expanding the left hand side then equating coefficients
gives the 5 equations

A+C=1, -4A+B—-20+D=1, 14A—4B+5C - 2D+ E = —2
—20A+14B+5D+F=-2, 25A—-20B=-5, 25B=-25
Solving these equations gives A = -1, B=—-1,C =2, D=2, E=2and FF = —18, so

2
1 1 2 + 2 2¢ — 18
=) ——— = d
/1 x x2+x2—2:1:—|—5+(:c2—2x+5)2 v
/2 11 20-2+44  220-2-16
= ———— x
1ox 2?2 22 —-2x+5 (22 —-2x+5)?

_/2 1 1 2z — 2 4 20 — 2 16
1

I - d
x :EZ+x2—2:1:—|—5+x2—2:r;+5+(x2—2:n+5)2 (2 — 2z + 5)? v

1 1 1

We have / —dr =Inx+cand / — dx = ——+c. Make the substitution u = 2% — 2245,
T x x

du = (2z — 2) dx to get

2z — 2

/ (22 — 2) dx /du -1 N -1 n
= 5=—+c=——"7—"+c
(x?2 —2x 4+ 5)? u? u 2 —2x+5

Make the substitution 2tanf = x — 1, 2secf = V22 — 22 + 5, 2sec?2 0 df = dx to get

4dx 4-2sec?®0do
—— = [ = [ 2d0 =20+ c=2tan"! (&2
/x2—2x+5 / (2sech)? / te an! (%57) +e

and

12



and

16 dz 16 - 2sec? 0 db 2df
— —_— e _ = 2 2 — 1 2
/ (22 — 22 +5)2 / (2sec)* 40 / sec2 / cos™ 0 df / +cos 26 df

=0+ 3 sin20+c=0+sinfcosh+c=tan' (1) + mg(—x2_331-|25 e

Thus we have

1 -1
I:[—lnx—l——+1n(x2—2x+5)+2tan_1x—
x
B 1 —tan_lx_l— 2(x — 1)
x2 —2x+5 2 x?2 —2x+5 )
2 —2r+5 1 2 — 1 Lz —1]7
S 1 e e
x x  x?2—-2x+5 2 |,

_ 5 .1 3 11 1
=(Im3+5-2+tan'5) — (Ind+1-7)
:ln%—é—g—f—tan_l%.

Sxd
2.42 Example: Find /M

secr —1°

Solution: Multiply the numerator and denominator by secx + 1 to get

3 3 4 3 4 3
sec® x dx sec® x(secx + 1 sec” x + sec® x sec” x sec” x

/ -/ < >dx:/ L U e
secx — 1 (sec?x — 1) tan® x tan® x tan® x

Make the substitution u = tanz, du = sec? x dx to get

/sec‘;x dx:/(tan2x+1)sec2xd$ :/u2+1du

tan“ x tan? x u?

8

1 1
= 1—|——2du:u——+c:tanx—cotx—|—c.
U U

Make the substitution v = sinx, dv = cosz dr and integrate by parts to get

sec® x dx cosz dx dv
s—dr= | —————5— = 2 N 2 2) .2
tan® x cosxsin” (1 —sin” z) sin” x (1-v?)wv

1 1 z z 1
= [ — 4+ — dv= 2 2 —d
/1—v2+v2 v /1—v+1+v+v2 v

1 1 1 1 14w 1
_—ilnll—v|+§ln\1+vl—;—l—c_§1n‘1_v -+
— 1l Lisinz _ _ 1y, (4sina)? — I |Lfsinz | _
=5lni=r> —cscx+c=5ln (cos2)? cscx + ¢ =In |~ cscx + c.

sec3
Thus | ———— dz = tanx — cotz + In|secx + tanz| — cscx + c.
secx — 1
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Approximate Integration

2.43 Definition: Let f be integrable on [a,b]. We can approximate the integral of f on
[a,b] by any Riemann sum

b n
I= [ f@ =) fa)d
a k=1

where @ = 29 < o1 < ++- < x, = b, Apx = T — 2x_1 and ¢ € [vp_1,7]. The n*h
Left Endpoint Approximation L,, the n'® Right Endpoint Approx1mat10n R,,

and the n'" Midpoint Approximation M, for the integral I = / f(x)dx are the

Riemann sums for f obtained by using the partition of [a, b] into n equal sized subintervals
and by choosing ¢ to be the left endpoint, the right endpoint, or the midpoint of the k"
subinterval [z_1, zk]. We have

L, = Zf(flik—ﬁAiL’ = b—a

k=1

R =3 )= "= (fen) + flea) 4+ (o))
k=1

(£l@o)+ Fl@) +- -+ f(@a)

My = 37 (P o - D () g () o g ()
k=1

where xy, :a—}—b_Tak: and Ax = b_T“.
2.44 Definition: Let f be integrable on [a,b]. The Trapezoidal Approximation T,
b

for the integral I = / f(z) dx is defined as follows. We use the partition of [a,b] into n
equal-sized subintervals, so we let xx = a + b_T“ k and Ax = b_T“. Let gr be the linear
polynomial with gx(zr—1) = f(zr—1) and gi(xx) = f(zr). Let g be the piecewise-linear
function defined by g(z) = gi(z) for x € [xg_1,xr]. We define

Tn:/abg(x)dx.

[ swae= [ awyar = LI 5,

Note that

2

k— k—1

(indeed, the integral measures the area of a trapezoid) so we have

. " f(sck_l)—i—f(xk) _Ln+Rn
Z/xk ) x—; 5 Ax = —

= O (Flao) + 27 27 (@) -+ 2 (@) + f(2a)
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2.45 Definition: Let f be integrable on [a,b]. For an even positive integer n, we define
b

the Simpson Approximation S,, for the integral I = / f(z) dzx as follows. We partition
a

[a, b] into n equal-sized subintervals. Let xj) = a—l—b_Ta k and Ax = b_T“. Fork=1,2,---,%,
let g be the quadratic polynomial with g(xor—2) = f(z2r—2), 9(z2k-1) = f(x2k—1) and
g(wor) = f(xar). Let g be the piecewise-quadratic function given by g(x) = gx(x) for
x € [Tok_o, o). We define

Sn:/abg(x)dx.

Note that if h(z) = Az? + Bz + C is the quadratic polynomial with h(—1) = u, h(0) = v
and h(1) = w, then we must have u = h(—1) = A—B+C,v=h(0) =C and w = h(1) =

A+ B+ C'. Solving these three equations gives A = HT“J““’, B = “5* and Cv so we have

1 1
— —2v+ 2 —
/_1h(x)dx—/_1“ St + 5t v dr
:[u—2g+wx3+w4—ux2+vx]1

-1

_ u—2v+4w _ ut4v+tw
= 4 2 = T

It follows, by shifting and scaling, that

/m:: gr(z) dx = flom o)+ 4f(§2k_1) ) A
Thus
5, = gla)du = 37 TS Ay
kz::l/w%Q k=1 3
b

_ ;—n“ (F(@0) + 4 (02) + 2 (22) + 47 (@) & -+ 2 (@02) + 4F (@a-1) + F(z2)

2.46 Theorem: (Error Bounds for Approximate Integration) Suppose that the higher
b

order derivatives of f exist and are continuous on [a,b]. Let I = f(x)dx. and let

L,, R,, T,, M, and S,, be the left endpoint, right endpoint, midpoiZt, trapezoidal and
Simpson approximation of I. Then

12 O3 [0
1< 3 s 1)
1)< S s 170
M- 1] < ST |17
S0 —1] < C=DP oy 157(a)

— 180n% a<z<b

Proof: We may assign some proofs as exercises and we may provide some proofs later.

15



47 /3
2.47 Example: Let f(z) = sin®2. Find the exact value I = / f(z)dz, find the

0
approximations Lg, Rg, Mg, Ts and Sg, and find a bound on the error for each of these
approximations.

Solution: The exact value of the integral is

47 /3 47 /3 4m/3
I= sin®z dox = L Lleos2xder =Lz — Lsin2z —4r _ V3
; ; 2 7 32 2 1 0 3 ]

When we divide the interval [O, 47/ 3} into 8 equal subintervals, the size each of the subin-

tervals is Az = § and the endpoints of the subintervals are 0, ¢, %, 5, %’r, 5gr,7r, %”, %ﬂ.

Thus the approximations are

Ly =5 (JO+1(5) + £(5) + £(5) +1(3) +£(5) + 5@+ 4 () )
=Z(0+3+3+1+2+1+0473) =27,

RsZ%(f@)+fﬁ)+f@)+fﬁﬁ+ﬁl%)+ﬂﬁHJT%)+f@9)
=T+ 3 +1+5+3+0+5+3) =3,

Ty = L(Is o) = 22,

Mé:%(fG9+JTQ+JW@)+f@®+JT% 1)+ F(55) + 1 (5))
— (04 1 2 2 oz (4o )

Ss = 5 (FO)+47 () +2£(5) +4£(5) +2£ () +4F (%) +2f (1) +4£ () + 1 (%) )
=0 +1+3+44+3+140+1+3) =231,

Note that to find the values of f needed for the midpoint approximation Mg, we used the
identity f(z) = sin®z = 3 — 3 cos2z. From this same identity, we obtain f’(z) = sin2x
and then f"”(z) =2cos2x, f"'(x) = —4sin2x and """ (z) = —8cos2z. Thus we find that

, 1 ” _9 d " -8
052@’;/3“ ()] oginsi};/s'f <l o osglsaﬁffr/:s‘f (@)]

The above theorem gives the following error bounds.

Le-n <UL
47 /3)?
1] < TR
EP LI
M1 < G- g
5011 < Y 8= £
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Improper Integration

2.48 Definition: Suppose that f : [a,b) — R is integrable on every closed interval
contained in [a,b). Then we define the improper integral of f on [a,b) to be

/abfztgrg/:f

provided the limit exists and, when the improper integral exists and is finite, we say
that f is improperly integrable on [a,b), (or that the improper integral of f on [a,b)
converges). In this definition we also allow the case that b = oo, and then we have

[r=m [

Similarly, if f : (a,b] — R is integrable on every closed interval in (a, b] then we define the
improper integral of f on (a,b] to be

[r=m [1

provided the limit exists, and we say that f is improperly integrable on (a,b] when the
improper integral is finite. In this definition we also allow the case that a = —oco. For a
function f : (a,b) — R, which is integrable on every closed interval in (a,b), we choose a
point ¢ € (a,b), then we define the improper integral of f on (a,b) to be

/abf=/:f+/cbf

provided that both of the improper integrals on the right exist and can be added, and we
say that f is improperly integrable on (a,b) when both of the improper integrals on
the right are finite. As an exercise, you should verify that the value of this integral does
not depend on the choice of c.
2.49 Notation: For a function F': (a,b) — R write
-

F } — lim F(z)— lim F(z).

(7], = Jim P = fim, P(z)
We use similar notation when F': [a,b) — R and when F': (a,b] — R.

2.50 Note: Suppose that f : (a,b) — R is integrable on every closed interval contained
in (a,b) and that F' is differentiable with F' = f on (a,b). Then

[

A similar result holds for functions defined on half-open intervals [a,b) and (a, b].

Proof: Choose ¢ € (a,b). By the Fundamental Theorem of Calculus we have
/ /f—i—/f-hm/f—i—hm/f
8—>CL
=l - F 1 F(t
lim (F(c) = F(s)) + lim (F(t) -

— lim F(t) — lim F(s) = [F(a:)]

t—b— s—at
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1 1
2.51 Example: Find / d_a: and find / d_ac
o 7T 0o VT

Solution: We have

Olci_x = [Inx}; =0—(—00) =00

and .
dx 1
— =2 =2-0=2.
/0\/5 2va],

1
d
2.52 Example: Show that / —j converges if and only if p < 1.
o T

Solution: The case that p = 1 was dealt with in the previous example. If p > 1 so that
p— 1> 0 then we have
1

1
A I
and if p < 1 so that 1 —p > 0 then we have

) < () 0=

o P L=plo+

> d
2.53 Example: Show that / —z converges if and only if p > 1.
1 X

Solution: When p = 1 we have

[mi—i:/looéz[lnx}:o:oo—():oo.

When p > 1 so that p — 1 > 0 we have

7%= [=mam], -0 ()=

1
and if p < 1 so that 1 — p > 0 then we have

[ -] - - () -

1
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2.54 Example: Find / e *dx.
0

Solution: We have -
/ _xd:c— —e—m] —0—(-1)=1.
0 0
1

2.55 Example: Find/ Inzdx.
0

Solution: We have

/Olnxdx:[azlnx—x] =(-1)—(0)=—-1,

0+

Inz P .
since ’Hopital’s Rule gives lim zlnx = lim — = lim —*— = lim —z = 0.
z—0t z—0t r—0t — o3 z—0t

IS

2.56 Theorem: (Comparison) Let f and g be integrable on closed subintervals of (a,b),
and suppose that 0 < f(z) < g(x) for all z € (a,b). If g is improperly integrable on (a,b)

then so is f and then we have
b b
/ f< / g
a a
b

On the other hand, if / f diverges then / g diverges, too. A similar result holds for
functions f and g defined on half-open intervals.

Proof: The proof is left as an exercise.
/2
2.57 Example: Determine whether / vsecx dxr converges.

Solution: For0 <z < Z

\/ <
secx m

Letu:l—;az so that du———d:v Then

/ ﬁd"’”‘/

which is finite. It follows that / vsecx dxr converges, by comparison.
0

w12 — [_7Tu1/2}0:7T
1

o0
2.58 Example: Determine whether / e~ dr converges.
0

< 1
— 14 x2

Solution: For 0 < u we have e“ > 1+u, so for 0 < x we have e’ > 1422 s0e

< dx R
2:[tan x] =3,
o l+=z 0

(e.]
. . . — 2 .
which is finite, we see that / e~ % dx converges, by comparison.
0

Since
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2.59 Theorem: (Estimation) Let f be integrable on closed subintervals of (a,b). If | f| is
improperly integrable on (a,b) then so is f, and then we have

/abf s/abm-

A similar result holds for functions defined on half-open intervals.

Proof: The proof is left as an exercise.

2.60 Example: Show that / S dx converges.
0 Xz
1 . 0o -
Solution: We shall show that both of the integrals / Sy dx and / S dx converge.
: o ¥ 7
Since lim ¥ — 1, the function f defined by f(0) =1 and f(z) = Y for 2> 0s

x—0t T
continuous (hence integrable) on [0, 1]. By part 1 of the Fundamental Theorem of Calculus,
1

the function / f(x) dx is a continuous function of r for r € [0, 1] and so we have

1 1 .
sin x _ sin x
dr = lim dr = lim f )dx = f
0 x r—0+ r x r—0+

1 .
. ) sin x
which is finite, so / —— dx converges.
0o X

Integrate by parts using u = %, du = —x% dx, v = —sinz and dv = cosz dx to get

. o0
* sinx CcOS T > cosx > cosx
de = | — - 5— dx = cos(1) — 5 d.
1 X X 1 1 X 1 X

) CoS T 1 > dx cos T
Since 5| < — and — converges, we see that dx converges too, by
x x 1z 1

COS T

[o.@]
comparison. Thus / dx also converges by the Estimation Theorem.
1

x2
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