
Chapter 1. The Riemann Integral

The Riemann Integral

1.1 Definition: A partition of the closed interval [a, b] is a set X = {x0, x1, · · · , xn}
with

a = x0 < x1 < x2 < · · · < xn = b .

The intervals [xk−1, xk] are called the subintervals of [a, b], and we write

∆kx = xk − xk−1
for the size of the kth subinterval. Note that

n∑
k=1

∆kx = b− a .

The size of the partition X, denoted by |X| is

|X| = max
{

∆kx
∣∣1 ≤ k ≤ n} .

1.2 Definition: Let X be a partition of [a, b], and let f : [a, b] → R be bounded. A
Riemann sum for f on X is a sum of the form

S =
n∑
k=1

f(tk)∆kx for some tk ∈ [xk−1, xk] .

The points tk are called sample points.

1.3 Definition: Let f : [a, b]→ R be bounded. We say that f is (Riemann) integrable
on [a, b] when there exists a number I with the property that for every ε > 0 there exists
δ > 0 such that for every partition X of [a, b] with |X| < δ we have |S − I| < ε for every
Riemann sum for f on X, that is∣∣∣∣∣

n∑
k=1

f(tk)∆kx− I

∣∣∣∣∣ < ε .

for every choice of tk ∈ [xk−1, xk] This number I is unique (as we prove below); it is called
the (Riemann) integral of f on [a, b], and we write

I =

∫ b

a

f , or I =

∫ b

a

f(x) dx .

Proof: Suppose that I and J are two such numbers. Let ε > 0 be arbitrary. Choose
δ1 so that for every partition X with |X| < δ1 we have |S − I| < ε

2 for every Riemann
sum S on X, and choose δ2 > 0 so that for every partition X with |X| < δ2 we have
|S − J | < ε

2 for every Riemann sum S on X. Let δ = min{δ1, δ2}. Let X be any partition

of [a, b] with |X| < δ. Choose tk ∈ [xk−1, xk] and let S =
n∑
k=1

f(tk)∆kx. Then we have

|I − J | ≤ |I − S|+ |S − J | < ε
2 + ε

2 = ε. Since ε was arbitrary, we must have I = J .
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1.4 Example: Let f(x) =

{
1 if x ∈ Q
0 if x /∈ Q .

Show that f is not integrable on [0, 1].

Solution: Suppose, for a contradiction, that f is integrable on [0, 1], and write I =
∫ 1

0
f .

Let ε = 1
2 . Choose δ so that for every partition X with |X| < δ we have |S−I| < 1

2 for every

Riemann sum S for f on X. Choose a partition X with |X| < δ. Let S1 =
n∑
k=1

f(tk)∆ikx

where each tk ∈ [xk−1, xk] is chosen with tk ∈ Q, and let S2 =
n∑
k=1

f(sk)∆kx where each

sk ∈ [xk−1, xk] is chosen with sk /∈ Q. Note that we have |S1 − I| < 1
2 and |S2 − I| < 1

2 .

Since each tk ∈ Q we have f(tk) = 1 and so S1 =
n∑
k=1

f(tk)∆kx =
n∑
k=1

∆kx = 1−0 = 1, and

since each sk /∈ Q we have f(sk) = 0 and so S2 =
n∑
k=1

f(sk)∆kx = 0. Since |S1 − I| < 1
2

we have |1− I| < 1
2 and so 1

2 < I < 3
2 , and since |S2 − I| < 1

2 we have |0− I| < 1
2 and so

− 1
2 < I < 1

2 , giving a contradiction.

1.5 Example: Show that the constant function f(x) = c is integrable on any interval

[a, b] and we have

∫ b

a

c dx = c(b− a).

Solution: The solution is left as an exercise.

1.6 Example: Show that the identity function f(x) = x is integrable on any interval

[a, b], and we have

∫ b

a

x dx = 1
2 (b2 − a2).

Solution: Let ε > 0. Choose δ = 2ε
b−a . LetX be any partition of [a, b] with |X| < δ. Let tk ∈

[xk−1, xk] and set S =
n∑
k=1

f(tk)∆kx =
n∑
k=1

ti∆kx. We must show that |S− 1
2 (b2−a2)| < ε.

Notice that

n∑
k=1

(xk + xk−1)∆kx =
n∑
k=1

(xk + xk−1)(xk − xk−1) =
n∑
k=1

xk
2 − xk−12

= (x1
2 − x02) + (x2

2 − x12) + · · ·+ (xn−1
2 − xn−22) + (xn

2 − xn−12)

= −x02 + (x1
2 − x12) + · · ·+ (xn−1

2 − xn−12) + xn
2

= xn
2 − x02 = b2 − a2

and that when tk ∈ [xk−1, xk] we have
∣∣tk − 1

2 (xk+xk−1)
∣∣ ≤ 1

2 (xk−xk−1) = 1
2∆kx, and so∣∣S − 1

2 (b2 − a2)
∣∣ =

∣∣∣ n∑
k=1

tk∆kx− 1
2

n∑
k=1

(xk + xk−1)∆kx
∣∣∣

=
∣∣∣ n∑
k=1

(
tk − 1

2 (xk + xk−1)
)

∆kx
∣∣∣

≤
n∑
k=1

∣∣tk − 1
2 (xk + xk−1)

∣∣∆kx

≤
n∑
k=1

1
2∆kx∆kx ≤

n∑
k=1

1
2δ∆kx

= 1
2δ(b− a) = ε .
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Upper and Lower Riemann Sums

1.7 Definition: Let X be a partition for [a, b] and let f : [a, b] → R be bounded. The
upper Riemann sum for f on X, denoted by U(f,X), is

U(f,X) =

n∑
k=1

Mk ∆kx where Mk = sup
{
f(t)

∣∣t ∈ [xk−1, xk]
}

and the lower Riemann sum for f on X, denoted by L(f,X) is

L(f,X) =
n∑
k=1

mk ∆kx where mk = inf
{
f(t)

∣∣t ∈ [xk−1, xk]
}
.

1.8 Remark: The upper and lower Riemann sums U(f,X) and L(f,X) are not, in
general, Riemann sums at all, since we do not always have Mk = f(tk) or mk = f(sk) for
any tk, sk ∈ [xk−1, xk]. If f is increasing, then Mk = f(xk) and mk = f(xk−1), and so in
this case U(f,X) and L(f,X) are indeed Riemann sums. Similarly, if f is decreasing then
U(f,X) and L(f,X) are Riemann sums. Also, if f is continuous then, by the Extreme
Value Theorem, we have Mk = f(tk) and mk = f(sk) for some tk, sk ∈ [xk−1, xk], and so
in this case U(f,X) and L(f,X) are again Riemann sums.

1.9 Note: Let X be a partition of [a, b], and let f : [a, b]→ R. be bounded. Then

U(f,X) = sup
{
S
∣∣S is a Riemann sum for f on X

}
, and

L(f,X) = inf
{
S
∣∣S is a Riemann sum for f on X

}
.

In particular, for every Riemann sum S for f on X we have

L(f,X) ≤ S ≤ U(f,X)

Proof: We show that U(f,X) = sup
{
S
∣∣S is a Riemann sum for f on X

}
(the other state-

ment is proved similarly). Let T =
{
S
∣∣S is a Riemann sum for f on X

}
. For S ∈ T , say

S =
n∑
k=1

f(tk)∆kx where tk ∈ [xk−1, xk], we have

S =
n∑
k=1

f(tk)∆kx ≤
n∑
k=1

Mk∆kx = U(f,X) .

Thus U(f,X) is an upper bound for T so we have U(f,X) ≥ sup T . It remains to show
that given any ε > 0 we can find S ∈ T with U(f,X)−S < ε. Let ε > 0 be arbitrary. Since
Mk = sup

{
f(t)

∣∣t ∈ [xk−1, xk]
}

, we can choose tk ∈ [xk−1, xk] with Mk − f(tk) < ε
b−a .

Then we have

U(f,X)− S =

n∑
k=1

Mk∆kx−
n∑
k=1

f(tk)∆kx =

n∑
k=1

(
Mk − f(tk)

)
∆kx <

n∑
k=1

ε
b−a ∆kx = ε
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1.10 Lemma: Let f : [a, b] → R be bounded with upper and lower bounds M and m.
Let X and Y be partitions of [a, b] such that Y = X ∪ {c} for some c /∈ X. Then

0 ≤ L(f, Y )− L(f,X) ≤ (M −m)|X| , and

0 ≤ U(f,X)− U(f, Y ) ≤ (M −m)|X| .

Proof: We shall prove that 0 ≤ L(f, Y ) − L(f,X) ≤ (M − m)|X| (the proof that 0 ≤
U(f,X)− U(f, Y ) ≤ (M −m)|X| is similar). Say X = {x0, x1, · · · , xn} and c ∈ [xk−1, xk]
so Y = {x0, x1, · · · , xk−1, c, xk, · · · , xn}. Then

L(f, Y )− L(f,X) = r (c− xk−1) + s (xk − c)−mk(xk − xk−1)

where

r = inf
{
f(t)

∣∣t ∈ [xk−1, c]
}
, s = inf

{
f(t)

∣∣t ∈ [c, xk]
}
, mk = inf

{
f(t)

∣∣t ∈ [xk−1, xk]
}
.

Since mk = min{r, s} we have r ≥ mk and s ≥ mk, so

L(f, Y )− L(f,X) ≥ mk(c− xk−1) +mk(xk − c)−mk(xk − xk−1) = 0 .

Since r ≤M and s ≤M and mk ≥ m we have

L(f, Y )− L(f,X) ≤M(c− xk−1) +M(xk − c)−m(xk − xk−1)

= (M −m)(xk − xk−1) ≤ (M −m)|X| .

1.11 Note: Let X and Y be partitions of [a, b] with X ⊆ Y . Then

L(f,X) ≤ L(f, Y ) ≤ U(f, Y ) ≤ U(f,X) .

Proof: If Y is obtained by adding one point to X then this follows from the above lemma.
In general, Y can be obtained by adding finitely many points to X, one point at a time.

1.12 Note: Let X and Y be any partitions of [a, b]. Then L(f,X) ≤ U(f, Y ).

Proof: Let Z = X ∪ Y . Then by the above note,

L(f,X) ≤ L(f, Z) ≤ U(f, Z) ≤ U(f, Y ) .

1.13 Definition: Let f : [a, b] → R be bounded. The upper integral of f on [a, b],
denoted by U(f), is given by

U(f) = inf
{
U(f,X)

∣∣X is a partition of [a, b]
}

and the lower integral of f on [a, b], denoted by L(f), is given by

L(f) = sup
{
L(f,X)

∣∣X is a partition of [a, b]
}
.

1.14 Note: The upper and lower integrals of f both exist even when f is not integrable.

1.15 Note: We always have L(f) ≤ U(f).

Proof: Let ε > 0 be arbitrary. Choose a partition X1 so that L(f) − L(f,X1) < ε
2 and

choose a partition X2 so that U(f,X2)− U(f) < ε
2 . Then

U(f)− L(f) =
(
U(f)− U(f,X2)

)
+
(
U(f,X2)− L(f,X1)

)
+
(
L(f,X1)− L(f)

)
> − ε

2 + 0− ε
2 = −ε .

Since ε was arbitrary, this implies that U(f)− L(f) ≥ 0.
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1.16 Theorem: (Equivalent Definitions of Integrability) Let f : [a, b] → R be bounded.
Then the following are equivalent.

(1) f is integrable on [a, b].
(2) For all ε > 0 there exists a partition X such that U(f,X)− L(f,X) < ε.
(3) L(f) = U(f).

Also, when f is integrable on [a, b] we have

∫ b

a

f = L(f) = U(f).

Proof: (1) =⇒ (2). Suppose that f is integrable on [a, b] with I =
∫ b
a
f . Let ε > 0. Choose

δ > 0 so that for every partition X with |X| < δ we have |S − I| < ε
4 for every Riemann

sum S on X. Let X be a partition with |X| < δ. Let S1 be a Riemann sum for f on X
with |U(f,X)−S1| < ε

4 , and let S2 be a Riemann sum for f on X with |S2−L(f,X)| < ε
4 .

Then

|U(f,X)− L(f,X)| ≤ |U(f,X)− S1|+ |S1 − I|+ |I − S2|+ |S2 − L(f,X)|
< ε

4 + ε
4 + ε

4 + ε
4 = ε .

(2) =⇒ (3). Suppose that for all ε > 0 there is a partitionX such that U(f,X)−L(f,X)<ε.
Let ε > 0. Choose X so that U(f,X) − L(f,X) < ε. Then since U(f) ≤ U(f,X) and
L(f) ≥ L(f,X) we have

U(f)− L(f) ≤ U(f,X)− L(f,X) < ε .

Since 0 ≤ U(f)− L(f) < ε for every ε > 0, we have U(f) = L(f).

(3) =⇒ (1). Suppose that L(f) = U(f) and let I = L(f) = U(f). Let ε > 0. Choose
a partition X0 of [a, b] so that L(f) − L(f,X0) < ε

2 and U(f,X0) − U(f) < ε
2 . Say

X0 = {x0, x1, · · · , xn} and set δ = ε
2(n−1)(M−m) , where M and m are upper and lower

bounds for f on [a, b]. Let X be any partition of [a, b] with |X| < δ. Let Y = X0 ∪ X.
Note that Y is obtained from X by adding at most n − 1 points, and each time we add
a point, the size of the new partition is at most |X| < δ. By lemma 1.10, applied n − 1
times, we have

0 ≤ U(f,X)− U(f, Y ) ≤ (n− 1)(M −m)|X| < (n− 1)(M −m)δ = ε
2 , and

0 ≤ L(f, Y )− L(f,X) ≤ (n− 1)(M −m)|X| < (n− 1)(M −m)δ = ε
2 .

Now let S be any Riemann sum for f on X. Note that L(f,X0) ≤ L(f, Y ) ≤ L(f) =
U(f) ≤ U(f, Y ) ≤ U(f,X0) and L(f,X) ≤ S ≤ U(f,X), so we have

S − I ≤ U(f,X)− I = U(f,X)− U(f) =
(
U(f,X)− U(f, Y )

)
+
(
U(f, Y )− U(f)

)
≤
(
U(f,X)− U(f, Y )

)
+
(
U(f,X0)− U(f)

)
< ε

2 + ε
2 = ε

and

I − S = I − L(f,X) = L(f)− L(f,X) =
(
L(f)− L(f, Y )

)
+
(
L(f, Y )− L(f,X)

)
≤
(
L(f)− L(f,X0)

)
+
(
L(f, Y )− L(f,X)

)
< ε

2 + ε
2 = ε .

1.17 Exercise: Let f, g : [a, b]→ R be integrable on [a, b]. Prove fg is integrable on [a, b].

1.18 Exercise: Let f, g : [a, b] → R. Suppose that f(x) = g(x) for all but finitely many
points x ∈ [a, b]. Show that f is integrable on [a, b] if and only if g is integrable on [a, b]

and, in this case
∫ b
a
f =

∫ b
a
g.
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Evaluating Integrals of Continuous Functions

1.19 Theorem: (Continuous Functions are Integrable) Let f : [a, b] → R be continuous.
Then f is integrable on [a, b].

Proof: Let ε > 0. Since f is uniformly continuous on [a, b], we can choose δ > 0 such
that for all x, y ∈ [a, b] we have |x − y| < δ =⇒ |f(x) − f(y)| < ε

b−a . Let X be any
partition of [a, b] with |X| < δ. By the Extreme Value Theorem we have Mk = f(tk) and
mk = f(sk) for some tk, sk ∈ [xk−1, xk]. Since |tk − sk| ≤ |xk − xk−1| ≤ |X| = δ, we have
|Mk −mk| = |f(tk)− f(sk)| < ε

b−a . Thus

U(f,X)− L(f,X) =
n∑
k=1

(Mk −mk)∆kx <
ε

b−a

n∑
k=1

∆kx = ε .

1.20 Note: Let f be integrable on [a, b]. Let Xn be any sequence of partitions of [a, b]
with lim

n→∞
|Xn| = 0. Let Sn be any Riemann sum for f on Xn. Then {Sn} converges with

lim
n→∞

Sn =

∫ b

a

f(x) dx .

Proof: Write I =
∫ b
a
f . Given ε > 0, choose δ > 0 so that for every partition X of [a, b]

with |X| < δ we have |S − I| < ε for every Riemann sum S for f on X, and then choose
N so that n > N =⇒ |Xn| < δ. Then we have n > N =⇒ |Sn − I| < ε.

1.21 Note: Let f be integrable on [a, b]. If we let Xn be the partition of [a, b] into n
equal-sized subintervals, and we let Sn be the Riemann sum on Xn using right-endpoints,
then by the above note we obtain the formula∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(xn,k)∆n,kx = lim
n→∞

n∑
k=1

f
(
a+ b−a

n k
)
b−a
n .

1.22 Example: Find

∫ 2

0

2x dx.

Solution: Let f(x) = 2x. Note that f is continuous and hence integrable, so we have∫ 2

0

2x dx = lim
n→∞

n∑
k=1

f(xn,k)∆n,kx = lim
n→∞

n∑
k=1

f
(
2k
n

) (
2
n

)
= lim
n→∞

n∑
k=1

22k/n
(
2
n

)
= lim
n→∞

2 · 41/n

n
· 4− 1

41/n − 1
, by the formula for the sum of a geometric sequence

=
(

lim
n→∞

6 · 41/n
)(

lim
n→∞

1

n
(
41/n − 1

)) = 6 lim
n→∞

1
n

41/n − 1
= 6 lim

x→0+

x

4x − 1

= 6 lim
x→0+

1

ln 4 · 4x
, by l’Hôpital’s Rule

= 6
ln 4 = 3

ln 2 .
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1.23 Lemma: (Summation Formulas) We have
n∑
k=1

1 = n ,
n∑
k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
,

n∑
k=1

k3 =
n2(n+ 1)2

4

Proof: These formulas could be proven by induction, but we give a more constructive proof.

It is obvious that
n∑
k=1

1 = 1 + 1 + · · · 1 = n. To find
n∑
k=1

k, consider
n∑
k=1

(
k2− (k− 1)2

)
. On

the one hand, we have
n∑
k=1

(
k2 − (k−1)2

)
= (12−02) + (22−12) + · · ·+ ((n−1)2−(n−2)2) + (n2−(n−1)2)

= −02 + (12−12) + (22−22) + · · ·+ ((n−1)2−(n−1)2) + n2

= n2

and on the other hand,
n∑
k=1

(
k2 − (k−1)2

)
=

n∑
k=1

(
k2 − (k2 − 2k + 1)

)
=

n∑
k=1

(2k − 1) = 2
n∑
k=1

k −
n∑
k=1

1

Equating these gives n2 = 2
n∑
k=1

k −
n∑
k=1

1 and so

2
n∑
k=1

k = n2 +
n∑
k=1

1 = n2 + n = n(n+ 1) ,

as required. Next, to find
n∑
k=1

k2, consider
n∑
k=1

(
k3 − (k−1)3

)
. On the one hand we have

n∑
k=1

(
k3 − (k − 1)3

)
= (13−03) + (23−13) + (33−23) + · · ·+ (n3−(n− 1)3)

= −03 + (13−13) + (23−23) + · · ·+ ((n−1)3−(n−1)3) + n3

= n3

and on the other hand,
n∑
k=1

(
k3 − (k − 1)3

)
=

n∑
k=1

(
k3 − (k3 − 3k2 + 3k − 1)

)
=

n∑
k=1

(3k2 − 3k + 1) = 3
n∑
k=1

k2 − 3
n∑
k=1

k +
n∑
k=1

1 .

Equating these gives n3 = 3
n∑
k=1

k2 − 3
n∑
k=1

k +
n∑
k=1

1 and so

6
n∑
k=1

k2 = 2n3 + 6
n∑
k=1

k − 2
n∑
k=1

1 = 2n3 + 3n(n+ 1)− 2n = n(n+ 1)(2n+ 1)

as required. Finally, to find
n∑
k=1

k3, consider
n∑
k=1

(
k4 − (k−1)4

)
. On the one hand we have

n∑
k=1

(
k4 − (k−1)4

)
= n4 ,

(as above) and on the other hand we have
n∑
k=1

(
k4 − (k−1)4

)
=

n∑
k=1

(4k3 − 6k2 + 4k − 1) = 4
n∑
k=1

k3 − 6
n∑
k=1

k2 + 4
n∑
k=1

k −
n∑
k=1

1 .
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Equating these gives n4 = 4
n∑
k=1

k3 − 6
n∑
k=1

k2 + 4
n∑
k=1

k −
n∑
k=1

1 and so

4
n∑
k=1

k3 = n4 + 6
n∑
k=1

k2 − 4
n∑
k=1

k +
n∑
k=1

1

= n4 + n(n+ 1)(2n+ 1)− 2n(n+ 1) + n

= n4 + 2n3 + n2 = n2(n+ 1)2 ,

as required.

1.24 Example: Find

∫ 3

1

x+ 2x3 dx.

Solution: Let f(x) = x+ 2x3. Then∫ 3

1

x+ 2x3 dx = lim
n→∞

n∑
k=1

f(xn,k)∆n,kx = lim
n→∞

n∑
k=1

f
(
1 + 2

n k
) (

2
n

)
= lim
n→∞

n∑
k=1

((
1 + 2

n k
)

+ 2
(
1 + 2

n k
)3) ( 2

n

)
= lim
n→∞

n∑
k=1

(
1 + 2

n k + 2
(
1 + 6

n k + 12
n2 k

2 + 8
n3 k

3
)) (

2
n

)
= lim
n→∞

n∑
k=1

(
6
n + 28

n2 k + 48
n3 k

2 + 32
n4 k

3
)

= lim
n→∞

(
6
n

n∑
k=1

1 + 28
n2

n∑
k=1

k + 48
n3

n∑
k=1

k2 + 32
n4

n∑
k=1

k3
)

= lim
n→∞

(
6
n · n+ 28

n2 · n(n+1)
2 + 48

n3 · n(n+1)(2n+1)
6 + 32

n4 · n
2(n+1)2

4

)
= 6 + 28

2 + 48·2
6 + 32

4 = 44 .
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Basic Properties of Integrals

1.25 Theorem: (Linearity) Let f and g be integrable on [a, b] and let c ∈ R. Then f + g
and cf are both integrable on [a, b] and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

and

∫ b

a

cf = c

∫ b

a

f .

Proof: The proof is left as an exercise.

1.26 Theorem: (Comparison) Let f and g be integrable on [a, b]. If f(x) ≤ g(x) for all
x ∈ [a, b] then ∫ b

a

f ≤
∫ b

a

g .

Proof: The proof is left as an exercise.

1.27 Theorem: (The Absolute Value of a Function) Let f be integrable on [a, b]. Then
|f | is integrable on [a, b] and ∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f | .

Proof: Let ε > 0. Choose a partition X of [a, b] such that U(f,X) − L(f,X) < ε. Write
Mk(f) = sup

{
f(t)

∣∣t ∈ [xk−1, xk]
}

and Mk(|f |) = sup
{
|f(t)|

∣∣t ∈ [xk−1, xk]
}

, and similarly
for mk(f) and mk(|f |).

When 0 ≤ mk(f) ≤ Mk(f) we have Mk(|f |) = Mk(f) and mk(|f |) = mk(f). When
mk(f) ≤ 0 ≤ Mk(f) we have Mk(|f |) = max{Mk(f),−mk(f)} and mk(|f |) ≥ 0, and so
Mk(|f |)−mk(|f |) ≤ max

{
Mk(f),−mk(f)

}
≤Mk(f)−mk(f). When mk(f) ≤Mk(f) ≤ 0,

Mk(|f |) = −mk(f) and mk(|f |) = −Mk(f), and so Mk(|f |) −mk(|f |) =Mk(f) −mk(f).
Thus in all three cases we have

Mk(|f |)−mk(|f |) ≤Mk(f)−mk(f)

and so

U(|f |, X)− L(|f |, X) =

n∑
k=1

(
Mk(|f |)−mk(|f |)

)
∆kx ≤

n∑
k=1

(
Mk(f)−mk(f)

)
∆kx

= U(f,X)− L(f,X) < ε .

Thus |f | is integrable on [a, b].

Finally, note that since −|f(x)| ≤ f(x) ≤ |f(x) for all x ∈ [a, b], we have

−
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f |

by the Comparison Theorem.
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1.28 Theorem: (Additivity) Let a < b < c and let f : [a, c]→ R be bounded. Then f is
integrable on [a, c] if and only if f is integrable both on [a, b] and on [b, c], and in this case∫ b

a

f +

∫ c

b

f =

∫ c

a

f .

Proof: Suppose that f is integrable on [a, c]. Choose a partition X of [a, c] such that
U(f,X) − L(f,X) < ε. Say that b ∈ [xk−1, xk] and let Y = {x0, x1, · · · , xk−1, b} and
Z = {b, xk, xk+1, · · · , xn} so that Y and Z are partitions of [a, b] and of [b, c]. Then we
have U(f, Y )−L(f, Y ) ≤ U(f,X ∪ {b})−L(f,X ∪ {b}) ≤ U(f,X)−L(f,X) < ε and also
U(f, Z) − L(f, Z) ≤ U(f,X ∪ {b}) − L(f,X ∪ {b}) ≤ U(f,X) − L(f,X) < ε and so f is
integrable both on [a, b] and on [b, c].

Conversely, suppose that f is integrable both on [a, b] and on [b, c]. Choose a partition
Y of [a, b] so that U(f, Y ) − L(f, Y ) < ε

2 and choose a partition Z of [b, c] such that
U(f, Z) − L(f, Z) < ε

2 . Let X = Y ∪ Z. Then X is a partition of [a, c] and we have
U(f,X)− L(f,X) =

(
U(f, Y ) + U(f, Z)

)
−
(
L(f, Y ) + L(f, Z)

)
< ε.

Now suppose that f is integrable on [a, c] (hence also on [a, b] and on [b, c]) with

I1 =

∫ b

a

f , I2 =

∫ c

b

f and I =

∫ c

a

f . Let ε > 0. Choose δ > 0 so that for all partitions

X1, X2 and X of [a, b], [b, c] and [a, c] respectively with |X1| < δ, |X2| < δ and |X| < δ,
we have |S1 − I1| < ε

3 , |S2 − I2| < ε
3 and |S − I| < ε

3 for all Riemann sums S1, S2 and
S for f on X1, X2 and X respectively. Choose partitions X1 and X2 of [a, b] and [b, c]
with |X1| < δ and |X2| < δ. Choose Riemann sums S1 and S2 for f on X1 and X2. Let
X = X1 ∪X2 and note that |X| < δ and that S = S1 + S2 is a Riemann sum for f on X.
Then we have∣∣I−(I1+I2)

∣∣ =
∣∣(I−S)+(S1−I1)+(S2−I2)

∣∣ ≤ ∣∣I−S|+|S1−I1|+|S2−I2| ≤ ε
3 + ε

3 + ε
3 = ε.

1.29 Example: Let f : [a, b]→ R. We say that f is piecewise continuous on [a, b] when
there exists a partition X = {x0, x1, · · · , xn} of [a, b] and there exist continuous functions
gk : [xk−1, xk]→ R such that f(x) = gk(x) for all x ∈ (xk−1, xk).

Note that in this case, f is integrable on each interval [xk−1, xk] with
∫ xk

xk−1
f =

∫ xk

xk−1
g

(using Exercise 1.18, since f(t) and gk(t) are equal for all but at most two values of

t ∈ [xk−1, xk]) and hence, by Additivity, f is integrable on [a, b] with

∫ b

a

f =
n∑
k=1

∫ xk

xk−1

gk.

1.30 Definition: We consider every function f : {a} → R to be integrable, and we define∫ a

a

f = 0. Also, when f : [a, b]→ R is integrable, we define

∫ a

b

f = −
∫ b

a

f .

1.31 Note: Using the above definition, the Additivity Theorem extends to the case
that a, b, c ∈ R are not in increasing order: for any a, b, c ∈ R, if f is integrable on[

min{a, b, c},max{a, b, c}
]

then ∫ b

a

f +

∫ c

b

f =

∫ c

a

f .
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The Fundamental Theorem of Calculus

1.32 Notation: For a function F , defined on an interval containing [a, b], we write[
F (x)

]b
a

= F (b)− F (a) .

1.33 Theorem: (The Fundamental Theorem of Calculus)
(1) Let f be integrable on [a, b]. Define F : [a, b]→ R by

F (x) =

∫ x

a

f =

∫ x

a

f(t) dt .

Then F is continuous on [a, b]. Moreover, if f is continuous at a point x ∈ [a, b] then F is
differentiable at x and

F ′(x) = f(x) .

(2) Let f be integrable on [a, b]. Let F be differentiable on [a, b] with F ′ = f . Then∫ b

a

f =
[
F (x)

]b
a

= F (b)− F (a) .

Proof: (1) Let M > 0 be an upper bound for |f | on [a, b]. For a ≤ x, y ≤ b we have∣∣F (y)− F (x)
∣∣ =

∣∣∣∣∫ y

a

f −
∫ x

a

f

∣∣∣∣ =

∣∣∣∣∣
∫ max{x,y}

min{x,y}
f

∣∣∣∣∣ ≤
∫ max{x,y}

min{x,y}
|f | ≤

∫ max{x,y}

min{x,y}
M = M |y − x|

so given ε > 0 we can choose δ = ε
M to get

|y − x| < δ =⇒
∣∣F (y)− F (x)

∣∣ ≤M |y − x| < Mδ = ε .

Thus F is continuous (indeed uniformly continuous) on [a, b]. Now suppose that f is
continuous at the point x ∈ [a, b]. Note that for a ≤ x, y ≤ b with x 6= y, we have∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ =

∣∣∣∣∣
∫ y
a
f −

∫ x
a
f

y − x
− f(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ y
x
f

y − x
−
∫ y
x
f(x)

y − x

∣∣∣∣∣
=

1

|y − x|

∣∣∣∣∣
∫ max{x,y}

min{x,y}

(
f(t)− f(x)

)
dt

∣∣∣∣∣
≤ 1

|y − x|

∫ max{x,y}

min{x,y}

∣∣f(t)− f(x)
∣∣ dt .

Given ε > 0, since f is continuous at x we can choose δ > 0 so that

|y − x| < δ =⇒
∣∣f(y)− f(x)

∣∣ < ε

and then for 0 < |y − x| < δ we have∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ ≤ 1

|y − x|

∫ max{x,y}

min{x,y}

∣∣f(t)− f(x)
∣∣ dt

≤ 1

|y − x|

∫ max{x,y}

min{x,y}
ε dt = ε .

and thus we have F ′(x) = f(x) as required.
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(2) Let f be integrable on [a, b]. Suppose that F is differentiable on [a, b] with F ′ = f . Let
ε > 0 be arbitrary. Choose δ > 0 so that for every partition X of [a, b] with |X| < δ we

have

∣∣∣∣∣
∫ b

a

f −
n∑
k=1

f(tk)∆kx

∣∣∣∣∣ < ε for every choice of sample points tk ∈ [xk−1, xk]. Choose

a partion X with |X| < δ and choose sample points tk ∈ [xk−1, xk] as in the Mean Value
Theorem so that

F ′(tk) =
F (xk)− F (xk−1)

xk − xk−1
,

that is f(tk)∆kx = F (xk)− F (xk−1). Then

∣∣∣∣∣
∫ b

a

f −
n∑
k=1

f(tk)∆kx

∣∣∣∣∣ < ε, and

n∑
k=1

f(tk)∆kx =
n∑
k=1

(
F (xk)− F (xk−1)

)
=
(
F (x1)− F (x0)

)
+
(
F (x2)− F (x1)

)
+ · · ·+

(
F (xn−1)− F (xn)

)
= −F (x0) +

(
F (x1)− F (x1)

)
+ · · ·+

(
F (xn−1)− F (xn−1)

)
+ F (xn)

= F (xn)− F (x0) = F (b)− F (a) .

and so

∣∣∣∣∣
∫ b

a

f −
(
F (b)− F (a)

)∣∣∣∣∣ < ε. Since ε was arbitrary,

∣∣∣∣∣
∫ b

a

f −
(
F (b)− F (a)

)∣∣∣∣∣ = 0.

1.34 Definition: A function F such that F ′ = f on an interval is called an antiderivative
of f on the interval.

1.35 Note: If G′ = F ′ = f on an interval, then (G − F )′ = 0, and so G − F is constant
on the interval, that is G = F + c for some constant c.

1.36 Notation: We write∫
f = F , or

∫
f = F + c , or

∫
f(x) = F (x) , or

∫
f(x) dx = F (x) + c

to indicate that F is an antiderivative of f on an interval, so that the antiderivatives of f
on the interval are the functions of the form G = F + c for some constant c.

1.37 Example: Find

∫ √3

0

dx

1 + x2
.

Solution: Since d
dx (tan−1 x) = 1

1+x2 or, equivalently, since

∫
dx

1 + x2
= tan−1 x, it follows

from Part 2 of the Fundamental Theorem of Calculus that∫ √3

0

dx

1 + x2
=
[

tan−1 x
]√3

0
= tan−1

√
3− tan−1 0 = π

3 .
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