Chapter 1. The Riemann Integral

The Riemann Integral

1.1 Definition: A partition of the closed interval [a,b] is a set X = {xg,z1, -, 2}
with
a=Tog<T1 <To<---<xTp=>b.
The intervals [xx_1, x| are called the subintervals of [a, b], and we write
Apr =2 — Tp—1

for the size of the k" subinterval. Note that

iAkx:b—a.
k=1

The size of the partition X, denoted by |X]| is
| X| = max {Agz|[l <k <n}.

1.2 Definition: Let X be a partition of [a,b], and let f : [a,b] — R be bounded. A
Riemann sum for f on X is a sum of the form

S = Zf(tk)Akx for some ty € [xgp_1,xk] -
k=1

The points t; are called sample points.

1.3 Definition: Let f : [a,b] — R be bounded. We say that f is (Riemann) integrable
on [a,b] when there exists a number I with the property that for every e > 0 there exists
d > 0 such that for every partition X of [a,b] with |X| < § we have |S — I| < € for every
Riemann sum for f on X, that is

< €.

Z f(tk)Akl‘ — I
k=1

for every choice of t € [x_1,z] This number [ is unique (as we prove below); it is called
the (Riemann) integral of f on [a,b], and we write

I= b orl = b z)dz .
[ roor=[ s

Proof: Suppose that I and J are two such numbers. Let € > 0 be arbitrary. Choose
d1 so that for every partition X with |X| < 0; we have |S — I| < § for every Riemann
sum S on X, and choose d2 > 0 so that for every partition X with | X| < d2 we have
|S — J| < § for every Riemann sum S on X. Let § = min{d;,d>}. Let X be any partition

of [a,b] with |X| < §. Choose ty € [zr_1,zr] and let S = > f(tx)Arz. Then we have
k=1

I —=J| <|I—-8|+|S—J|<§+ 5 =e Since e was arbitrary, we must have I = J.



1 if z€Q
0 if z¢Q.

Solution: Suppose, for a contradiction, that f is integrable on [0, 1], and write I = fol f.
Let € = 5. Choose d so that for every partition X with |X| < & we have |S—1I| < 3 for every

Riemann sum S for f on X. Choose a partition X with |X| < §. Let S; = > f(tp)Aikz
k=1

1.4 Example: Let f(x) = { Show that f is not integrable on [0, 1].

where each t € [xg_1,xk] is chosen with ¢, € Q, and let Sy = > f(sx)Agx where each
k=1

Sk € [xg—1, k] is chosen with s, ¢ Q. Note that we have |S; — I| < § and [S, — I] < 3.

Since each t, € Q we have f(ty) =1landsoS; = > f(tg)Arr = > Az =1-0=1, and
k=1 k=1

since each s, ¢ Q we have f(s;) =0 and so So = > f(sg)Agz = 0. Since |S; —I| < %
k=1

we have |1 —I| < 2 and so 1 < I < 2, and since Sy — I| < § we have [0 — I| < 1 and so

—% <I< %, giving a contradiction.

1.5 Example: Show that the constant function f(z) = ¢ is integrable on any interval
b

[a,b] and we have / cdr=c(b—a).

a

Solution: The solution is left as an exercise.
1.6 Example: Show that the identity function f(x) = x is integrable on any interval

b
[a, b], and we have / z dr = £ (b? — a?).

a

1
2

Solution: Let € > 0. Choose § = ;2. Let X be any partition of [a, b] with | X| < §. Let t), €

b—a-

[zr—1, k] and set S = kz—:1 f(t) Agx = 1231 t; Arx. We must show that |S — %(b2 —a?)| <e.
Notice that

S @k + o)Az = > (2 + zpo1) (@ — Tho1) = 3 Tk’ — Tpo1”

k=1 k=1 k=1

= (12 —20?) + (222 — 1)+ + (@po1? — 22D + (@02 — 2p_1?)
= —1’02 + (ZJU12 — 3312) —+ e+ (l‘n_12 — :L‘n_12) + l‘nQ
= 2,2 — m? = b? — g

and that when ¢ € [x_1, 2] we have ‘tk — %(mk—kxk_l)‘ < %(xk—xk_l) = %Akm, and so

5507 =) = | =t — § 35 (an + on0) g
= (tk — %(l‘k + $k;—1)) Akﬂﬁ‘
=1
< Z ‘tk — %(%k —f-xk,l)lAkIE

=

k=1
=1

[= &

;(b—a):e.

\V]



Upper and Lower Riemann Sums

1.7 Definition: Let X be a partition for [a,b] and let f : [a,b] — R be bounded. The
upper Riemann sum for f on X, denoted by U(f, X), is

U(f,X)= ZM;.€ Az where M, = sup{f(t)|t € [a:k_l,xk]}
k=1

and the lower Riemann sum for f on X, denoted by L(f, X) is

L(f,X) = ka Az where my = inf { f(t)|t € [zp—1,z4]} -
k=1

1.8 Remark: The upper and lower Riemann sums U(f, X) and L(f, X) are not, in
general, Riemann sums at all, since we do not always have My, = f(tx) or my = f(sy) for
any tg, s € [rg_1,xg]. If f is increasing, then My = f(xx) and my = f(zx_1), and so in
this case U(f, X) and L(f, X) are indeed Riemann sums. Similarly, if f is decreasing then
U(f,X) and L(f, X) are Riemann sums. Also, if f is continuous then, by the Extreme
Value Theorem, we have My, = f(tx) and my = f(sg) for some tx, s € [Tr_1, x|, and so
in this case U(f, X) and L(f, X) are again Riemann sums.

1.9 Note: Let X be a partition of [a, b], and let f : [a,b] — R. be bounded. Then
U(f,X)=sup {S!S is a Riemann sum for f on X} , and
L(f,X) = inf {S’S is a Riemann sum for f on X} .
In particular, for every Riemann sum S for f on X we have
L(f, X) £ S < U(f, X)

Proof: We show that U(f, X) = sup {S|S is a Riemann sum for f on X} (the other state-
ment is proved similarly). Let 7 = {S ‘S is a Riemann sum for f on X}. For S € T, say

S = > f(tg)Arz where t € [x_1, x|, we have
k=1

k=1 k=1
Thus U(f,X) is an upper bound for 7 so we have U(f, X) > sup7. It remains to show
that given any € > 0 we can find S € T with U(f, X)—S < e. Let € > 0 be arbitrary. Since
M, = sup {f(t)‘t S [a;k_l,xk]}, we can choose tx € [zp_1, 2] with My — f(tr) < =5
Then we have

a’

n

U(f,X) -5 = ZMkAkx — Zf(tk)Akx = Z (Mk — f(tk))AkI' < Z bfa Apxr =€
k=1 k=1

k=1 k=1




1.10 Lemma: Let f : [a,b] — R be bounded with upper and lower bounds M and m.
Let X and Y be partitions of [a,b] such that Y = X U{c} for some ¢ ¢ X. Then

0<L(£,Y)— L(f, X) < (M —m)|X]| , and
0<U(f, X)-U(f,Y) < (M —-m)|X|.

Proof: We shall prove that 0 < L(f,Y) — L(f,X) < (M — m)|X| (the proof that 0 <
U(f,X)-U(f,Y) < (M —m)|X| is similar). Say X = {zg,21, -+, 2,} and ¢ € [xp_1, zk]
soY ={xg,x1, -+, Tk—1,C Tk, -+, Tpn}. Then

L(f,Y)—L(f,X)=r(c—xk_1) + s (zr — c) — mp(xr — Tk—1)

where
r=inf {f(t)|t € [xr—1,d}, s=inf {f)|t € [c,xx]} , my = inf {f()|t € [wr—1, 7]}
Since my, = min{r, s} we have r > my, and s > my, so
L(f,Y) = L(f, X) > my(c — xp—1) + my (2 — ¢) — my(zp — 28-1) = 0.

Since r < M and s < M and my > m we have

L(f,Y)—L(f,X) < M(c—x-1) + M(z, —c) — m(xx — zp—1)

=M —m)(zr —xp—1) < (M —m)|X|.
1.11 Note: Let X and Y be partitions of [a,b] with X C Y. Then
L(f,X) < L(f,Y) <U(f,Y) <U(f, X).

Proof: If Y is obtained by adding one point to X then this follows from the above lemma.
In general, Y can be obtained by adding finitely many points to X, one point at a time.

1.12 Note: Let X and Y be any partitions of [a,b]. Then L(f,X) <U(f,Y).
Proof: Let Z = X UY. Then by the above note,
L(f,X) < L(f,Z) <U(f,2) <U(}.Y).

1.13 Definition: Let f : [a,b] — R be bounded. The upper integral of f on [a,?],
denoted by U(f), is given by

U(f) =inf {U(f, X)|X is a partition of [a,b]}
and the lower integral of f on [a,b], denoted by L(f), is given by

L(f) =sup {L(f, X)|X is a partition of [a,b]} .
1.14 Note: The upper and lower integrals of f both exist even when f is not integrable.
1.15 Note: We always have L(f) < U(f).

Proof: Let € > 0 be arbitrary. Choose a partition X; so that L(f) — L(f, X1) < § and
choose a partition X, so that U(f, X3) — U(f) < §. Then

U(f) = L(f) = (U(f) = U(f, X2)) + (U(f, X2) = L(f, X1)) + (L(f, X1) — L(f))
>—5+0—-5=—¢.
Since € was arbitrary, this implies that U(f) — L(f) > 0.



1.16 Theorem: (Equivalent Definitions of Integrability) Let f : [a,b] — R be bounded.
Then the following are equivalent.

(1) f is integrable on [a, b].

(2) For all € > 0 there exists a partition X such that U(f, X) — L(f,X) < e

(3) L(f) = U([)-

Also, when f is integrable on [a,b] we have/ f=L(f)=U(f).

Proof: (1) = (2). Suppose that f is integrable on [a, b] with [ = ff f. Let € > 0. Choose
d > 0 so that for every partition X with [X| < § we have |S — I| < { for every Riemann
sum S on X. Let X be a partition with |X| < 0. Let S; be a Riemann sum for f on X
with |U(f, X)— 51| < §, and let S; be a Riemann sum for f on X with |S; — L(f, X)| < §.
Then
U, X) ~ LU X < UG X) ~ il 4181 — 1)+ |~ Sal + 152 — L(f. X)
<EfSHE+S=e.

(2) = (3). Suppose that for all € > 0 there is a partition X such that U(f, X)—L(f, X) <e.

Let € > 0. Choose X so that U(f, X)— L(f,X) < e. Then since U(f) < U(f,X) and
L(f) > L(f,X) we have

U(f)_L(f) SU(faX)_L(va) <€
Since 0 < U(f) — L(f) < € for every € > 0, we have U(f) = L(f).

(3) = (1). Suppose that L(f) = U(f) and let I = L(f) = U(f). Let ¢ > 0. Choose
a partition Xg of [a,b] so that L(f) — L(f,Xo) < § and U(f, Xo) —U(f) < §. Say
Xo = {xo, 21, -, x,} and set § = m, where M and m are upper and lower
bounds for f on [a,b]. Let X be any partition of [a,b] with |X| < §. Let Y = XU X.
Note that Y is obtained from X by adding at most n — 1 points, and each time we add
a point, the size of the new partition is at most |X| < 6. By lemma 1.10, applied n — 1
times, we have

0<U(f,X)-U(f,Y)<(n—1)(M —m)|X| < (n—1)(M —m)d = 5 , and
0<L(f,Y) = L(f, X) < (n = 1)(M = m)|X| < (n—1)(M —m)d = 3

Now let S be any Riemann sum for f on X. Note that L(f, Xo) < L(f,Y) < L(f) =
U(f) <U(f,Y)<U(f,Xo) and L(f,X) < S <U(f,X), so we have

S—I<U(f,X)-1=U(f,X)-U(f) = (U(f,X)-U£,Y)) + (U(f.Y) = U(f))
<(UULX)-UWY)) + (U X0) —U(f) <5+5=¢
and
I-8=1-L(f,X)=L(f) = L(f, X) = (L(f) = L(f,Y)) + (L(f L(f,X))
< (L(f) = L(f, Xo)) + (L(f,Y) = L(f. X ))< +2 €.
1.17 Exercise: Let f, g : [a,b] — R be integrable on [a, b]. Prove fg is integrable on [a, b].

1.18 Exercise: Let f,g : [a,b] — R. Suppose that f(z) = g(z) for all but finitely many

points x € [a,b]. Show that f is integrable on [a,b] if and only if ¢ is integrable on [a, b]
o b b

and, in this case [ f= ['g.



Evaluating Integrals of Continuous Functions

1.19 Theorem: (Continuous Functions are Integrable) Let f : [a,b] — R be continuous.
Then f is integrable on [a, b].

Proof: Let € > 0. Since f is uniformly continuous on [a,b], we can choose 6 > 0 such
that for all z,y € [a,b] we have |z —y| < § = |f(x) — f(y)| < ;5. Let X be any
partition of [a,b] with |X| < 0. By the Extreme Value Theorem we have My = f(t;) and
myg = f(sg) for some tg, sp € [xr_1,zk]. Since |ty — sk| < |xg — zp—1| < |X| = 0, we have
| My, — my| = [f(tr) — f(sk)] < 5= Thus

b—a"

U(f, X) = L(f, X) = él(Mk ) A < éAkx —c.

1.20 Note: Let f be integrable on [a,b]. Let X, be any sequence of partitions of [a, b]
with lim |X,| = 0. Let S,, be any Riemann sum for f on X,,. Then {S, } converges with
n—oo

b
lim Sn:/ f(z)dz.
n—oo a

Proof: Write I = fab f. Given € > 0, choose § > 0 so that for every partition X of [a, b]
with |X| < 6 we have |S — I| < € for every Riemann sum S for f on X, and then choose
N so that n > N = | X,,| < §. Then we have n > N = [S,, — I| < e.

1.21 Note: Let f be integrable on [a,b]. If we let X, be the partition of [a,b] into n
equal-sized subintervals, and we let .S,, be the Riemann sum on X, using right-endpoints,
then by the above note we obtain the formula

b n n
T _ 1 b—a b—a
/a f(z)dz = lim ,;1 f(@ni)Aprr = nh_r}olo kglf(a + =4 k) .

n—oo

2
1.22 Example: Find/ 2% dx.
0

Solution: Let f(x) = 2%. Note that f is continuous and hence integrable, so we have

2 n n n
/ 27dr = lim Y f(eap)Anpz = lim 3y f(3) (2) = lim » 22/ (2)
0 n OOk;:l n ook:l n OOk::l

2.4/ 41
= lim . , by the formula for the sum of a geometric sequence
n—00 n 41/n —_ 1
—(lim6 41/”><1im L )—Glim K fim "
- \nooo n—oo n, (41/” — 1) T oo 41/n 1 - z—0+ 4% — 1

. 1 TA e 15
—6wll>r(r)l+ m ,by IHOpltaIS RUIG
— 6 _ 3

In4 In2



1.23 Lemma: (Summation Formulas) We have

anlzn,i:k:n 22 n(n+1 2n+ i 1)2

Proof: These formulas could be proven by induction, but we give a more constructive proof.
n

It is obvious that Z l1=141+---1=n. To find Z k, consider Z (k* = (k—1)?). On
=1 k=1 k=1
the one hand, we have

3 (1 = (k=1)%) = (12=0%) + (2P=1%) 4+ + (n=1)* = (n=2)%) + (n* — (n—1)")

k=1

=02+ (17=1%) + (22-2") +--- + ((n—1)*—(n—1)?) + n?
::n2

and on the other hand,

Z(k:Q (k—1)%) = i( — (k2 —2k+1)):i(2k—1):2ik—i1

k=1 k=1 k=1 k=1
Equating these gives n? = 2 Z k— Z 1 and so
k=1 k=1
25 k=n*+ Y 1=n 4+n=nn+1),
h=1 k=1
as required. Next, to find Z , consider > (k* — (k—1)3). On the one hand we have
k=1 k=1
35 (K — (k= 1)%) = (10 + (2 1%) + (87 -2%) 4 -+ (0~ (n — 1)?)

k=1
=03+ (13—13) + (23—23) R ((n—1)3—(n—1)3) 403
and on the other hand,

S (k= (k—1)%) =

k=1

M=

(K — (k% — 3k + 3k — 1))

=

1

Z(3k2—3k+1) 3V K2-3> k+ > 1.

=1 k=1 k=1 k=1

3 |
3
3
3

Equating these gives n3 =3 >> k* =3 > k+ > 1 and so
k=1 k=1 k=1

6> k2=2n34+6> k-2 1=2n>+3n(n+1)-2n=nn+1)2n+1)
k=1 k=1 k=1

as required. Finally, to find Y k%, consider > (k* — (k—1)*). On the one hand we have
k=1 k=1

> (k' = (k=1)1) =n*,
k=1
(as above) and on the other hand we have

(B —(k—1)*) = Y (4k* -6k +4k —1) =4 > kK* -6 > k*+4 > k— > 1.
k=1 k=1 k=1 k=1

k=1 k=1



Equating these gives n* =4 ST k3 —6 S. k2 +4 > k— > 1 and so
k=1 k=1 k=1 k=1
AN K =nt+6Y K2-4> k+ 1
k=1 k=1 k=1 k=1
=nt4nn+1)2n+1)-2n(n+1)+n
=nt4+2n3 +n? =n?(n+1)2,

as required.
3

1.24 Example: Find / z + 223 dz.
1

Solution: Let f(x) = x + 223. Then

3 n n
/ z+ 2z% de = lim Zf(a:n,k)An’kx = li_>m Zf (1+2k)(3)
1 k=1 " Ook:1

n—oo
:nILI%oZ<(1+%k) +2(1+%k)3> (2)
k=1

= Jim ST (+ Rhe2 (4 Ehr B+ £ ) (2)
k=1

M=

— | 6 28 48 1.2 32 1.3
= lim > (G + k458 +55)
k=1
i (s Ereaiin s s i)
k=1 k=1 k=1 E—1
= 1 6 28 (n+1) 48 (n+1)(2n+1) 32 2(n+1)2
_nh_)n;o(ﬁn—i_mnnz +$'nn 6n +Fn n4 >

=6+2+ 82432 a4



Basic Properties of Integrals

1.25 Theorem: (Linearity) Let f and g be integrable on [a,b] and let ¢ € R. Then f + g
and cf are both integrable on [a,b] and

[iren=[ref i famefr

Proof: The proof is left as an exercise.

1.26 Theorem: (Comparison) Let f and g be integrable on [a,b]. If f(z) < g(x) for all

x € [a,b] then
b b
/ fé/ g

Proof: The proof is left as an exercise.

1.27 Theorem: (The Absolute Value of a Function) Let f be integrable on [a,b]. Then
|f| is integrable on [a,b] and
b
< [

Proof: Let € > 0. Choose a partition X of [a,b] such that U(f, X) — L(f, X) < e. Write
My (f) = sup {f(t)’t € [a:k_l,:z:k]} and My(|f]) = sup {\f(t)Ht € [xk_l,xk]}, and similarly
for my(f) and my(|f]).

When 0 < my(f) < Mg(f) we have My (|f|) = Mg(f) and mg(|f]) = mi(f). When
m(f) <0 < My(f) we have My (|f]) = max{My(f), —mr(f)} and mg(]f|) > 0, and so
V(1) ma(f]) < mise {Me( ) —ma(F)} < Me(F)- me(F). When mu(f) < My(f) < 0.
Mi([f]) = —mu(f) and mi(|f]) = =M (f), and so My([f]) — mr(|f]) = Mr(f) — mw(f)-

Thus in all three cases we have

Mi([f1) = me(1f]) < Mi(f) — mx(f)

and so

n

U(If1,X) = LU, X) =D (Mi(If) = mi(IfD) Arz < Y (Mi(f) = mi(f)) A

k=1 k=1
= U(va) _L(f7X) <€
Thus | f| is integrable on [a, b].

Finally, note that since —|f(z)| < f(x) < |f(x) for all = € [a, b], we have

/VK/f</VI

by the Comparison Theorem.



1.28 Theorem: (Additivity) Let a < b < c and let f : [a,c] — R be bounded. Then f is
integrable on [a, c| if and only if f is integrable both on [a,b] and on [b, ¢|, and in this case

/abf+/bcf=/;f-

Proof: Suppose that f is integrable on [a,c|]. Choose a partition X of [a,c|] such that
U(f,X)— L(f,X) < e. Say that b € [zp_1,x;] and let Y = {z¢,z1, -+, 21,0} and
Z =Ab,xk,xkt1, -+, Tn} so that Y and Z are partitions of [a,b] and of [b,¢]. Then we
have U(f,Y) — L(f,Y) <U(f, X U{b}) — L(f, X U{b}) <U(f,X)— L(f,X) < e and also
U(f,Z) _L(f7Z) < U(faXU{b}) _L(f7XU{b}) < U(faX) _L(faX) < € and so f is
integrable both on [a,b] and on [b, c|.

Conversely, suppose that f is integrable both on [a, b] and on [b, ¢|. Choose a partition
Y of [a,b] SO that U(f,Y) = L(f,Y) < 5 and choose a partition Z of [b,c] such that
U(f,Z) — < £. Let X =Y UZ. Then X is a partition of [a,c] and we have
U X) — L(F. X) = (U1, Y) + U(f,2)) — (LU, Y) + L(£, 2)) < e.

Now suppose that f is 1ntegrable on [a,c] (hence also on [a,b] and on [b,c]) with

I, = / fi s = / fand I = / f. Let € > 0. Choose 6 > 0 so that for all partitions
X1, X9 and X of [a, b] b, c] anda[a,c] respectively with | X;| < 0, |X2| < d and | X]| < 0,
we have [S) — I1| < §, [S2 — I3 < § and |S — I| < § for all Riemann sums Sy, S> and
S for f on Xq, Xo and X respectively. Choose partitions X; and Xo of [a,b] and [b, (]
with | X7]| < ¢ and | X3] < 0. Choose Riemann sums S; and Sy for f on X; and Xo. Let
X = X; U X, and note that | X| < ¢ and that S = S; + S5 is a Riemann sum for f on X.
Then we have

}I—(I1+12)| = |(I—S)+(S1—I1)+(52—I2)| < |I—S|+|S1—I1|+’52—12| <ststgs=e€

1.29 Example: Let f : [a,b] — R. We say that f is piecewise continuous on [a, b] when

there exists a partition X = {zg,z1, -, x,} of [a,b] and there exist continuous functions
9k : [xk—1, K] = R such that f(z) = gi(z) for all x € (z—1,xk).
Note that in this case, f is integrable on each interval [zy_1, z)] with ff: fmk g

(using Exercise 1.18, since f(t) and gx(t) are equal for all but at most two values of

t € [xk_1,7k]) and hence, by Additivity, f is integrable on [a, b] with / f= Z/
Tho1

1.30 Definition: We consider every function f : {a} — R to be integrable, and we define
/ f=0. Also, when f : [a,b] — R is integrable, we define / f= —/ f.
a b a

1.31 Note: Using the above definition, the Additivity Theorem extends to the case
that a,b,c € R are not in increasing order: for any a,b,c € R, if f is integrable on

[min{a, b, c}, max{a, b, c}] then
[re[s=]r

10



The Fundamental Theorem of Calculus

1.32 Notation: For a function F, defined on an interval containing [a, b], we write

[F(az)} "R - Fla).

a

1.33 Theorem: (The Fundamental Theorem of Calculus)
(1) Let f be integrable on [a,b]. Define F : [a,b] — R by

o= 1= [ 10

Then F' is continuous on [a,b]. Moreover, if f is continuous at a point € [a,b] then F is
differentiable at x and

F'(x) = f(z).
(2) Let f be integrable on [a,b]. Let F' be differentiable on [a,b] with F' = f. Then
/f x —F(b)—F(a).

Proof: (1) Let M > 0 be an upper bound for |f| on [a,b]. For a < z,y < b we have

max{z,y} max{z,y} max{z,y}
P - F@)] = i AU BN Y B T T
min{z,y

min{z,y} min{z,y}
so given € > 0 we can choose 6 = 57 to get

ly—z| <6 = |F(y)— F(z)| < Mly—z| < M§ =e.

Thus F' is continuous (indeed uniformly continuous) on [a,b]. Now suppose that f is
continuous at the point = € [a,b]. Note that for a < x,y < b with = # y, we have

Fly) = F@) oo =L f
PO | - el et g >\

Ll @)

y—x y—x

—f 0 - @)

= t)— f(z t
’y - ZL" min{z,y}
1 max{z,y}

<

|[f(t) = f(z)]dt.

|y - ':E| min{z,y}

Given € > 0, since f is continuous at x we can choose 6 > 0 so that
ly -z < = [f(y) — f(2)] <e

and then for 0 < |y — x| < § we have

B - max{z,y}
FOZE0 g < 2 [ 0 - s ae

y— N |y - ‘T’ min{z,y}
| pmaxie)
edt=c€.

B |y - IL’| min{z,y}

and thus we have F'(z) = f(x) as required.
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(2) Let f be integrable on [a, b]. Suppose that F' is differentiable on [a, b] with F' = f. Let
€ > 0 be arbitrary. Choose 6 > 0 so that for every partition X of [a,b] with | X]| < § we

have

b n

/ f— Z f(tk)Akx‘ < € for every choice of sample points t; € [zr_1,zk]. Choose
a k=1

a partion X with |X| < § and choose sample points t; € [xx_1, x| as in the Mean Value

Theorem so that . r
F/<tk) _ (.Ik) - (CEk_1> ,

T — Tk—-1

b n
/ f= flte)Age
@ k=1

that is f(ty)Axx = F(xg) — F(2k—1). Then < €, and

n

> ft)Arz =Y (F(a) — Flze-1))
k=1

k=1
= (F(z1) — F(20)) + (F(z2) — F(21)) + -+ (F(zn-1) — F(z,))
= —F(z0) + (F(z1) — F(z1)) + - + (F(zn-1) = F(zn-1)) + F(zn)
= F(zy,) — F(z9) = F(b) — F(a).

and so < €. Since € was arbitrary,

/ f— (F(b) - F(a))

b
[/ 5=t ra| o
1.34 Definition: A function F such that F/ = f on an interval is called an antiderivative
of f on the interval.

1.35 Note: If G’ = F/ = f on an interval, then (G — F')’ =0, and so G — F is constant
on the interval, that is G = F + ¢ for some constant c.

1.36 Notation: We write
/f:F,or /f:F+c,0r /f(x)zF(m%or /f(w)dx:F(:c)+c

to indicate that F' is an antiderivative of f on an interval, so that the antiderivatives of f
on the interval are the functions of the form G = F + ¢ for some constant c.

V3 d
1.37 Example: Find/ .
0 1 + 332
: : d —1 1 . . dz -1 .
Solution: Since 7 (tan™" x) = {7 or, equivalently, since =i tan™ " z, it follows
x

from Part 2 of the Fundamental Theorem of Calculus that

/0 1_:;2 = [tan_lx}o =tan 13 —tan"10 = %

12



