

Chapter 1. The Riemann Integral

The Riemann Integral

1.1 Definition: A **partition** of the closed interval $[a, b]$ is a set $X = \{x_0, x_1, \dots, x_n\}$ with

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

The intervals $[x_{k-1}, x_k]$ are called the **subintervals** of $[a, b]$, and we write

$$\Delta_k x = x_k - x_{k-1}$$

for the size of the k^{th} subinterval. Note that

$$\sum_{k=1}^n \Delta_k x = b - a.$$

The **size** of the partition X , denoted by $|X|$ is

$$|X| = \max \{ \Delta_k x \mid 1 \leq k \leq n \}.$$

1.2 Definition: Let X be a partition of $[a, b]$, and let $f : [a, b] \rightarrow \mathbb{R}$ be bounded. A **Riemann sum** for f on X is a sum of the form

$$S = \sum_{k=1}^n f(t_k) \Delta_k x \quad \text{for some } t_k \in [x_{k-1}, x_k].$$

The points t_k are called **sample points**.

1.3 Definition: Let $f : [a, b] \rightarrow \mathbb{R}$ be bounded. We say that f is **(Riemann) integrable** on $[a, b]$ when there exists a number I with the property that for every $\epsilon > 0$ there exists $\delta > 0$ such that for every partition X of $[a, b]$ with $|X| < \delta$ we have $|S - I| < \epsilon$ for every Riemann sum for f on X , that is

$$\left| \sum_{k=1}^n f(t_k) \Delta_k x - I \right| < \epsilon.$$

for every choice of $t_k \in [x_{k-1}, x_k]$. This number I is unique (as we prove below); it is called the **(Riemann) integral** of f on $[a, b]$, and we write

$$I = \int_a^b f, \text{ or } I = \int_a^b f(x) dx.$$

Proof: Suppose that I and J are two such numbers. Let $\epsilon > 0$ be arbitrary. Choose δ_1 so that for every partition X with $|X| < \delta_1$ we have $|S - I| < \frac{\epsilon}{2}$ for every Riemann sum S on X , and choose $\delta_2 > 0$ so that for every partition X with $|X| < \delta_2$ we have $|S - J| < \frac{\epsilon}{2}$ for every Riemann sum S on X . Let $\delta = \min\{\delta_1, \delta_2\}$. Let X be any partition of $[a, b]$ with $|X| < \delta$. Choose $t_k \in [x_{k-1}, x_k]$ and let $S = \sum_{k=1}^n f(t_k) \Delta_k x$. Then we have $|I - J| \leq |I - S| + |S - J| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Since ϵ was arbitrary, we must have $I = J$.

1.4 Example: Let $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$ Show that f is not integrable on $[0, 1]$.

Solution: Suppose, for a contradiction, that f is integrable on $[0, 1]$, and write $I = \int_0^1 f$. Let $\epsilon = \frac{1}{2}$. Choose δ so that for every partition X with $|X| < \delta$ we have $|S - I| < \frac{1}{2}$ for every Riemann sum S for f on X . Choose a partition X with $|X| < \delta$. Let $S_1 = \sum_{k=1}^n f(t_k) \Delta_k x$ where each $t_k \in [x_{k-1}, x_k]$ is chosen with $t_k \in \mathbb{Q}$, and let $S_2 = \sum_{k=1}^n f(s_k) \Delta_k x$ where each $s_k \in [x_{k-1}, x_k]$ is chosen with $s_k \notin \mathbb{Q}$. Note that we have $|S_1 - I| < \frac{1}{2}$ and $|S_2 - I| < \frac{1}{2}$. Since each $t_k \in \mathbb{Q}$ we have $f(t_k) = 1$ and so $S_1 = \sum_{k=1}^n f(t_k) \Delta_k x = \sum_{k=1}^n \Delta_k x = 1 - 0 = 1$, and since each $s_k \notin \mathbb{Q}$ we have $f(s_k) = 0$ and so $S_2 = \sum_{k=1}^n f(s_k) \Delta_k x = 0$. Since $|S_1 - I| < \frac{1}{2}$ we have $|1 - I| < \frac{1}{2}$ and so $\frac{1}{2} < I < \frac{3}{2}$, and since $|S_2 - I| < \frac{1}{2}$ we have $|0 - I| < \frac{1}{2}$ and so $-\frac{1}{2} < I < \frac{1}{2}$, giving a contradiction.

1.5 Example: Show that the constant function $f(x) = c$ is integrable on any interval $[a, b]$ and we have $\int_a^b c \, dx = c(b - a)$.

Solution: The solution is left as an exercise.

1.6 Example: Show that the identity function $f(x) = x$ is integrable on any interval $[a, b]$, and we have $\int_a^b x \, dx = \frac{1}{2}(b^2 - a^2)$.

Solution: Let $\epsilon > 0$. Choose $\delta = \frac{2\epsilon}{b-a}$. Let X be any partition of $[a, b]$ with $|X| < \delta$. Let $t_k \in [x_{k-1}, x_k]$ and set $S = \sum_{k=1}^n f(t_k) \Delta_k x = \sum_{k=1}^n t_k \Delta_k x$. We must show that $|S - \frac{1}{2}(b^2 - a^2)| < \epsilon$.

Notice that

$$\begin{aligned} \sum_{k=1}^n (x_k + x_{k-1}) \Delta_k x &= \sum_{k=1}^n (x_k + x_{k-1})(x_k - x_{k-1}) = \sum_{k=1}^n x_k^2 - x_{k-1}^2 \\ &= (x_1^2 - x_0^2) + (x_2^2 - x_1^2) + \cdots + (x_{n-1}^2 - x_{n-2}^2) + (x_n^2 - x_{n-1}^2) \\ &= -x_0^2 + (x_1^2 - x_1^2) + \cdots + (x_{n-1}^2 - x_{n-1}^2) + x_n^2 \\ &= x_n^2 - x_0^2 = b^2 - a^2 \end{aligned}$$

and that when $t_k \in [x_{k-1}, x_k]$ we have $|t_k - \frac{1}{2}(x_k + x_{k-1})| \leq \frac{1}{2}(x_k - x_{k-1}) = \frac{1}{2}\Delta_k x$, and so

$$\begin{aligned} |S - \frac{1}{2}(b^2 - a^2)| &= \left| \sum_{k=1}^n t_k \Delta_k x - \frac{1}{2} \sum_{k=1}^n (x_k + x_{k-1}) \Delta_k x \right| \\ &= \left| \sum_{k=1}^n \left(t_k - \frac{1}{2}(x_k + x_{k-1}) \right) \Delta_k x \right| \\ &\leq \sum_{k=1}^n |t_k - \frac{1}{2}(x_k + x_{k-1})| \Delta_k x \\ &\leq \sum_{k=1}^n \frac{1}{2} \Delta_k x \Delta_k x \leq \sum_{k=1}^n \frac{1}{2} \delta \Delta_k x \\ &= \frac{1}{2} \delta (b - a) = \epsilon. \end{aligned}$$

Upper and Lower Riemann Sums

1.7 Definition: Let X be a partition for $[a, b]$ and let $f : [a, b] \rightarrow \mathbb{R}$ be bounded. The **upper Riemann sum** for f on X , denoted by $U(f, X)$, is

$$U(f, X) = \sum_{k=1}^n M_k \Delta_k x \quad \text{where } M_k = \sup \{f(t) \mid t \in [x_{k-1}, x_k]\}$$

and the **lower Riemann sum** for f on X , denoted by $L(f, X)$ is

$$L(f, X) = \sum_{k=1}^n m_k \Delta_k x \quad \text{where } m_k = \inf \{f(t) \mid t \in [x_{k-1}, x_k]\}.$$

1.8 Remark: The upper and lower Riemann sums $U(f, X)$ and $L(f, X)$ are not, in general, Riemann sums at all, since we do not always have $M_k = f(t_k)$ or $m_k = f(s_k)$ for any $t_k, s_k \in [x_{k-1}, x_k]$. If f is increasing, then $M_k = f(x_k)$ and $m_k = f(x_{k-1})$, and so in this case $U(f, X)$ and $L(f, X)$ are indeed Riemann sums. Similarly, if f is decreasing then $U(f, X)$ and $L(f, X)$ are Riemann sums. Also, if f is continuous then, by the Extreme Value Theorem, we have $M_k = f(t_k)$ and $m_k = f(s_k)$ for some $t_k, s_k \in [x_{k-1}, x_k]$, and so in this case $U(f, X)$ and $L(f, X)$ are again Riemann sums.

1.9 Note: Let X be a partition of $[a, b]$, and let $f : [a, b] \rightarrow \mathbb{R}$ be bounded. Then

$$U(f, X) = \sup \{S \mid S \text{ is a Riemann sum for } f \text{ on } X\}, \text{ and}$$

$$L(f, X) = \inf \{S \mid S \text{ is a Riemann sum for } f \text{ on } X\}.$$

In particular, for every Riemann sum S for f on X we have

$$L(f, X) \leq S \leq U(f, X)$$

Proof: We show that $U(f, X) = \sup \{S \mid S \text{ is a Riemann sum for } f \text{ on } X\}$ (the other statement is proved similarly). Let $\mathcal{T} = \{S \mid S \text{ is a Riemann sum for } f \text{ on } X\}$. For $S \in \mathcal{T}$, say $S = \sum_{k=1}^n f(t_k) \Delta_k x$ where $t_k \in [x_{k-1}, x_k]$, we have

$$S = \sum_{k=1}^n f(t_k) \Delta_k x \leq \sum_{k=1}^n M_k \Delta_k x = U(f, X).$$

Thus $U(f, X)$ is an upper bound for \mathcal{T} so we have $U(f, X) \geq \sup \mathcal{T}$. It remains to show that given any $\epsilon > 0$ we can find $S \in \mathcal{T}$ with $U(f, X) - S < \epsilon$. Let $\epsilon > 0$ be arbitrary. Since $M_k = \sup \{f(t) \mid t \in [x_{k-1}, x_k]\}$, we can choose $t_k \in [x_{k-1}, x_k]$ with $M_k - f(t_k) < \frac{\epsilon}{b-a}$. Then we have

$$U(f, X) - S = \sum_{k=1}^n M_k \Delta_k x - \sum_{k=1}^n f(t_k) \Delta_k x = \sum_{k=1}^n (M_k - f(t_k)) \Delta_k x < \sum_{k=1}^n \frac{\epsilon}{b-a} \Delta_k x = \epsilon$$

1.10 Lemma: Let $f : [a, b] \rightarrow \mathbb{R}$ be bounded with upper and lower bounds M and m . Let X and Y be partitions of $[a, b]$ such that $Y = X \cup \{c\}$ for some $c \notin X$. Then

$$\begin{aligned} 0 &\leq L(f, Y) - L(f, X) \leq (M - m)|X|, \text{ and} \\ 0 &\leq U(f, X) - U(f, Y) \leq (M - m)|X|. \end{aligned}$$

Proof: We shall prove that $0 \leq L(f, Y) - L(f, X) \leq (M - m)|X|$ (the proof that $0 \leq U(f, X) - U(f, Y) \leq (M - m)|X|$ is similar). Say $X = \{x_0, x_1, \dots, x_n\}$ and $c \in [x_{k-1}, x_k]$ so $Y = \{x_0, x_1, \dots, x_{k-1}, c, x_k, \dots, x_n\}$. Then

$$L(f, Y) - L(f, X) = r(c - x_{k-1}) + s(x_k - c) - m_k(x_k - x_{k-1})$$

where

$$r = \inf \{f(t) \mid t \in [x_{k-1}, c]\}, \quad s = \inf \{f(t) \mid t \in [c, x_k]\}, \quad m_k = \inf \{f(t) \mid t \in [x_{k-1}, x_k]\}.$$

Since $m_k = \min\{r, s\}$ we have $r \geq m_k$ and $s \geq m_k$, so

$$L(f, Y) - L(f, X) \geq m_k(c - x_{k-1}) + m_k(x_k - c) - m_k(x_k - x_{k-1}) = 0.$$

Since $r \leq M$ and $s \leq M$ and $m_k \geq m$ we have

$$\begin{aligned} L(f, Y) - L(f, X) &\leq M(c - x_{k-1}) + M(x_k - c) - m(x_k - x_{k-1}) \\ &= (M - m)(x_k - x_{k-1}) \leq (M - m)|X|. \end{aligned}$$

1.11 Note: Let X and Y be partitions of $[a, b]$ with $X \subseteq Y$. Then

$$L(f, X) \leq L(f, Y) \leq U(f, Y) \leq U(f, X).$$

Proof: If Y is obtained by adding one point to X then this follows from the above lemma. In general, Y can be obtained by adding finitely many points to X , one point at a time.

1.12 Note: Let X and Y be any partitions of $[a, b]$. Then $L(f, X) \leq U(f, Y)$.

Proof: Let $Z = X \cup Y$. Then by the above note,

$$L(f, X) \leq L(f, Z) \leq U(f, Z) \leq U(f, Y).$$

1.13 Definition: Let $f : [a, b] \rightarrow \mathbb{R}$ be bounded. The **upper integral** of f on $[a, b]$, denoted by $U(f)$, is given by

$$U(f) = \inf \{U(f, X) \mid X \text{ is a partition of } [a, b]\}$$

and the **lower integral** of f on $[a, b]$, denoted by $L(f)$, is given by

$$L(f) = \sup \{L(f, X) \mid X \text{ is a partition of } [a, b]\}.$$

1.14 Note: The upper and lower integrals of f both exist even when f is not integrable.

1.15 Note: We always have $L(f) \leq U(f)$.

Proof: Let $\epsilon > 0$ be arbitrary. Choose a partition X_1 so that $L(f) - L(f, X_1) < \frac{\epsilon}{2}$ and choose a partition X_2 so that $U(f, X_2) - U(f) < \frac{\epsilon}{2}$. Then

$$\begin{aligned} U(f) - L(f) &= (U(f) - U(f, X_2)) + (U(f, X_2) - L(f, X_1)) + (L(f, X_1) - L(f)) \\ &> -\frac{\epsilon}{2} + 0 - \frac{\epsilon}{2} = -\epsilon. \end{aligned}$$

Since ϵ was arbitrary, this implies that $U(f) - L(f) \geq 0$.

1.16 Theorem: (Equivalent Definitions of Integrability) Let $f : [a, b] \rightarrow \mathbb{R}$ be bounded. Then the following are equivalent.

(1) f is integrable on $[a, b]$.

(2) For all $\epsilon > 0$ there exists a partition X such that $U(f, X) - L(f, X) < \epsilon$.

(3) $L(f) = U(f)$.

Also, when f is integrable on $[a, b]$ we have $\int_a^b f = L(f) = U(f)$.

Proof: (1) \implies (2). Suppose that f is integrable on $[a, b]$ with $I = \int_a^b f$. Let $\epsilon > 0$. Choose $\delta > 0$ so that for every partition X with $|X| < \delta$ we have $|S - I| < \frac{\epsilon}{4}$ for every Riemann sum S on X . Let X be a partition with $|X| < \delta$. Let S_1 be a Riemann sum for f on X with $|U(f, X) - S_1| < \frac{\epsilon}{4}$, and let S_2 be a Riemann sum for f on X with $|S_2 - L(f, X)| < \frac{\epsilon}{4}$. Then

$$\begin{aligned} |U(f, X) - L(f, X)| &\leq |U(f, X) - S_1| + |S_1 - I| + |I - S_2| + |S_2 - L(f, X)| \\ &< \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon. \end{aligned}$$

(2) \implies (3). Suppose that for all $\epsilon > 0$ there is a partition X such that $U(f, X) - L(f, X) < \epsilon$. Let $\epsilon > 0$. Choose X so that $U(f, X) - L(f, X) < \epsilon$. Then since $U(f) \leq U(f, X)$ and $L(f) \geq L(f, X)$ we have

$$U(f) - L(f) \leq U(f, X) - L(f, X) < \epsilon.$$

Since $0 \leq U(f) - L(f) < \epsilon$ for every $\epsilon > 0$, we have $U(f) = L(f)$.

(3) \implies (1). Suppose that $L(f) = U(f)$ and let $I = L(f) = U(f)$. Let $\epsilon > 0$. Choose a partition X_0 of $[a, b]$ so that $L(f) - L(f, X_0) < \frac{\epsilon}{2}$ and $U(f, X_0) - U(f) < \frac{\epsilon}{2}$. Say $X_0 = \{x_0, x_1, \dots, x_n\}$ and set $\delta = \frac{\epsilon}{2(n-1)(M-m)}$, where M and m are upper and lower bounds for f on $[a, b]$. Let X be any partition of $[a, b]$ with $|X| < \delta$. Let $Y = X_0 \cup X$. Note that Y is obtained from X by adding at most $n-1$ points, and each time we add a point, the size of the new partition is at most $|X| < \delta$. By lemma 1.10, applied $n-1$ times, we have

$$\begin{aligned} 0 &\leq U(f, X) - U(f, Y) \leq (n-1)(M-m)|X| < (n-1)(M-m)\delta = \frac{\epsilon}{2}, \text{ and} \\ 0 &\leq L(f, Y) - L(f, X) \leq (n-1)(M-m)|X| < (n-1)(M-m)\delta = \frac{\epsilon}{2}. \end{aligned}$$

Now let S be any Riemann sum for f on X . Note that $L(f, X_0) \leq L(f, Y) \leq L(f) = U(f) \leq U(f, Y) \leq U(f, X_0)$ and $L(f, X) \leq S \leq U(f, X)$, so we have

$$\begin{aligned} S - I &\leq U(f, X) - I = U(f, X) - U(f) = (U(f, X) - U(f, Y)) + (U(f, Y) - U(f)) \\ &\leq (U(f, X) - U(f, Y)) + (U(f, X_0) - U(f)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{aligned}$$

and

$$\begin{aligned} I - S &= I - L(f, X) = L(f) - L(f, X) = (L(f) - L(f, Y)) + (L(f, Y) - L(f, X)) \\ &\leq (L(f) - L(f, X_0)) + (L(f, Y) - L(f, X)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

1.17 Exercise: Let $f, g : [a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b]$. Prove fg is integrable on $[a, b]$.

1.18 Exercise: Let $f, g : [a, b] \rightarrow \mathbb{R}$. Suppose that $f(x) = g(x)$ for all but finitely many points $x \in [a, b]$. Show that f is integrable on $[a, b]$ if and only if g is integrable on $[a, b]$ and, in this case $\int_a^b f = \int_a^b g$.

Evaluating Integrals of Continuous Functions

1.19 Theorem: (*Continuous Functions are Integrable*) Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous. Then f is integrable on $[a, b]$.

Proof: Let $\epsilon > 0$. Since f is uniformly continuous on $[a, b]$, we can choose $\delta > 0$ such that for all $x, y \in [a, b]$ we have $|x - y| < \delta \implies |f(x) - f(y)| < \frac{\epsilon}{b-a}$. Let X be any partition of $[a, b]$ with $|X| < \delta$. By the Extreme Value Theorem we have $M_k = f(t_k)$ and $m_k = f(s_k)$ for some $t_k, s_k \in [x_{k-1}, x_k]$. Since $|t_k - s_k| \leq |x_k - x_{k-1}| \leq |X| = \delta$, we have $|M_k - m_k| = |f(t_k) - f(s_k)| < \frac{\epsilon}{b-a}$. Thus

$$U(f, X) - L(f, X) = \sum_{k=1}^n (M_k - m_k) \Delta_k x < \frac{\epsilon}{b-a} \sum_{k=1}^n \Delta_k x = \epsilon.$$

1.20 Note: Let f be integrable on $[a, b]$. Let X_n be any sequence of partitions of $[a, b]$ with $\lim_{n \rightarrow \infty} |X_n| = 0$. Let S_n be any Riemann sum for f on X_n . Then $\{S_n\}$ converges with

$$\lim_{n \rightarrow \infty} S_n = \int_a^b f(x) dx.$$

Proof: Write $I = \int_a^b f$. Given $\epsilon > 0$, choose $\delta > 0$ so that for every partition X of $[a, b]$ with $|X| < \delta$ we have $|S - I| < \epsilon$ for every Riemann sum S for f on X , and then choose N so that $n > N \implies |X_n| < \delta$. Then we have $n > N \implies |S_n - I| < \epsilon$.

1.21 Note: Let f be integrable on $[a, b]$. If we let X_n be the partition of $[a, b]$ into n equal-sized subintervals, and we let S_n be the Riemann sum on X_n using right-endpoints, then by the above note we obtain the formula

$$\int_a^b f(x) dx = \lim_{n \rightarrow \infty} \sum_{k=1}^n f(x_{n,k}) \Delta_{n,k} x = \lim_{n \rightarrow \infty} \sum_{k=1}^n f\left(a + \frac{b-a}{n} k\right) \frac{b-a}{n}.$$

1.22 Example: Find $\int_0^2 2^x dx$.

Solution: Let $f(x) = 2^x$. Note that f is continuous and hence integrable, so we have

$$\begin{aligned} \int_0^2 2^x dx &= \lim_{n \rightarrow \infty} \sum_{k=1}^n f(x_{n,k}) \Delta_{n,k} x = \lim_{n \rightarrow \infty} \sum_{k=1}^n f\left(\frac{2k}{n}\right) \left(\frac{2}{n}\right) = \lim_{n \rightarrow \infty} \sum_{k=1}^n 2^{2k/n} \left(\frac{2}{n}\right) \\ &= \lim_{n \rightarrow \infty} \frac{2 \cdot 4^{1/n}}{n} \cdot \frac{4-1}{4^{1/n}-1}, \text{ by the formula for the sum of a geometric sequence} \\ &= \left(\lim_{n \rightarrow \infty} 6 \cdot 4^{1/n}\right) \left(\lim_{n \rightarrow \infty} \frac{1}{n(4^{1/n}-1)}\right) = 6 \lim_{n \rightarrow \infty} \frac{\frac{1}{n}}{4^{1/n}-1} = 6 \lim_{x \rightarrow 0^+} \frac{x}{4^x-1} \\ &= 6 \lim_{x \rightarrow 0^+} \frac{1}{\ln 4 \cdot 4^x}, \text{ by l'Hôpital's Rule} \\ &= \frac{6}{\ln 4} = \frac{3}{\ln 2}. \end{aligned}$$

1.23 Lemma: (*Summation Formulas*) We have

$$\sum_{k=1}^n 1 = n, \quad \sum_{k=1}^n k = \frac{n(n+1)}{2}, \quad \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}$$

Proof: These formulas could be proven by induction, but we give a more constructive proof.

It is obvious that $\sum_{k=1}^n 1 = 1 + 1 + \cdots + 1 = n$. To find $\sum_{k=1}^n k$, consider $\sum_{k=1}^n (k^2 - (k-1)^2)$. On the one hand, we have

$$\begin{aligned} \sum_{k=1}^n (k^2 - (k-1)^2) &= (1^2 - 0^2) + (2^2 - 1^2) + \cdots + ((n-1)^2 - (n-2)^2) + (n^2 - (n-1)^2) \\ &= -0^2 + (1^2 - 1^2) + (2^2 - 2^2) + \cdots + ((n-1)^2 - (n-1)^2) + n^2 \\ &= n^2 \end{aligned}$$

and on the other hand,

$$\sum_{k=1}^n (k^2 - (k-1)^2) = \sum_{k=1}^n (k^2 - (k^2 - 2k + 1)) = \sum_{k=1}^n (2k - 1) = 2 \sum_{k=1}^n k - \sum_{k=1}^n 1$$

Equating these gives $n^2 = 2 \sum_{k=1}^n k - \sum_{k=1}^n 1$ and so

$$2 \sum_{k=1}^n k = n^2 + \sum_{k=1}^n 1 = n^2 + n = n(n+1),$$

as required. Next, to find $\sum_{k=1}^n k^2$, consider $\sum_{k=1}^n (k^3 - (k-1)^3)$. On the one hand we have

$$\begin{aligned} \sum_{k=1}^n (k^3 - (k-1)^3) &= (1^3 - 0^3) + (2^3 - 1^3) + (3^3 - 2^3) + \cdots + (n^3 - (n-1)^3) \\ &= -0^3 + (1^3 - 1^3) + (2^3 - 2^3) + \cdots + ((n-1)^3 - (n-1)^3) + n^3 \\ &= n^3 \end{aligned}$$

and on the other hand,

$$\begin{aligned} \sum_{k=1}^n (k^3 - (k-1)^3) &= \sum_{k=1}^n (k^3 - (k^3 - 3k^2 + 3k - 1)) \\ &= \sum_{k=1}^n (3k^2 - 3k + 1) = 3 \sum_{k=1}^n k^2 - 3 \sum_{k=1}^n k + \sum_{k=1}^n 1. \end{aligned}$$

Equating these gives $n^3 = 3 \sum_{k=1}^n k^2 - 3 \sum_{k=1}^n k + \sum_{k=1}^n 1$ and so

$$6 \sum_{k=1}^n k^2 = 2n^3 + 6 \sum_{k=1}^n k - 2 \sum_{k=1}^n 1 = 2n^3 + 3n(n+1) - 2n = n(n+1)(2n+1)$$

as required. Finally, to find $\sum_{k=1}^n k^3$, consider $\sum_{k=1}^n (k^4 - (k-1)^4)$. On the one hand we have

$$\sum_{k=1}^n (k^4 - (k-1)^4) = n^4,$$

(as above) and on the other hand we have

$$\sum_{k=1}^n (k^4 - (k-1)^4) = \sum_{k=1}^n (4k^3 - 6k^2 + 4k - 1) = 4 \sum_{k=1}^n k^3 - 6 \sum_{k=1}^n k^2 + 4 \sum_{k=1}^n k - \sum_{k=1}^n 1.$$

Equating these gives $n^4 = 4 \sum_{k=1}^n k^3 - 6 \sum_{k=1}^n k^2 + 4 \sum_{k=1}^n k - \sum_{k=1}^n 1$ and so

$$\begin{aligned} 4 \sum_{k=1}^n k^3 &= n^4 + 6 \sum_{k=1}^n k^2 - 4 \sum_{k=1}^n k + \sum_{k=1}^n 1 \\ &= n^4 + n(n+1)(2n+1) - 2n(n+1) + n \\ &= n^4 + 2n^3 + n^2 = n^2(n+1)^2, \end{aligned}$$

as required.

1.24 Example: Find $\int_1^3 x + 2x^3 \, dx$.

Solution: Let $f(x) = x + 2x^3$. Then

$$\begin{aligned} \int_1^3 x + 2x^3 \, dx &= \lim_{n \rightarrow \infty} \sum_{k=1}^n f(x_{n,k}) \Delta_{n,k} x = \lim_{n \rightarrow \infty} \sum_{k=1}^n f\left(1 + \frac{2}{n} k\right) \left(\frac{2}{n}\right) \\ &= \lim_{n \rightarrow \infty} \sum_{k=1}^n \left(\left(1 + \frac{2}{n} k\right) + 2 \left(1 + \frac{2}{n} k\right)^3 \right) \left(\frac{2}{n}\right) \\ &= \lim_{n \rightarrow \infty} \sum_{k=1}^n \left(1 + \frac{2}{n} k + 2 \left(1 + \frac{6}{n} k + \frac{12}{n^2} k^2 + \frac{8}{n^3} k^3\right) \right) \left(\frac{2}{n}\right) \\ &= \lim_{n \rightarrow \infty} \sum_{k=1}^n \left(\frac{6}{n} + \frac{28}{n^2} k + \frac{48}{n^3} k^2 + \frac{32}{n^4} k^3 \right) \\ &= \lim_{n \rightarrow \infty} \left(\frac{6}{n} \sum_{k=1}^n 1 + \frac{28}{n^2} \sum_{k=1}^n k + \frac{48}{n^3} \sum_{k=1}^n k^2 + \frac{32}{n^4} \sum_{k=1}^n k^3 \right) \\ &= \lim_{n \rightarrow \infty} \left(\frac{6}{n} \cdot n + \frac{28}{n^2} \cdot \frac{n(n+1)}{2} + \frac{48}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{32}{n^4} \cdot \frac{n^2(n+1)^2}{4} \right) \\ &= 6 + \frac{28}{2} + \frac{48 \cdot 2}{6} + \frac{32}{4} = 44. \end{aligned}$$

Basic Properties of Integrals

1.25 Theorem: (Linearity) Let f and g be integrable on $[a, b]$ and let $c \in \mathbb{R}$. Then $f + g$ and cf are both integrable on $[a, b]$ and

$$\int_a^b (f + g) = \int_a^b f + \int_a^b \quad \text{and} \quad \int_a^b cf = c \int_a^b f.$$

Proof: The proof is left as an exercise.

1.26 Theorem: (Comparison) Let f and g be integrable on $[a, b]$. If $f(x) \leq g(x)$ for all $x \in [a, b]$ then

$$\int_a^b f \leq \int_a^b g.$$

Proof: The proof is left as an exercise.

1.27 Theorem: (The Absolute Value of a Function) Let f be integrable on $[a, b]$. Then $|f|$ is integrable on $[a, b]$ and

$$\left| \int_a^b f \right| \leq \int_a^b |f|.$$

Proof: Let $\epsilon > 0$. Choose a partition X of $[a, b]$ such that $U(f, X) - L(f, X) < \epsilon$. Write $M_k(f) = \sup \{f(t) | t \in [x_{k-1}, x_k]\}$ and $M_k(|f|) = \sup \{|f(t)| | t \in [x_{k-1}, x_k]\}$, and similarly for $m_k(f)$ and $m_k(|f|)$.

When $0 \leq m_k(f) \leq M_k(f)$ we have $M_k(|f|) = M_k(f)$ and $m_k(|f|) = m_k(f)$. When $m_k(f) \leq 0 \leq M_k(f)$ we have $M_k(|f|) = \max\{M_k(f), -m_k(f)\}$ and $m_k(|f|) \geq 0$, and so $M_k(|f|) - m_k(|f|) \leq \max\{M_k(f), -m_k(f)\} \leq M_k(f) - m_k(f)$. When $m_k(f) \leq M_k(f) \leq 0$, $M_k(|f|) = -m_k(f)$ and $m_k(|f|) = -M_k(f)$, and so $M_k(|f|) - m_k(|f|) = M_k(f) - m_k(f)$. Thus in all three cases we have

$$M_k(|f|) - m_k(|f|) \leq M_k(f) - m_k(f)$$

and so

$$\begin{aligned} U(|f|, X) - L(|f|, X) &= \sum_{k=1}^n (M_k(|f|) - m_k(|f|)) \Delta_k x \leq \sum_{k=1}^n (M_k(f) - m_k(f)) \Delta_k x \\ &= U(f, X) - L(f, X) < \epsilon. \end{aligned}$$

Thus $|f|$ is integrable on $[a, b]$.

Finally, note that since $-|f(x)| \leq f(x) \leq |f(x)|$ for all $x \in [a, b]$, we have

$$-\int_a^b |f| \leq \int_a^b f \leq \int_a^b |f|$$

by the Comparison Theorem.

1.28 Theorem: (Additivity) Let $a < b < c$ and let $f : [a, c] \rightarrow \mathbb{R}$ be bounded. Then f is integrable on $[a, c]$ if and only if f is integrable both on $[a, b]$ and on $[b, c]$, and in this case

$$\int_a^b f + \int_b^c f = \int_a^c f.$$

Proof: Suppose that f is integrable on $[a, c]$. Choose a partition X of $[a, c]$ such that $U(f, X) - L(f, X) < \epsilon$. Say that $b \in [x_{k-1}, x_k]$ and let $Y = \{x_0, x_1, \dots, x_{k-1}, b\}$ and $Z = \{b, x_k, x_{k+1}, \dots, x_n\}$ so that Y and Z are partitions of $[a, b]$ and of $[b, c]$. Then we have $U(f, Y) - L(f, Y) \leq U(f, X \cup \{b\}) - L(f, X \cup \{b\}) \leq U(f, X) - L(f, X) < \epsilon$ and also $U(f, Z) - L(f, Z) \leq U(f, X \cup \{b\}) - L(f, X \cup \{b\}) \leq U(f, X) - L(f, X) < \epsilon$ and so f is integrable both on $[a, b]$ and on $[b, c]$.

Conversely, suppose that f is integrable both on $[a, b]$ and on $[b, c]$. Choose a partition Y of $[a, b]$ so that $U(f, Y) - L(f, Y) < \frac{\epsilon}{2}$ and choose a partition Z of $[b, c]$ such that $U(f, Z) - L(f, Z) < \frac{\epsilon}{2}$. Let $X = Y \cup Z$. Then X is a partition of $[a, c]$ and we have $U(f, X) - L(f, X) = (U(f, Y) + U(f, Z)) - (L(f, Y) + L(f, Z)) < \epsilon$.

Now suppose that f is integrable on $[a, c]$ (hence also on $[a, b]$ and on $[b, c]$) with $I_1 = \int_a^b f$, $I_2 = \int_b^c f$ and $I = \int_a^c f$. Let $\epsilon > 0$. Choose $\delta > 0$ so that for all partitions X_1 , X_2 and X of $[a, b]$, $[b, c]$ and $[a, c]$ respectively with $|X_1| < \delta$, $|X_2| < \delta$ and $|X| < \delta$, we have $|S_1 - I_1| < \frac{\epsilon}{3}$, $|S_2 - I_2| < \frac{\epsilon}{3}$ and $|S - I| < \frac{\epsilon}{3}$ for all Riemann sums S_1 , S_2 and S for f on X_1 , X_2 and X respectively. Choose partitions X_1 and X_2 of $[a, b]$ and $[b, c]$ with $|X_1| < \delta$ and $|X_2| < \delta$. Choose Riemann sums S_1 and S_2 for f on X_1 and X_2 . Let $X = X_1 \cup X_2$ and note that $|X| < \delta$ and that $S = S_1 + S_2$ is a Riemann sum for f on X . Then we have

$$|I - (I_1 + I_2)| = |(I - S) + (S_1 - I_1) + (S_2 - I_2)| \leq |I - S| + |S_1 - I_1| + |S_2 - I_2| \leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

1.29 Example: Let $f : [a, b] \rightarrow \mathbb{R}$. We say that f is **piecewise continuous** on $[a, b]$ when there exists a partition $X = \{x_0, x_1, \dots, x_n\}$ of $[a, b]$ and there exist continuous functions $g_k : [x_{k-1}, x_k] \rightarrow \mathbb{R}$ such that $f(x) = g_k(x)$ for all $x \in (x_{k-1}, x_k)$.

Note that in this case, f is integrable on each interval $[x_{k-1}, x_k]$ with $\int_{x_{k-1}}^{x_k} f = \int_{x_{k-1}}^{x_k} g$ (using Exercise 1.18, since $f(t)$ and $g_k(t)$ are equal for all but at most two values of $t \in [x_{k-1}, x_k]$) and hence, by Additivity, f is integrable on $[a, b]$ with $\int_a^b f = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} g_k$.

1.30 Definition: We consider every function $f : \{a\} \rightarrow \mathbb{R}$ to be integrable, and we define $\int_a^a f = 0$. Also, when $f : [a, b] \rightarrow \mathbb{R}$ is integrable, we define $\int_b^a f = - \int_a^b f$.

1.31 Note: Using the above definition, the Additivity Theorem extends to the case that $a, b, c \in \mathbb{R}$ are not in increasing order: for any $a, b, c \in \mathbb{R}$, if f is integrable on $[\min\{a, b, c\}, \max\{a, b, c\}]$ then

$$\int_a^b f + \int_b^c f = \int_a^c f.$$

The Fundamental Theorem of Calculus

1.32 Notation: For a function F , defined on an interval containing $[a, b]$, we write

$$\left[F(x) \right]_a^b = F(b) - F(a).$$

1.33 Theorem: (The Fundamental Theorem of Calculus)

(1) Let f be integrable on $[a, b]$. Define $F : [a, b] \rightarrow \mathbb{R}$ by

$$F(x) = \int_a^x f = \int_a^x f(t) dt.$$

Then F is continuous on $[a, b]$. Moreover, if f is continuous at a point $x \in [a, b]$ then F is differentiable at x and

$$F'(x) = f(x).$$

(2) Let f be integrable on $[a, b]$. Let F be differentiable on $[a, b]$ with $F' = f$. Then

$$\int_a^b f = \left[F(x) \right]_a^b = F(b) - F(a).$$

Proof: (1) Let $M > 0$ be an upper bound for $|f|$ on $[a, b]$. For $a \leq x, y \leq b$ we have

$$|F(y) - F(x)| = \left| \int_a^y f - \int_a^x f \right| = \left| \int_{\min\{x,y\}}^{\max\{x,y\}} f \right| \leq \int_{\min\{x,y\}}^{\max\{x,y\}} |f| \leq \int_{\min\{x,y\}}^{\max\{x,y\}} M = M|y - x|$$

so given $\epsilon > 0$ we can choose $\delta = \frac{\epsilon}{M}$ to get

$$|y - x| < \delta \implies |F(y) - F(x)| \leq M|y - x| < M\delta = \epsilon.$$

Thus F is continuous (indeed uniformly continuous) on $[a, b]$. Now suppose that f is continuous at the point $x \in [a, b]$. Note that for $a \leq x, y \leq b$ with $x \neq y$, we have

$$\begin{aligned} \left| \frac{F(y) - F(x)}{y - x} - f(x) \right| &= \left| \frac{\int_a^y f - \int_a^x f}{y - x} - f(x) \right| \\ &= \left| \frac{\int_x^y f}{y - x} - \frac{\int_x^y f(x)}{y - x} \right| \\ &= \frac{1}{|y - x|} \left| \int_{\min\{x,y\}}^{\max\{x,y\}} (f(t) - f(x)) dt \right| \\ &\leq \frac{1}{|y - x|} \int_{\min\{x,y\}}^{\max\{x,y\}} |f(t) - f(x)| dt. \end{aligned}$$

Given $\epsilon > 0$, since f is continuous at x we can choose $\delta > 0$ so that

$$|y - x| < \delta \implies |f(y) - f(x)| < \epsilon$$

and then for $0 < |y - x| < \delta$ we have

$$\begin{aligned} \left| \frac{F(y) - F(x)}{y - x} - f(x) \right| &\leq \frac{1}{|y - x|} \int_{\min\{x,y\}}^{\max\{x,y\}} |f(t) - f(x)| dt \\ &\leq \frac{1}{|y - x|} \int_{\min\{x,y\}}^{\max\{x,y\}} \epsilon dt = \epsilon. \end{aligned}$$

and thus we have $F'(x) = f(x)$ as required.

(2) Let f be integrable on $[a, b]$. Suppose that F is differentiable on $[a, b]$ with $F' = f$. Let $\epsilon > 0$ be arbitrary. Choose $\delta > 0$ so that for every partition X of $[a, b]$ with $|X| < \delta$ we have $\left| \int_a^b f - \sum_{k=1}^n f(t_k) \Delta_k x \right| < \epsilon$ for every choice of sample points $t_k \in [x_{k-1}, x_k]$. Choose a partition X with $|X| < \delta$ and choose sample points $t_k \in [x_{k-1}, x_k]$ as in the Mean Value Theorem so that

$$F'(t_k) = \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}},$$

that is $f(t_k) \Delta_k x = F(x_k) - F(x_{k-1})$. Then $\left| \int_a^b f - \sum_{k=1}^n f(t_k) \Delta_k x \right| < \epsilon$, and

$$\begin{aligned} \sum_{k=1}^n f(t_k) \Delta_k x &= \sum_{k=1}^n (F(x_k) - F(x_{k-1})) \\ &= (F(x_1) - F(x_0)) + (F(x_2) - F(x_1)) + \cdots + (F(x_{n-1}) - F(x_n)) \\ &= -F(x_0) + (F(x_1) - F(x_1)) + \cdots + (F(x_{n-1}) - F(x_{n-1})) + F(x_n) \\ &= F(x_n) - F(x_0) = F(b) - F(a). \end{aligned}$$

and so $\left| \int_a^b f - (F(b) - F(a)) \right| < \epsilon$. Since ϵ was arbitrary, $\left| \int_a^b f - (F(b) - F(a)) \right| = 0$.

1.34 Definition: A function F such that $F' = f$ on an interval is called an **antiderivative** of f on the interval.

1.35 Note: If $G' = F' = f$ on an interval, then $(G - F)' = 0$, and so $G - F$ is constant on the interval, that is $G = F + c$ for some constant c .

1.36 Notation: We write

$$\int f = F, \text{ or } \int f = F + c, \text{ or } \int f(x) = F(x), \text{ or } \int f(x) dx = F(x) + c$$

to indicate that F is an antiderivative of f on an interval, so that the antiderivatives of f on the interval are the functions of the form $G = F + c$ for some constant c .

1.37 Example: Find $\int_0^{\sqrt{3}} \frac{dx}{1+x^2}$.

Solution: Since $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$ or, equivalently, since $\int \frac{dx}{1+x^2} = \tan^{-1} x$, it follows from Part 2 of the Fundamental Theorem of Calculus that

$$\int_0^{\sqrt{3}} \frac{dx}{1+x^2} = \left[\tan^{-1} x \right]_0^{\sqrt{3}} = \tan^{-1} \sqrt{3} - \tan^{-1} 0 = \frac{\pi}{3}.$$