
MATH 147 Calculus 1, Lecture Notes by Stephen New

Chapter 5: Differentiation

5.1 Definition: Let F be a subfield of R, let A ⊆ F , let f : A → F and let a ∈ A be a
limit point of A. We say that f is differentiable at a when the limit

lim
x→a

f(x)− f(a)

x− a
exists in F . In this case we call the limit the derivative of f at a, and we denote to by
f ′(a), so we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

When a ∈ A is a limit point of A from the right, we say that f is differentiable from
the right at a and that f ′+(a) is the derivative from the right of f at a, when

f ′+(a) = lim
x→a+

f(x)− f(a)

x− a
.

Similarly, when a ∈ A is a limit point of A from the left, we say that f is differentiable
from the left at a and that f ′−(a) is the derivative from the left of f at a when

f ′−(a) = lim
x→a−

f(x)− f(a)

x− a
.

5.2 Definition: We say that f is differentiable (in A) when f is differentiable at every
point a ∈ A. In this case, the derivative of f is the function f ′ : A→ F defined by

f ′(x) = lim
u→x

f(u)− f(x)

u− x
.

When f ′ is differentiable at a, denote the derivative of f ′ at a by f ′′(a), and we call
f ′′(a) the second derivative of f at a. When f ′′(a) exists for every a ∈ A, we say that
f is twice differentiable (in A), and the function f ′′ : A → F is called the second
derivative of f . Similarly, f ′′′(a) is the derivative of f ′′ at a and so on. More generally,
for any function f : A → F , we define its derivative to be the function f ′ : B → F
where B =

{
a ∈ A

∣∣f is differentiable at a
}

, and we define its second derivative to be

the function f ′′ : C → F where C =
{
a ∈ B

∣∣f ′ is differentiable at a
}

and so on.

5.3 Remark: Note that

lim
x→a

f(x)− f(a)

x− a
= lim
h→0

f(a+ h)− f(a)

h
.

To be precise, the limit on the left exists in F if and only if the limit on the right exists in
F , and in this case the two limits are equal.
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5.4 Theorem: Let F be a subfield of R, let A ⊆ F , let f : A → F , and let a ∈ A be a
limit point of A. Then f is differentiable at a with derivative f ′(a) if and only if

∀ε>0 ∃δ>0 ∀x∈A
(
|x− a| ≤ δ =⇒

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ ≤ ε)

Proof: We have

f is differentiable at a with derivative f ′(a) ⇐⇒ lim
x→a

f(x)− f(a)

x− a
= f ′(a)

⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(

0 < |x− a| ≤ δ =⇒
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ ≤ ε)
⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A

(
0 < |x− a| ≤ δ =⇒

∣∣∣∣f(x)− f(a)− f ′(a)(x− a)

x− a

∣∣∣∣ ≤ ε)
⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A

(
0 < |x− a| ≤ δ =⇒

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ ≤ ε|x− a|)

⇐⇒ ∀ε>0 ∃δ>0 ∀x∈A
(
|x− a| ≤ δ =⇒

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ ≤ ε|x− a|)

where on the last line, we can remove the condition that 0 < |x− a| because when x = a
we have

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ = 0.

5.5 Definition: When f : A→ F is differentiable at a with dervative f ′(a), the function

l(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a. Note that the graph y = l(x) of the linearization is
the line through the point (a, f(a)) with slope f ′(a). This line is called the tangent line
to the graph y = f(x) at the point (a, f(a)).

5.6 Theorem: (Differentiability Implies Continuity) Let F be a subfield of R, let A ⊆ F ,
let f : A → F and let a ∈ A be a limit point of A. Suppose that f is differentiable at a.
Then f is continuous at a.

Proof: We have

f(x)− f(a) =
f(x)− f(a)

x− a
· (x− a) −→ f ′(a) · 0 = 0 as x→ a

and so
f(x) =

(
f(x)− f(a)

)
+ f(a) −→ 0 + f(a) = f(a) as x→ a.

This proves that f is continuous at a.

5.7 Theorem: (Local Determination of the Derivative) Let F be a subfield of R, let
A,B ⊆ F , let f : A→ F and g : B → F , and let a ∈ A∩B be a limit point of both A and
B. Suppose that for some δ > 0 we have

{
x ∈ A

∣∣|x− a| ≤ δ} ⊂ {
x ∈ B

∣∣|x− a| ≤ δ}. If g
is differentiable at a then so is f and we have f ′(a) = g′(a).

Proof: The proof is left as an exercise.
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5.8 Theorem: (Operations on Derivatives) Let F be a subfield of R, let A ⊆ F , let
f, g : A → F , let a ∈ A be a limit point of A, and let c ∈ F . Suppose that f and g are
differentiable at a. Then

(1) (Linearity) the functions cf , f + g and f − g are differentiable at a with

(cf)′(a) = c f ′(a) , (f + g)′(a) = f ′(a) + g′(a) , (f − g)′(a)− f ′(a)− g′(a),

(2) (Product Rule) the function fg is differentiable at a with

(fg)′(a) = f ′(a)g(a) + f(a)g′(a),

(3) (Reciprocal Rule) if g(a) 6= 0 then the function 1/g is differentiable at a with(1

g

)′
(a) = − g

′(a)

g(a)2
,

(4) (Quotient Rule) if g(a) 6= 0 then the function f/g is differentiable at a with(f
g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g(a)2
.

Proof: We prove Parts (2), (3) and (4). For x ∈ A with x 6= a, we have

(fg)(x)− (fg)(a)

x− a
=
f(x)g(x)− f(a)g(a)

x− a

=
f(x)g(x)− f(x)g(a) + f(x)g(a)− f(a)g(a)

x− a

= f(x) · g(x)− g(a)

x− a
+ g(a) · f(x)− f(a)

x− a
−→ f(a) · g′(a) + g(a) · f ′(a) as x→ a.

Note that f(x)→ f(a) as x→ a because f is continuous at a since differentiability implies
continuity. This proves the Product Rule.

Suppose that g(a) 6= 0. Since g is continuous at a (because differentiability implies

continuity) we can choose δ > 0 so that |x − a| ≤ δ =⇒ |g(x) − g(a)| ≤ |g(a)|
2 and then

when |x− a| ≤ δ we have |g(x)| ≥ |g(a)|2 so that g(x) 6= 0. For x ∈ A with |x− a| ≤ δ we
have (

1
g

)
(x)−

(
1
g

)
(a)

x−−a
=

1
g(x) −

1
g(a)

x− a
=

−1

g(x)g(a)
· g(x)− g(a)

x− a
−→ −1

g(a)2
· g′(a)

as x→ a. This Proves the Reciprocal Rule.
Finally, note that Part (4) follows from Parts (2) and (3). Indeed when g(a) 6= 0, we

have (f
g

)′
(a) =

(
f · 1

g

)′
(a) = f ′(a) ·

(1

g

)
(a) + f(a) ·

(1

g

)′
(a)

= f ′(a) · 1

g(a)
+ f(a) · −g

′(a)

g(a)2
=
f ′(a)g(a)− f(a)g′(a)

g(a)2
.
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5.9 Theorem: (Chain Rule) Let F be a subfield of R, let A,B ⊆ F , let f : A → F , let
g : B → F and let h = g ◦ f : C → F where C = A ∩ f−1(B). Let a ∈ C be a limit
point of C (hence also of A) and let b = f(a) ∈ B be a limit point of B. Suppose that f
is differentiable at a and g is differentiable at b. Then h is differentiable at a with

h′(a) = g′
(
f(a)

)
f ′(a).

Proof: We shall use the ε-δ formulation of the derivative from Theorem 5.3. Note first
that for x ∈ C and y = f(x) ∈ B we have∣∣h(x)− h(a)− g′(f(a))f ′(a)(x− a)

∣∣
=

∣∣g(f(x))− g(f(a))− g′(f(a))f ′(a)(x− a)
∣∣

=
∣∣g(y)− g(b)− g′(b)f ′(a)(x− a)

∣∣
=

∣∣g(y)− g(b)− g′(b)(y − b) + g′(b)(y − b)− g′(b)f ′(a)(x− a)
∣∣

≤
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣ + |g′(b)| |y − b− f ′(a)(x− a)|
=

∣∣g(y)− g(b)− g′(b)(y − b)
∣∣ + |g′(b)|

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣

and also

|y − b| =
∣∣f(x)− f(a)

∣∣ =
∣∣f(x)− f(a)− f ′(a)(x− a) + f ′(a)(x− a)

∣∣
≤

∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ + |f ′(a)| |x− a|.

Let ε > 0. Since g is differentiable at b, we can choose δ0 > 0 so that

|y − b| ≤ δ0 =⇒
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣ ≤ ε
2(1+|f ′(a)|) |y − b|.

Since f is continuous at a, we can choose δ1 so that

|x− a| ≤ δ1 =⇒ |f(x)− f(a)| ≤ δ0 =⇒ |y − b| ≤ δ0.

Since f is differentiable at a we can choose δ2 > 0 and δ3 > 0 so that

|x− a| ≤ δ2 =⇒
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣ ≤ |x− a| and

|x− a| ≤ δ3 =⇒
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣ ≤ ε
2(1+g′(b)|) .

Let δ = min{δ1, δ2, δ3}. Let x ∈ C and let y = f(x) ∈ B. Then when |x− a| ≤ δ we have∣∣h(x)− h(a)− g′(f(a))f ′(a)(x− a)
∣∣

≤
∣∣g(y)− g(b)− g′(b)(y − b)

∣∣ + |g′(b)|
∣∣f(x)− f(a)− f ′(a)(x− a)

∣∣
≤ ε

2(1+|f ′(a)|) |y − b|+ (1 + |g′(b)|) · ε
2(1+|g′(b)|) |x− a|

≤ ε
2(1+|f ′(a)|)

(∣∣f(x)− f(a)− f ′(a)(x− a)
∣∣ + |f ′(a)| |x− a|

)
+ ε

2 |x− a|

≤ ε
2(1+|f ′(a)|)

(
|x− a|+ |f ′(a)| |x− a|

)
+ ε

2 |x− a|

= ε
2 |x− a|+

ε
2 |x− a| = ε|x− a|.

Thus h is differentiable at a with h′(a) = g′(f(a))f ′(a), as required.

5.10 Theorem: Let F be a subfield of R, let A ⊆ F and let f : A → F . Then f is
monotonic if and only if f has the property that for all a, b, c ∈ A, if b lies between a and
c then f(b) lies between f(a) and f(c).

Proof: The proof is left as an exercise.
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5.11 Theorem: (The Inverse Function Theorem) Let I be an interval in R, let f : I → R
and let J = f(I).

(1) If f is continuous then its range J = f(I) is an interval in R.
(2) If f is injective and continuous then f is strictly monotonic.
(3) If f : I → J is strictly monotonic, then so is its inverse g : J → I.
(4) If f is bijective and continuous then its inverse g is continuous.

(5) If f is bijective and continuous, and f is differentiable at a with f ′(a) 6= 0, then its
inverse g is differentiable at b = f(a) with g′(b) = 1

f ′(a) .

Proof: Suppose that f : I → R is continuous. If f is the empty function or if f is constant,
then J is a degenerate interval. Suppose that J contains at least two points. Let u, v ∈ J
and let y ∈ R with u < y < v. Since J = f(I) we can choose a, b ∈ I with f(a) = u and
f(b) = v. Since f(a) = u 6= v = f(b) we have a 6= b. Since y lies between f(a) = u and
f(b) = v, and since f is continuous, it follows from the Intermediate Value Theorem that
we can choose x between a and b with f(x) = y. Since I is an interval in R, it has the
intermediate value property, and so we have x ∈ I. Since x ∈ I and y = f(x) we have
y ∈ f(I) = J . This proves that J has the intermediate value property, and so J is an
interval, as required. This proves Part (1).

Suppose that f is injective and continuous. Let a, b, c ∈ I with a < b < c. Since f
is injective and a 6= c, we have f(a) 6= f(c). We claim that f(b) lies between f(a) and
f(c). Consider the case that f(a) < f(c) (the case that f(a) > f(c) is similar). Suppose,
for a contradiction, that f(b) ≥ f(c). Note that since f is injective and b 6= c we have
f(b) 6= f(c) and so f(b) > f(c). Choose y with f(c) < y < f(b). Since f is continuous
on [a, b] and on [b, c], by the Intermediate Value Theorem, we can choose x1 ∈ [a, b] and
x2 ∈ [b, c] with f(x1) = y = f(x2). Since y 6= f(b) we cannot have x1 = b or x2 ∈ b so
we have x1 < b < x2 with f(x1) = f(x2), which contradicts the fact that f is injective.
Thus we cannot have f(b) ≥ f(c) and so we have f(b) < f(c). A similar argument by
contradiction shows that we cannot have f(b) ≤ f(a) and so we have f(a) < f(b) < f(c),
and so f(b) lies between f(a) and f(c) as claimed. We have proven that for all a, b, c ∈ I
with a < b < c, f(b) lies between f(a) and f(c). It follows from the above theorem that f
is monotonic (hence strictly monotonic since it is injective). This proves Part (2).

To prove Part (3), suppose that f : I → J is strictly monotonic and let g : J → I
be the inverse of f . Suppose that f is strictly increasing. Let u, v ∈ J = f(I) with
u < v. Let a = g(u) and b = g(v) so we have u = f(a) and v = f(b). Since f is
strictly increasing, we must have a < b (since a = b =⇒ f(a) = f(b) =⇒ u = v and
a > b =⇒ f(a) > f(b) =⇒ u > v). Thus g(u) = a < b = g(v) and so g is strictly
increasing. A similar argument shows that if f is strictly decreasing then so is g.

Part (4) follows from Part (3) by the Monotone Surjective Functions Theorem.
To prove Part (5), suppose that f is bijective and continuous and that f is differen-

tiable at a with f ′(a) 6= 0. By Part (4), we know that g is continuous at b = f(a), and so
as y → b in J we have g(y)→ g(b) in I, and so for x = g(y) we have

g(y)− g(b)

y − b
=

x− a
f(x)− f(a)

=
1

f(x)−f(a)
x−a

−→ 1

f ′(a)
as y → b.
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5.12 Theorem: (Derivatives of the Basic Elementary Functions) The basic elementary
functions have the following derivatives.

(1) (xa)′ = a xa−1 where a ∈ R and x ∈ R is such that xa−1 is defined,

(2) (ax)′ = ln a · ax where a > 0 and x ∈ R and

(loga x)′ = 1
ln a ·

1
x where 0 < a 6= 1 and x > 0, and in particular

(ex)′ = ex for all x ∈ R and (lnx)′ = 1
x for all x > 0,

(3) (sinx)′ = cosx and (cosx)′ = − sinx for all x ∈ R, and

(tanx)′ = sec2 x and (secx)′ = secx tanx for all x ∈ R with x 6= π
2 + kπ, k ∈ Z,

(cotx)′ = − csc2 x and (cscx)′ = − cotx cscx for all x ∈ R with x 6= π + kπ, k ∈ Z,

(4) (sin−1 x)′ = 1√
1−x2

and (cos−1 x)′ = −1√
1−x2

for |x| < 1,

(sec−1 x)′ = 1
x
√
x2−1 and (csc−1 x)′ = −1

x
√
x2−1 for |x| > 1, and

(tan−1 x)′ = 1
1+x2 and (cot−1 x)′ = −1

1+x2 for all x ∈ R.

Proof: First we prove Part (1) in the case that a ∈ Q. When n ∈ Z+ and f(x) = xn we
have

f(u)− f(x)

u− x
=
un − xn

u− x
=

(u− x)(un−1 + un−2x+ un−3x2 + · · ·+ xn−1)

u− x
= un−1 + un−2x+ un−3x2 + · · ·+ xn−1 −→ nxn−1 as u→ x.

This shows that (xn)′ = nxn−1 for all x ∈ R when n ∈ Z+. By the Reciprocal Rule, for
x 6= 0 we have

(x−n)′ =
( 1

xn

)′
= − (xn)′

(xn)2
= −nx

n−1

x2n
= −nx−n−1.

The function g(x) = x1/n is the inverse of the function f(x) = xn (when n is odd, x1/n

is defined for all x ∈ R, and when n is even, x1/n is defined only for x ≥ 0). Since
f ′(x) = (xn)′ = nxn−1 we have f ′(x) = 0 when x = 0. By the Inverse Function Theorem,
when x 6= 0 we have

(x1.n)′ = g′(x) =
1

f ′(g(x))
=

1

n g(x)n−1
=

1

n(x1/n)n−1
=

1

nx1−
1
n

= 1
n x

1
n−1.

Finally, when n ∈ Z+ and k ∈ Z with gcd(k, n) = 1, by the Chain Rule we have

(xk/n)′ =
(
(x1/n)k

)′
= k(x1/n)k−1(x1/n)′ = k x

k−1
n · 1n x

1−n
n = k

n x
k
n−1.

We have proven Part (1) in the case that a ∈ Q.

Next we shall prove Part (2). For f(x) = ax where a > 0, we have

f(x+ h)− f(x)

h
=
ax+h − ax

h
=
axah − ax

h
= ax · a

h − 1

h

and so we have f ′(x) = ax
(

lim
h→0

ah−1
h

)
provided that the limit exists and is finite. For

g(x) = loga x, where 0 < a 6= 1 and x > 0, we have

g(x+ h)− g(x)

h
=

loga(x+ h)− loga x

h
=

loga
(
x+h
x

)
h

=
loga

(
1 + h

x

)
x · hx

= 1
x ·loga

(
1+ h

x

)x/h
6



and so we have g′(x) = 1
x · loga

(
lim
h→0

(
1 + h

x

)x/h)
provided the limit exists and is finite.

By letting u = h
x we see that

lim
h→0+

(
1 + h

x

)x/h
= lim
u→∞

(
1 + 1

u

)u
= e

as you showed in Assignment 5. By letting u = −hx , a similar argument shows that

lim
h→0−

(
1 + h

x

)x/h
= lim
u→∞

(
1− 1

u

)−u
= e.

Thus the derivative g′(x) does exist and we have

(loga x)′ = g′(x) = 1
x loga

(
lim
h→0

(
1 + h

x

)x/h)
= 1

x loga e = 1
x ·

ln e
ln a = 1

x ln a .

Since g(x) = loga x is differentiable with g′(x) 6= 0 it follows from the Inverse Function
Theorem that f(x) = ax is differentiable with derivative

(ax)′ = f ′(x) =
1

g′(f(x))
=

1
1

f(x) ln a

= ln a · f(x) = ln a · ax.

Now we return to the proof of Part (1), in the case that a /∈ Q. When a > 0 we have
ax = ex ln a for all x > 0 and so by the Chain Rule

(xa)′ =
(
ea ln x

)′
= ea ln x(a lnx)′ = xa · ax = a xa−1,

I may finish the proof later.

5.13 Definition: Let F be a subfield of R, let A ⊆ F , let f : A→ F and let a ∈ A. We
say that f has a local maximum value at a when

∃δ>0 ∀x∈A
(
|x− a| ≤ δ =⇒ f(x) ≤ f(a)

)
.

Similarly, we say that f has a local minimum value at a when

∃δ>0 ∀x∈A
(
|x− a| ≤ δ =⇒ f(x) ≥ f(a)

)
.

5.14 Theorem: (Fermat’s Theorem) Let F be a subfield of R, let A ⊆ F , let f : A→ F .
Suppose that a ∈ A is a limit point of A, both from above and from below. Suppose that
f is differentiable at a and that f has a local maximum or minimum value at a. Then
f ′(a) = 0.

Proof: We suppose that f has a local maximum value at a (the case that f has a local
minimum value at a is similar). Choose δ > 0 so that |x − a| ≤ δ =⇒ f(x) ≤ f(a). For

x ∈ A with a < x < a+ δ, since x > a and f(x) ≥ f(a) we have f(x)−f(a)
x−a ≥ 0, and so

f ′(a) = lim
x→a+

f(x)− f(a)

x− a
≥ 0

by the Comparison Theorem. Similarly, for x ∈ A with a − δ ≤ x < a, since x < a and

f(x) ≥ f(a) we have f(x)−f(a)
x−a ≤ 0, and so

f ′(a) = lim
x→a−

f(x)− f(a)

x− a
≤ 0.
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5.15 Theorem: (Mean Value Theorems) Let a, b ∈ R with a < b.

(1) (Rolle’s Theorem) If f : [a, b] → R differentiable in (a, b) and continuous at a and b
with f(a) = 0 = f(b) then there exists a point c ∈ (a, b) such that f ′(c) = 0.

(2) (The Mean Value Theorem) If f : [a, b] → R is differentiable in (a, b) and continuous
at a and b then there exists a point c ∈ (a, b) with

f ′(c) =
f(b)− f(a)

b− a
.

(3) (Cauchy’s Mean Value Theorem) If f, g : [a, b] → R are differentiable in (a, b) and
continuous at a and b, then there exists a point c ∈ (a, b) such that

f ′(c)
(
g(b)− g(a)

)
= g′(c)

(
f(b)− f(a)

)
.

Proof: To Prove Rolle’s Theorem, let f : [a, b] → R be differentiable in (a, b) and contin-
uous at a and b with f(a) = 0 = f(b). If f is constant, then f ′(x) = 0 for all x ∈ [a, b],
so we can choose any c ∈ (a, b) and we have f ′(c) = 0. Suppose that f is not constant.
Either f(x) > 0 for some x ∈ (a, b) or f(x) < 0 for some x ∈ (a, b). Suppose that f(x) > 0
for some x ∈ (a, b) (the case that f(x) < 0 for some x ∈ (a, b) is similar). By the Extreme
Value Theorem, f attains its maximum value at some point, say c ∈ [a, b]. Since f(x) > 0
for some x ∈ (a, b), we must have f(c) > 0. Since f(a) = f(b) = 0 and f(c) > 0, we have
c ∈ (a, b). By Fermat’s Theorem, we have f ′(c) = 0. This completes the proof of Rolle’s
Theorem.

Now we use Rolle’s Theorem to prove the Mean Value Theorem. Suppose that f :
[a, b] → R is differentiable in (a, b) and continuous at a and b. Let g(x) = f(x) − f(a) −
f(b)−f(a)

b−a (x − a). Then g is differentiable in (a, b) with g′(x) = f ′(x) − f(b)−f(a)
b−a and g is

continuous at a and b with g(a) = 0 = g(b). By Rolle’s Theorem, we can choose c ∈ (a, b)

so that f ′(c) = 0, and then g′(c) = f(b)−f(a)
b−a , as required.

Finally, we use the Mean Value Theorem to Prove Cauchy’s Mean Value Theorem.
Suppose that f, g : [a, b] → R are both differentiable in (a, b) and continuous at a and
b. Let h(x) = f(x)

(
g(b) − g(a)

)
− g(x)

(
f(b) − f(a)

)
. Then h is differentiable in (a, b)

and continuous at a and b. with h(a) = f(a)g(b) − g(a)f(b) = h(b). By the Mean Value

Theorem, we can choose c ∈ (a, b) so that h′(c) = h(b)−h(a)
b−a = 0, and then we have

f(c)
(
g(b)− g(a)

)
− g(c)

(
f(b)− f(a)

)
= 0, as required.

5.16 Corollary: Let a, b ∈ R with a < b. Let f : [a, b] → R. Suppose that f is
differentiable in (a, b) and continuous at a and b.

(1) If f ′(x) ≥ 0 for all x ∈ (a, b) then f is increasing on [a, b].
(2) If f ′(x) > 0 for all x ∈ (a, b) then f is strictly increasing on [a, b].
(3) If f ′(x) ≤ 0 for all x ∈ (a, b) then f is decreasing on [a, b].
(4) If f ′(x) < 0 for all x ∈ (a, b) then f is strictly decreasing on [a, b].
(5) if f ′(x) = 0 for all x ∈ (a, b) then f is constant on [a, b].
(6) If g : [a, b]→ R is continuous at a and b and differentiable in (a, b) with g′(x) = f ′(x)
for all x ∈ (a, b), then for some c ∈ R we have g(x) = f(x) + c for all x ∈ (a, b).

Proof: We prove Part (1) (the proofs of the other parts are similar. Suppose that f ′(x) ≥ 0

for all x ∈ (a, b). Let a ≤ x < y ≤ b. Choose c ∈ (x, y) so that f ′(c) = f(y)−f(x)
y−x . Then

f(y)− f(x) = f ′(c)(y − x) ≥ 0 and so f(y) ≥ f(x). Thus f is increasing on [a, b].
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5.17 Corollary: (The Second Derivative Test) Let I be an interval in R, let f : I → R
and let a ∈ I. Suppose that f is differentiable in I with f ′(a) = 0.

(1) If f ′′(a) > 0 then f has a local minimum at a.
(2) If f ′′(a) < 0 then f has a local maximum at a.

Proof: The proof is left as an exercise.

5.18 Theorem: (l’Hôpital’s Rule) Let I be a non degenerate interval in R. Let a ∈ I, or
let a be an endpoint of I. Let f, g : I \ {a} → R. Suppose that f and g are differentiable
in I \ {a} with g′(x) 6= 0 for all x ∈ I \ {a}. Suppose either that lim

x→a
f(x) = 0 = lim

x→a
g(x)

or that lim
x→a

g(x) = ±∞. Suppose that lim
x→a

f ′(x)

g′(x)
= u ∈ R̂. Then lim

x→a

f(x)

g(x)
= u.

Similar results hold for limits x→ a+, x→ a−, x→∞ and x→ −∞.

Proof: We give the proof for x→ a+ (assuming that a is a limit point of I from the right)
and that u ∈ R. Suppose first that lim

x→a+
f(x) = 0 = lim

x→a+
g(x). Choose b ∈ I with a < b.

Extend the maps f and g to obtain maps f, g : [a, b] → R by defining f(a) = 0 = g(b).
Note that f and g are continuous at a since lim

x→a+
f(x) = 0 and lim

x→a+
g(x) = 0. Let 〈xk〉

be a sequence in (a, b] with xk → a. For each index k, by Cauchy’s Mean Value Theorem
we can choose ck ∈ (a, xk) so that f ′(ck)

(
g(xk) − g(a)

)
= g′(ck)

(
f(xk) − f(a)

)
. Since

f(a) = 0 = g(a), this simplifies to f ′(ck)g(xk) = g′(ck)f(xk) and so we have f(xk)
g(xk)

= f ′(ck)
g′(ck)

.

Since a < ck < xk and xk → a, we have ck → a by the Squeeze Theorem. Since

lim
x→a+

f ′(x)

g′(x)
= u and ck → a, we have f(xk)

g(xk)
= f ′(ck)

g′(ck)
→ u by the Sequential Characterization

of Limits. We have shown that for every sequence 〈xk〉 in (a, b] with xk → a we have

f(xk)
g(xk)

→ u, and it follows that lim
x→a+

f(x)

g(x)
= u by the Sequential Characterization of

Limits.
Now suppose that lim

x→a+
g(x) = ∞. Since lim

x→a+
g(x) = ∞ we can choose b ∈ I with

b > a so that g(x) > 0 for all x ∈ (a, b]. Let 〈xk〉 be a sequence in (a, b] with xk → a. For
each pair of indices k, l, by Cauchy’s Mean Value Theorem we can choose ckl ∈ (a, xk) so
that f ′(ckl)

(
g(xk) − g(xl)

)
= g′(ckl)

(
f(xk) − f(xl)

)
. Divide both sides by g′(ckl)g(xl) to

get
f ′(ckl)

g′(ckl)

g(xk)

g(xl)
− f ′(ckl)

g′(ckl)
=
f(xk)

g(xl)
− f(xl)

g(xl)
.

so we have
f(xl)

g(xl)
=
f ′(ckl)

g′(ckl)
+
f(xk)

g(xl)
− f ′(ckl)

g′(ckl)

g(xk)

g(xl)
.

Let ε > 0. Since lim
x→a

f ′(x)

g′(x)
= u we can choose δ > 0 so that |x−a| ≤ δ =⇒

∣∣∣ f ′(x)g′(x) −u
∣∣∣ ≤ ε

3 .

Since xk → a we can choose m ∈ Z+ so k ≥ m =⇒ |xk − a| ≤ δ. Note that when k, l ≥ m,

since ckl lies between xk and xl we also have |ckl−a| ≤ δ so
∣∣∣ f ′(ckl)
g′(ckl)

−u
∣∣∣ ≤ min

{
1, ε3

}
. Fix

k ≥ m. Choose l large enough so that
∣∣∣ f(xk)
g(xl)

∣∣∣ ≤ ε
3 and

∣∣∣ f ′(ckl)
g′(ckl)

g(xk)
g(xl)

∣∣∣ ≤ ε
3 . Then we have∣∣∣f(xl)

g(xl)
− u

∣∣∣ ≤ ∣∣∣f ′(ckl)
g′(ckl)

− u
∣∣∣ +

∣∣∣f(xk)

g(xl)

∣∣∣ +
∣∣∣f ′(ckl)
g′(ckl)

g(xk)

g(xl)

∣∣∣ ≤ ε.
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