MATH 147 Calculus 1, Lecture Notes by Stephen New

Chapter 5: Differentiation

5.1 Definition: Let F' be a subfield of R, let A C F,let f: A — F and let a € A be a
limit point of A. We say that f is differentiable at a when the limit

L F@) - f@)
T—a T —aq

exists in F. In this case we call the limit the derivative of f at a, and we denote to by

f'(a), so we have

r—a T —a
When a € A is a limit point of A from the right, we say that f is differentiable from
the right at a and that f! (a) is the derivative from the right of f at a, when

o @) - f(a)
= 0 T

Similarly, when a € A is a limit point of A from the left, we say that f is differentiable

from the left at a and that f’ (a) is the derivative from the left of f at a when

r—a~ r—a
5.2 Definition: We say that f is differentiable (in A) when f is differentiable at every
point a € A. In this case, the derivative of f is the function f’: A — F defined by

o 1im £ = @)
u—x u — I

When [’ is differentiable at a, denote the derivative of f’ at a by f”(a), and we call
f"(a) the second derivative of f at a. When f”(a) exists for every a € A, we say that
f is twice differentiable (in A), and the function f” : A — F is called the second
derivative of f. Similarly, f"”/(a) is the derivative of f” at a and so on. More generally,
for any function f : A — F, we define its derivative to be the function f' : B — F
where B = {a € A‘ f is differentiable at a}, and we define its second derivative to be
the function f” : C — F where C = {a € B‘f’ is differentiable at a} and so on.

5.3 Remark: Note that
tim L& =@y, Jlath) = fla)

z—a T —a h—0 h

To be precise, the limit on the left exists in F' if and only if the limit on the right exists in
F', and in this case the two limits are equal.



5.4 Theorem: Let F be a subfield of R, let A C F, let f: A — F, and let a € A be a
limit point of A. Then f is differentiable at a with derivative f’(a) if and only if

Ve>0 36>0 \meA(m —a| <5 = |f(z) - f(a) — f'(a)(x —a)| < e)

Proof: We have
f(x) — f(a)

f is differentiable at a with derivative f/(a) <= li_r)n = f'(a)
= Ve>035>0VzecAd (0 <|lz—a <= ‘W —f’(a)‘ < e)
J— J— / J—
= VYe>036>0VreA (o< 2 —a| <6 = ‘f(x) f(a;_{t(“)(x @) ge)

< Vex>030>0Vred (O <l|lz—al <= |f(z)— fla) — f(a)(z — a)| < €|z — a|>
e Ve>030>0VreA <]:r: —a| <5 = |f(z) - f(a) — f'(a)(x — a)| < |z — ay)
where on the last line, we can remove the condition that 0 < |x — a| because when =z = a
we have |f(z) — f(a) — f'(a)(z — a)| = 0.
5.5 Definition: When f: A — F is differentiable at a with dervative f’(a), the function
l(z) = f(a) + f'(a)(x — a)

is called the linearization of f at a. Note that the graph y = [(x) of the linearization is
the line through the point (a, f(a)) with slope f’(a). This line is called the tangent line
to the graph y = f(x) at the point (a, f(a)).

5.6 Theorem: (Differentiability Implies Continuity) Let F' be a subfield of R, let A C F,
let f: A— F and let a € A be a limit point of A. Suppose that f is differentiable at a.
Then f is continuous at a.

Proof: We have
(x—a) — f(a)-0=0 asx —a
and so

f@) = (f(2) = f(a)) + f(a) — 0+ f(a) = f(a) asz—a.
This proves that f is continuous at a.

5.7 Theorem: (Local Determination of the Derivative) Let F' be a subfield of R, let
A BCF,let f:A— Fandg: B — F,andlet a € AN B be a limit point of both A and
B. Suppose that for some § > 0 we have {z € A||z —a| <0} C {z € B||lx —a| < 6}. Ifg
is differentiable at a then so is f and we have f'(a) = ¢'(a).

Proof: The proof is left as an exercise.



5.8 Theorem: (Operations on Derivatives) Let ' be a subfield of R, let A C F, let
f,g: A— F,let a € A be a limit point of A, and let ¢ € F. Suppose that f and g are
differentiable at a. Then

(1) (Linearity) the functions cf, f + g and f — g are differentiable at a with

(cf)(a) =cf(a), (f+9)'(a) = f'(a) + d'(a) , (f —9)'(a) = f'(a) — g'(a),
(2) (Product Rule) the function fg is differentiable at a with

(f9)'(a) = f'(a)g(a) + f(a)g'(a),
(3) (Reciprocal Rule) if g(a) # 0 then the function 1/g is differentiable at a with
oo g'(a)
<§> ="
(4) (Quotient Rule) if g(a) # 0 then the function f/g is differentiable at a with
Yoy _ fa)gla) — f(a)g'(a)
<g> (@)= g(a)? '
Proof: We prove Parts (2), (3) and (4). For z € A with = # a, we have

(f9)(x) = (f9)(a) _ f(x)g(x) — f(a)g(a)

_ f@)g(x) — f(z)g(a) + f(x)g(a) — f(a)g(a)
:f(@.ww(a).f(m)—f(a)

— f(a)-g'(a) + g(a) - f'(a) asx — a.

Note that f(z) — f(a) as x — a because f is continuous at a since differentiability implies
continuity. This proves the Product Rule.

Suppose that g(a) # 0. Since g is continuous at a (because differentiability implies
continuity) we can choose § > 0 so that |z —a|] < 6 = |g(z) — g(a)| < @ and then
when |z — a| < & we have |g(x)| > L;)' so that g(z) # 0. For z € A with |z —a] < 6 we
have

1 — (1 1 1
H@-G)O - 1 w-g -1
- ’ — 5 g (CL)
T——a T—a g(x)g(a)  z—a g(a)
as x — a. This Proves the Reciprocal Rule.
Finally, note that Part (4) follows from Parts (2) and (3). Indeed when g(a) # 0, we

have
(D w=(r2) @=r@-G)@+1@-(;) @




5.9 Theorem: (Chain Rule) Let F' be a subfield of R, let A,B C F, let f: A — F, let
g:B— Fandleth =gof:C — F where C = AN f~Y(B). Let a € C be a limit
point of C' (hence also of A) and let b = f(a) € B be a limit point of B. Suppose that f
is differentiable at a and g is differentiable at b. Then h is differentiable at a with

W(a) =g (f(a) f'(a).
Proof: We shall use the e-§ formulation of the derivative from Theorem 5.3. Note first
that for x € C and y = f(z) € B we have

|7(z) — h(a) = g'(f(a))f'(a)(z — a)|

l9(f(x)) — g(f(a)) — ¢ (f(a))f (a)(z — a)|
= |g(y) —g(b) —g'(b) f'(a)(z — a)|
= |g(y) — g(b) — g'(B)(y — b) + ' (b)(y — b) — ¢'(b) f'(a) (z — a)]
<|g(y) —g(b) —g'0)(y = )| + g’ B ly = b — f'(a)(z — a)]
= |g(y) — g(b) — g'(b)(y — b)| + |g' ()] | f(2) — f(a) — f'(a)(z — a)]

and also
ly = bl = [f(2) = f(a)] = |f(2) = fa) — f'(a)(z — a) + f'(a)(z — a)|
< |f(2) = f(a) = f'(a)(@ = a)| + | f(a)] |z - al.
Let € > 0. Since g is differentiable at b, we can choose dy > 0 so that
[y — bl < 6o = |9(y) — 9(0) — ' (D) (y = D)| < s Frayyy v — bl-
Since f is continuous at a, we can choose d; so that
[z —a| <61 = [f(z) = fla)] < do = [y — b] < do.
Since f is differentiable at a we can choose d2 > 0 and d3 > 0 so that
2~ < 82 = |f(2) - f(a) - f'(@)(x — )| < | — a] and
2 —al < 85 — |f(2) — £(a) - F(@)(x - )| < 5=Srr-
Let § = min{dy, d2,d3}. Let z € C and let y = f(z) € B. Then when |z — a| < § we have
|h(2) = h(a) — g'(f(a)f'(a)(z — a)
< lg(y) — g(b) = g’ (0)(y = O)| + 19’ (®)| | f(z) — f(a) = f'(a)(z — a)]
< sarrrran v — o1+ A+ 19 0)) - sarrmn v — al
< sy (17@) = 7(@) = F@)@ — )| + (@) |x — al) + § |z —a

< s (o —al + 1 @l lz —al) + § o - a
=S|z —al+ S|z —al =€z —al
Thus h is differentiable at a with h'(a) = ¢'(f(a))f’(a), as required.

5.10 Theorem: Let F be a subfield of R, let A C F and let f : A — F. Then f is
monotonic if and only if f has the property that for all a,b,c € A, if b lies between a and
c then f(b) lies between f(a) and f(c).

Proof: The proof is left as an exercise.



5.11 Theorem: (The Inverse Function Theorem) Let I be an interval in R, let f : I — R
and let J = f(I).

(1) If f is continuous then its range J = f(I) is an interval in R.

(2) If f is injective and continuous then f is strictly monotonic.

(3) If f : I — J is strictly monotonic, then so is its inverse g : J — I.
(4) If f is bijective and continuous then its inverse g is continuous.

(5) If f is bijective and continuous, and f is differentiable at a with f’(a) # 0, then its

inverse g is differentiable at b = f(a) with ¢'(b) = ﬁ

Proof: Suppose that f : I — R is continuous. If f is the empty function or if f is constant,
then J is a degenerate interval. Suppose that J contains at least two points. Let u,v € J
and let y € R with v < y < v. Since J = f(I) we can choose a,b € I with f(a) = v and
f(b) = wv. Since f(a) = u # v = f(b) we have a # b. Since y lies between f(a) = u and
f(b) = v, and since f is continuous, it follows from the Intermediate Value Theorem that
we can choose x between a and b with f(z) = y. Since I is an interval in R, it has the
intermediate value property, and so we have x € I. Since z € [ and y = f(x) we have
y € f(I) = J. This proves that J has the intermediate value property, and so J is an
interval, as required. This proves Part (1).

Suppose that f is injective and continuous. Let a,b,c € I with a < b < c¢. Since f
is injective and a # ¢, we have f(a) # f(c). We claim that f(b) lies between f(a) and
f(c). Consider the case that f(a) < f(c) (the case that f(a) > f(c) is similar). Suppose,
for a contradiction, that f(b) > f(c). Note that since f is injective and b # ¢ we have
f(b) # f(c) and so f(b) > f(c). Choose y with f(c) < y < f(b). Since f is continuous
on [a,b] and on [b, ], by the Intermediate Value Theorem, we can choose z1 € [a,b] and
x9 € [b,c] with f(z1) = y = f(x2). Since y # f(b) we cannot have 1 = b or z2 € b so
we have x1 < b < xo with f(z1) = f(x2), which contradicts the fact that f is injective.
Thus we cannot have f(b) > f(c) and so we have f(b) < f(c). A similar argument by
contradiction shows that we cannot have f(b) < f(a) and so we have f(a) < f(b) < f(c),
and so f(b) lies between f(a) and f(c) as claimed. We have proven that for all a,b,c € I
with a < b < ¢, f(b) lies between f(a) and f(c). It follows from the above theorem that f
is monotonic (hence strictly monotonic since it is injective). This proves Part (2).

To prove Part (3), suppose that f : I — J is strictly monotonic and let g : J — I
be the inverse of f. Suppose that f is strictly increasing. Let u,v € J = f(I) with
u < v. Let a = g(u) and b = g(v) so we have v = f(a) and v = f(b). Since f is
strictly increasing, we must have a < b (since a = b = f(a) = f(b) = u = v and
a>b= f(a) > f(b) = u > v). Thus g(u) = a < b = g(v) and so g is strictly
increasing. A similar argument shows that if f is strictly decreasing then so is g.

Part (4) follows from Part (3) by the Monotone Surjective Functions Theorem.

To prove Part (5), suppose that f is bijective and continuous and that f is differen-
tiable at a with f’(a) # 0. By Part (4), we know that ¢ is continuous at b = f(a), and so
as y — b in J we have g(y) — ¢g(b) in I, and so for x = g(y) we have

9(y)—gd) _  x—a 1 b
y=b @) - fla)  I@=I@ T fia)

as y — b.



5.12 Theorem: (Derivatives of the Basic Elementary Functions) The basic elementary
functions have the following derivatives.

(1) (z*) = az®! where a € R and x € R is such that ! is defined,
(2) (a®) =1Ina-a® where a > 0 and x € R and

log,z) = -1 where 0 < a # 1 and z > 0, and in particular
a Ina =«
(e*) =e” forall z € R and (Inz) = 1 for all z > 0,
(3) (sinx)’ = cosx and (cosx) = —sinz for all x € R, and
(tanz)’ = sec® z and (secz) =secz tanz for all x € R with x # § + km,k € Z,
(cotz)’ = —csc?x and (cscx)' = —cotx cscx for all v € R with x # 7 + km, k € Z,
(4) (sin~' )" = ﬁ and (cos™! x)' = ﬁ%lmz for |x| < 1,
(sec™ta) = ﬁ and (csc™1x) = m\/;—;i—l for |z| > 1, and
(tan=lx) = ﬁ and (cot™1x) = ﬁ for all x € R.

Proof: First we prove Part (1) in the case that a € Q. When n € Z* and f(z) = 2" we
have

fw) = fl@)  ur—a"  (u—2)(ur 4 un 2 a3 4 42

Uu—2x uU—2x U—x
_ - n—1 n—2 n—3_2 n—1 n—1
=u +u T+ u x4+ —nT as u — .

This shows that (z")’ = na"! for all x € R when n € ZT. By the Reciprocal Rule, for
x # 0 we have

(27")" = (:1:_” (xm)? x2n

The function g(z) = /™ is the inverse of the function f(z) = z™ (when n is odd, z'/™
is defined for all z € R, and when n is even, /™ is defined only for z > 0). Since
f(x) = (2™) =nz"! we have f'(z) = 0 when z = 0. By the Inverse Function Theorem,
when z # 0 we have

(@) = (@) = 7 : : 1

T Flg@)  ng@r @yt ik

Finally, when n € Z" and k € Z with ged(k,n) = 1, by the Chain Rule we have

(I’k/n)/ = ((I’l/n)k)/ = k(xl/n)k_l(l'l/n)/ = kx% L .fCliTn = k .CE%_]'.

We have proven Part (1) in the case that a € Q.
Next we shall prove Part (2). For f(x) = a” where a > 0, we have

fx+h)—flx) o —a® a"a"—a” _ e ah —1

h h h T h

and so we have f'(z) = a’”(}lbirrb Lf) provided that the limit exists and is finite. For
—

g(x) = log, x, where 0 < a # 1 and = > 0, we have

= L.log, (142)"/"

g(x+h) —g(x) log,(x+h)—log,z log, (L) log, (1+2)
h - h - h N z-



lim (1 + %)m/ h) provided the limit exists and is finite.

and so we have ¢'(z) = 1 -log, (h L
%

By letting u = % we see that

lim (142" = lim (1+1)" =

h—0t U— 00

h

as you showed in Assignment 5. By letting u = —7, a similar argument shows that

lim (1+2)"" = lim (1-1)"=e.
Jim (14 2)77 = lim (1-3) " =e
Thus the derivative ¢'(x) does exist and we have
(log, z)" = ¢'(z) = < log, <}£1£I%) (1+ %)m/h) =2llog,e=1.pe— 1|
Since g(z) = log, x is differentiable with ¢’(z) # 0 it follows from the Inverse Function
Theorem that f(z) = a” is differentiable with derivative
1 1

(a®) = f'(z) = @) = f(x)llna =Ina- f(z) =Ina-a”.

Now we return to the proof of Part (1), in the case that a ¢ Q. When a > 0 we have
a® = e for all > 0 and so by the Chain Rule

/
(xa)/ — (ealnx) — ealnx(alnx)/ = 7%. % — axa—l7

I may finish the proof later.

5.13 Definition: Let F be a subfield of R, let A C F,let f: A— F and let a € A. We
say that f has a local maximum value at a when

36>0 Vo€ A <|x —a| <8 = f(z) < f(a)).
Similarly, we say that f has a local minimum value at a when
36>0 Vo e A <|a: A <8 = f(z) > f(a)).

5.14 Theorem: (Fermat’s Theorem) Let F' be a subfield of R, let AC F, let f: A — F.
Suppose that a € A is a limit point of A, both from above and from below. Suppose that
f is differentiable at a and that f has a local maximum or minimum value at a. Then

F'(a) = 0.

Proof: We suppose that f has a local maximum value at a (the case that f has a local
minimum value at a is similar). Choose § > 0 so that |z —a| < 6 = f(z) < f(a). For
x € Awitha <z <a+d,since z>a and f(x) > f(a) we have W > 0, and so

) — i T@) =S

z—at r—a

>0

by the Comparison Theorem. Similarly, for z € A with a — 6 < z < a, since x < a and
f(z) > f(a) we have W < 0, and so

f@) = fla)

f(a) = lim

r—a~ r—a

0.



5.15 Theorem: (Mean Value Theorems) Let a,b € R with a < b.

(1) (Rolle’s Theorem) If f : [a,b] — R differentiable in (a,b) and continuous at a and b
with f(a) =0 = f(b) then there exists a point ¢ € (a,b) such that f'(c) = 0.

(2) (The Mean Value Theorem) If f : [a,b] — R is differentiable in (a,b) and continuous
at a and b then there exists a point ¢ € (a,b) with

R RUES (0)

(3) (Cauchy’s Mean Value Theorem) If f,g : [a,b] — R are differentiable in (a,b) and
continuous at a and b, then there exists a point ¢ € (a,b) such that

F'(e)(g(b) = g(a)) = ¢'(c)(f(b) — f(a)).

Proof: To Prove Rolle’s Theorem, let f : [a,b] — R be differentiable in (a, b) and contin-
uous at a and b with f(a) = 0 = f(b). If f is constant, then f/'(z) = 0 for all = € [a,b],
so we can choose any ¢ € (a,b) and we have f’(¢) = 0. Suppose that f is not constant.
Either f(z) > 0 for some z € (a,b) or f(x) < 0 for some = € (a,b). Suppose that f(z) >0
for some x € (a,b) (the case that f(z) < 0 for some x € (a,b) is similar). By the Extreme
Value Theorem, f attains its maximum value at some point, say ¢ € [a, b]. Since f(z) > 0
for some x € (a,b), we must have f(c) > 0. Since f(a) = f(b) = 0 and f(c) > 0, we have
¢ € (a,b). By Fermat’s Theorem, we have f’(¢) = 0. This completes the proof of Rolle’s
Theorem.

Now we use Rolle’s Theorem to prove the Mean Value Theorem. Suppose that f :
[a,b] — R is differentiable in (a,b) and continuous at a and b. Let g(x) = f(z) — f(a) —
w (x — a). Then g is differentiable in (a,b) with ¢'(x) = f'(z) — W and g is
continuous at a and b with g(a) = 0 = g(b). By Rolle’s Theorem, we can choose ¢ € (a,b)

so that f/(¢) =0, and then ¢'(c) = W, as required.

Finally, we use the Mean Value Theorem to Prove Cauchy’s Mean Value Theorem.

Suppose that f,g : [a,b] — R are both differentiable in (a,b) and continuous at a and

b. Let h(z) = f(z)(9(b) — g(a)) — g(x)(f(b) — f(a)). Then h is differentiable in (a,b)

and continuous at a and b. with h(a) = f(a)g(b) — g(a)f(b) = h(b). By the Mean Value

h(b)—h(a)
b

— = 0, and then we have

Theorem, we can choose ¢ € (a,b) so that h/(c) =
7€) (9(b) — 9(@) — 9(0) (/) — f(a)) = 0, as required.

5.16 Corollary: Let a,b € R with a < b. Let f : [a,b] — R. Suppose that f is
differentiable in (a,b) and continuous at a and b.

(1) If f'(x) > 0 for all = € (a,b) then f is increasing on |a, b].

(2) If f'(x) > 0 for all = € (a,b) then f is strictly increasing on [a, b].

(3) If f'(x) <O for all z € (a,b) then f is decreasing on [a, b].

(4) If f'(x) < 0 for all x € (a,b) then f is strictly decreasing on [a,b].

(5) if f'(z) =0 for all x € (a,b) then f is constant on [a,b].

(6) If g : [a,b] — R is continuous at a and b and differentiable in (a,b) with ¢'(z) = f'(x)
for all x € (a,b), then for some ¢ € R we have g(x) = f(x) + ¢ for all x € (a,b).

Proof: We prove Part (1) (the proofs of the other parts are similar. Suppose that f/(z) >0
for all z € (a,b). Let a < x <y < b. Choose ¢ € (z,y) so that f'(c) = W Then
fly) = f(x) = f'(¢)(y —x) > 0 and so f(y) > f(x). Thus f is increasing on [a, b)].



5.17 Corollary: (The Second Derivative Test) Let I be an interval in R, let f : I — R
and let a € I. Suppose that f is differentiable in I with f'(a) = 0.

(1) If f"(a) > 0 then f has a local minimum at a.
(2) If f"(a) < O then f has a local maximum at a.

Proof: The proof is left as an exercise.

5.18 Theorem: (I’'Hopital’s Rule) Let I be a non degenerate interval in R. Let a € I, or
let a be an endpoint of I. Let f,g: 1\ {a} — R. Suppose that f and g are differentiable
in I\ {a} with ¢'(x) # 0 for all x € I \ {a}. Suppose either that lim f(z) =0 = li_r>n g(x)

Tr—a €T a
/(@) f(z)

or that lim g(x) = +oo. Suppose that lim ——= =u € R. Then lim =~ =u
T—a r—a g (I) r—a g(x)

Similar results hold for limits x — a™, x — a~,  — 00 and x — —o0.

Proof: We give the proof for x — a™ (assuming that a is a limit point of I from the right)
and that v € R. Suppose first that lim+ f(z)=0= lim+ g(z). Choose b € I with a < b.
r—ra

r—a
Extend the maps f and ¢ to obtain maps f,g : [a,b] — R by defining f(a) = 0 = g(b).
Note that f and g are continuous at a since lim+ f(x) =0 and lim+ g(z) = 0. Let (z)
rz—a Tz—a
be a sequence in (a,b| with x — a. For each index k, by Cauchy’s Mean Value Theorem

we can choose ¢ € (a, ;) so that f'(ck)(g(zr) — g(a)) = ¢'(ck)(f(zr) — f(a)). Since

f(a) =0 = g(a), this simplifies to f'(cx)g(zxr) = ¢'(ck) f(xr) and so we have J;g:g = gigi:;

Since a < ¢ < xp and xx — a, we have ¢ — a by the Squeeze Theorem. Since

/ /
f/(x) = uw and ¢y — a, we have Law) — flew) by the Sequential Characterization

z—at ¢'(x) g9(xr) — g’(ck)
of Limits. We have shown that for every sequence (zj) in (a,b] with x; — a we have
RACIT RN u, and it follows that lim M = wu by the Sequential Characterization of
9(zk) r—at g(.]?)
Limits.

Now suppose that lim g(x) = co. Since lim g(z) = oo we can choose b € I with

z—a*t z—a*t

b > a so that g(z) > 0 for all x € (a,b]. Let (zx) be a sequence in (a,b] with xx — a. For
each pair of indices k, [, by Cauchy’s Mean Value Theorem we can choose cx; € (a, k) so

that f'(ci)(9(zx) — 9(21)) = g'(cxt) (f(zx) — f(21)). Divide both sides by ¢'(cki)g(w1) to
get

so we have

— + _
g(x)  g(ew)  gl@)  g'(er) g(a)
/ /
Let € > 0. Since lim f/($> = u we can choose § > 0 so that |[r—a| < § = (@) —u‘ < £
z—a g (x) g’ (x)

Since 7 — a we can choose m € Z* so k > m = |z — a|] < §. Note that when k,l > m,

g:gg:;g —u‘ < min{l, g} Fix

[ (er) g(zp)
g’ (cr1) g(z1)

f'(ext) g(wk)
g'(cr) g(xr) ‘ =€

since ¢y lies between xy, and z; we also have |cx —a| < d so

€
Sgand

k > m. Choose [ large enough so that ‘—J;((Z’;))

‘ flem)
~ g (er)

< £. Then we have

e < o 1]
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