MATH 147 Calculus 1, Lecture Notes by Stephen New

Chapter 3: Sequences

3.1 Definition: For p € Z, let Z>, = {k € Z|k > p}. A sequence in a set A is a function
of the form z : Z>, — A for some p € Z. Given a sequence z : Z>, — A, the k™ term of
the sequence is the element z; = z(k) € A, and we denote the sequence z by

(@k)e>p = (Tklk = p) = (Tp, Tpt1, Tpy2, )
Note that the range of the sequence (zy)r>p is the set {x;}r>p = {zk|k > p}.

3.2 Definition: Let F' be an ordered field and let (x)r>, be a sequence in F. For a € F
we say that the sequence (zy)i>, converges to a (or that the limit of (x4)r>, is equal

to a), and we write z — a (as k — 00), or we write klim T = a, when
— 00

VO<e€F3ImeZVkeZsy (k>m= |z, —al <e).

We say that the sequence (zj)r>, converges (in F') when there exists a € F' such that
(k) k>p converges to a. We say that the sequence (x)r>, diverges (in F') when it does
not converge (to any a € F'). We say that (zy)r>, diverges to infinity, or that the
limit of (x)r>p is equal to infinity, and we write x; — oo (as k — o0), or we write
lim xp = oo, when

k—o0

Vre FAme ZVk cZ>, (kzm:>xk2r).

Similarly we say that (zj)r>, diverges to —oo, or that the limit of (xy)r>, is equal to

negative infinity, and we write x;, — —oo (as k — 00), or we write lim z; = —oo when
k—o0

Vre RIm e ZVk € Z>, (kJZm:>xk§r).

3.3 Example: Let (xry)r>0 be the sequence in R given by z; = (_k—z,)k for £ > 0. Show
that klim xr = 0.
—00

Solution: Note that for k& > 2 we have

== @@ (2Rt i=t

Given € € R with € > 0, we can choose m € Z>, with m > % and then for all &k > m we

have |z — 0| = |z| < % < % < e. Thus klim x, = 0, by the definition of the limit.
—00

3.4 Example: Let (a)r>0 be the Fibonacci sequence in R, which is defined recursively
by ap =0, a3 =1 and by ax = ax_1 + ax_o for k > 2. Show that klim ap = 00.
— 00

Solution: We have ag = 0, a1 = 1, as = 1 and a3 = 2. Note that ap > k — 1 when
k € {0,1,2,3}. Let n > 4 and suppose, inductively, that a > k — 1 for all k£ € Z with
0<k<n. Thena, =ap—1+a,-2>Mn—-2)+(n-3)=n+n—-5>n+4-5=n—1. By
the Strong Principle of Induction, we have a,, > n — 1 for all n > 0. Given r € R we can
choose m € Z>o with m > r + 1, and then for all k > m we have ap, > k—1>m —1>r.
Thus klim ar = oo by the definition of the limit.

— 00



3.5 Example: Let x; = (—1)* for k > 0. Show that (zj)x>0 diverges.
Solution: Suppose, for a contradiction, that (xx)r>o converges and let a = klim . By
- —00

taking € = % in the definition of the limit, we can choose m € Z so the for all £k € N,
if & > m then |z —a|] < % Choose k € N with 2k > m. Since |zgp — a] < % and
Tor, = (—1)?% = 1, we have |1 —a| < 1 so that 3 < a < 3. Since |zox11 — a] < 5 and
Topt1 = (—1)%T! = —1, we also have | — 1 — a| < 1 which implies that —2 < a < —3

5.
But then we have a < —% and a > %, which is not possible.

3.6 Theorem: (Independence of the Limit on the Initial Terms) Let (xy)1>, be a sequence
in an ordered field F'.

(1) If ¢ > p and yy, = z, for all k > q, then (zj)r>, converges if and only if (yr)r>q

converges, and in this case lim xp = lim yy.
k—o00 k— o0

(2) If | > 0 and y,, = xp4q for all k > p, then (zy)r>, converges if and only if (yi)r>p

converges, and in this case lim xj = lim yy.
k—oo k—o0

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. Let ¢ > p and let
yr = x for k > ¢q. Suppose (zj)r>, converges and let @ = lim x;. Let e > 0. Choose

k— o0
m € Z so that for all k € Z>,, if k > m then |z, —a| < e. Let k € Z>, with k& > m.
Since ¢ > p we also have k € Z>,, and so |yx — a| = |z — a| < e. Thus (yx)r>4 converges
with klirn yr = a. Conversely, suppose that (yi)r>, converges and let a = klim yr. Let
—00 o —00

e > 0. Choose my € Z so that for all k € Z>,, if & > m; then |yy — a| < e. Choose
m = max{mi,q}. Let k € Z>, with k > m. Since k > m, we have k > g and k > m; and

so |z —a| = |yr — a| < e. Thus (zx)r>p converges with klim Tk = a.
- —00

3.7 Remark: Because of the above theorem, we often denote the sequence (xy)x>, simply
as (rx) (omitting the initial index p from our notation).

3.8 Theorem: (Uniqueness of the Limit) Let (zy) be a sequence in an ordered field F.
If (x},) has a limit (finite or infinite) then the limit is unique.

Proof: Suppose, for a contradiction, that x; — oo and zp — —o0. Since x; — o0 we can
choose my1 € Z so that kK > m; — x, > 1. Since x;, — —oo we can choose my € Z so
that £ > mg = z3, < —1. Choose any k € Z>, with K > m; and k > my. Then x;, > 1
and x; < —1, which is not possible.

Suppose, for a contradiction, that x; — oo and xp — a € F. Since xp — a we can
choose my € Z so that k > m; = |z, — a|] < 1. Since xp — oo we can choose mq € Z
so that k > my = x;, > a + 2. Choose any k € Z>, with k > m; and k > mo. Then
we have |z —a| < 1 so that x < a + 1 and we have z; > a + 2, which is not possible.
Similarly, it is not possible to have z;, — —oc and z, — a € F.

Finally suppose, for a contradiction, that xx — a and xr — b where a,‘b elF with

a—b

a # b. Since x}, — a we can choose m; € Z so that k > m; = [z, —a| < =5, Since

xr — b we can choose my € Z so that k > my = |z, — b] < @. Choose any k € Z>,,
with & > my and k > my. Then we have |z} —a| < Z’_T“ and |z — b < bg“
the Triangle Inequality, we have

and so, using

la —b| = |a — x5 + 2 — b < |zg, — a] + |y, — b] < L8 o2t g |,

which is not possible.



3.9 Theorem: (Basic Limits) In any ordered field F, for a € F' we have
lim a=a, lim k=00 and lim — =0.
k— o0 k— o0 k—oo k

Proof: The proof is left as an exercise.

3.10 Theorem: (Operations on Limits) Let (zx) and (yi) be sequences in an ordered
field F' and let ¢ € F. Suppose that (z)) and (y) both converge with x) — a and y;, — b.
Then

(1) (cxy) converges with cxj) — ca,

(2) (xk + yr) converges with (xy + yx) — a + b,

(3) (xx — yx) converges with (xy — yx) — a — b,

(4) (zryy) converges with xy, — ab, and

(5) if b # 0 then (xy/yx) converges with xy/y, — a/b.

Proof: We prove Parts (4) and (5) leaving the proofs of the other parts as an exercise.
First we prove Part (4). Note that for all k£ we have

|zpyr — ab| = |xkyr — zb+ xb — ab| < |xpyr — xxb| + |xkb — ab| = |xk| |y — b + |||z — al.

Since x, — a we can choose my € Z so that £ > m; = |zx — a| < 1 and we can choose
my € Z so that k > mg = |z, — a| < Since yr — b we can choose mgz € Z so
€
thatk2m3:> |yk—b| S m.
have |z —a| <1, |z —a| < s and |xr — b| <

D
Let m = max{mj, mo, ms} and let kK > m. Then we
Siany: Since |z, — a| < 1, we have
|zk| = |z —a+a| < |z —al+ |a] <1+ |a|l. By our above calculation (where we found a

bound for |zxyr — ab|) we have
|[wryr — abl < [zflyr — 0] + [bl|zx — af < (1 + |af)|yr — 0] + (1 + [b])]zx — a
< (1+ |a!)m +(1+ |b])m =e.
Thus we have xxyr — ab, by the definition of the limit.

To prove Part (5), suppose that b # 0. Since yr — b # 0, we can choose my € Z so
that that £ > m; = |yx — b| < %. Then for k& > m; we have

b
|b|:|b_yk+yk|§|b_yk|+|yk|§%+|yk|

so that
el = ol = 5 = 5 > 0.

In particular, we remark that when k > m; we have y; # 0 so that yik is defined. Note
that for all £k > m; we have

1 1

b=yl -yl 2
= < = —
lyel [0l = LBl (b

2
Let € > 0. Choose my € Z so that k > mo = |y — b| < \blTe' Let m = max{m1, mso}.
2 2
For k£ > m we have k > my and k > ms and so ]yk\z%&md ]yk—blngeandso
1 1

2 2
y_k_E‘SW"yk_b‘SW' 5

. . L l . 3 T 1 . L f— . l =
This proves that klingo oo = 3~ Using Part (4), we have kli)rglo = kli}ngo (zk yk) a-y

SIS}



3.11 Example: Let z; = B4 gk > 0. Find lim xg.

2k21+k+3 Pt
: 2 (1) 1402 1 :
Solution: We have z, = & tL_ — ko — 0" — 1 where we used the Basic
2RTFRF2 T 24143.(1) 24+0+30 2

Limits 1 —+ 1, 2 — 2 and % — 0 together with Operations on Limits.

3.12 Definition: The above theorem can be extended to include many situations involving
infinite limits. To deal with these cases, given an ordered field F', we define the extended
ordered field F' to be the set

F = FU{—00,00}.

We extend the order relation < on F to an order relation on F' by defining —co < oo and
—o0 < a and a < oo for all a € F. We partially extend the operations + and - to F'; for
a € F we define

t+oo=00,0+a=00, (—0)+ (-00)=—-00, (—0)+a,
00 - 00 =00, (00)(=00) = =00, (—00)(—00) =00,
o ifa >0 —o0 if a > 0,
00 -a= and (—o0)(a) =
—0ifa <0 oo if a < 0,

but other values, including co + (—oc), 0o - 0 and —ooc - 0 are left undefined in F. In a
similar way, we partially extend the inverse operations — and + to F. For example, for
a € F we define

00— (—00) =00, —00—00 = —00, 00—a = 00, —00—a = —00, A—00 = —00, a—(—00) = 00,
a 050 oo if a >0 —00 —0ifa>0
— =0, — = and — =
o0 a —0ifa <0 a oo ifa <0

with other values, including co — oo, 22 and G, left undefined. The expressions which are
left undefined in F, including

0 X > @
00 — 00, 00 - —, =, =
Y Y Y O 70

are known as indeterminate forms.

3.13 Theorem: (Extended Operations on Limits) Let (xj) and (yi) be sequences in F.

~

Suppose that kli)ngo rr = u and kli)ngo Yyr = v where u,v € F'.
(1) if u + v is defined in F' then klin(r)lo(a:k +yr) =u—+w,
(2) if u — v is defined in F' then klingo(xk —Yp) =u—v,
(3) if u - v is defined in F' then klgréo(:ck Yk) = u-v, and

(4) if u/v is defined in F' then klim (zk/yx) = u/v.
—00

Proof: The proof is left as an exercise.



3.14 Theorem: (Monotonic Surjective Functions) Let I and J be intervals in an ordered
field F. Suppose f : I — J is increasing and surjective. Let (xy) be a sequence in I. Then

(1) If v, — a € I then f(zx) — f(a) € J,

(2) if x, — w where u € F U {oo} is the right endpoint of I, then f(xy) — v where
v € FU{oo} is the right endpoint of J, and

(3) if x; — w where u € F U {—oo} is the left endpoint of I then f(xy) — v where
v € FU{—o0} is the left endpoint of J.

Analogous results hold when f : I — J is decreasing and surjective.

Proof: We prove Part (1). Let a € I, suppose x; — a, and let b = f(a) € J. Note
that since f is surjective, it has a right inverse. Let g : J — I be a right inverse of f.
Let ¢ > 0. We consider several cases, depending on whether or not b is an endpoint of
J. Suppose first that b is not an endpoint of J. Choose ¢y with 0 < ¢y < € so that
b — €0,b+ €9] C J. Note that since f is increasing we have g(b — ¢y) < a < g(b+ €)
(since g(b —e0) > a = b—¢ = f(g(b—€)) < f(a) = b which is impossible, and
a>gb+e) = b= f(a) > f(g(b+e)) = b+ e which is impossible). Since z; — a we
can choose m € Z so that k > m = g(b —¢y) < xx < g(b+ €p). Then for k > m we have
b—eo = f(g9(b—eo)) < flzx) < f(9(b+¢0)) = g+ €o. Thus f(ax) = b= f(a).

Next consider the case that b is equal to one (but not both) of the endpoints of J, say
b is the right endpoint of J, and say the left endpoint of J is smaller than b. In this case,
we choose €y with 0 < ¢y < € so that [b — eg,b] C J. Note that since f is increasing we
have g(b — €p) < a. Choose m € Z so that k > m = g(b — €p) < k. Then for k > m,
since f is increasing we have b — €y < f(x). Since b is the right endpoint of J, it follows
that b —ep < f(xg) < b for all k > m, and so f(zx) — b= f(a).

Finally, note that if b is equal to both the left and right endpoints of J, then we have
J ={b} and so f(z) = b for all k, and hence f(zr) — b.

3.15 Corollary: (Basic Elementary Functions Acting on Limits) Let (xy) be a sequence
in R and let b € R. Then
(1) if v, — a > 0 then xx° — a°,
o0 ifb>0
0ifb<0,
(2) if x, — a and b > 0 then b™* — b%,

if ), — oo then lim zx° =
k— o0

) ) oo ifb>1
if xp — oo and b > 0 then lim b** = )
k—oo 0if0<b<1,
(3) if x, — a > 0 and b > 0 then log, z1, — log, a,
) ) oo ifb>1
if x;, — oo and b > 0 then lim x, = .
k—o0 —0 if0<b<1

(4) if zj; — a then sinz, — sina and cosxy — cosa
if 1)y — a, where a # 5 + 2wt with t € Z, then tanz), — tana
(5) if zx — a € [~1,1] then sin™* xj, — sin™*
if x, — a then tan™'z;, — tan"'a
if x;, — oo then tan™' z; — s
if z), — —oo then tan™ !z — -5

a and cos 'z — cos"la

Proof: All of these follow immediately from the previous theorem, except for the first
statement in Part (4) (some care is needed when sina = £1 or cosa = £1).

5



3.16 Example: Let z), = V‘(Z’i; for £ > 0. Find lim xj.

k— o0
VP T _ V3tEe _, V/3F0

= /3 where we used Basic Limits,

Solution: We have zj, = ¥275— = N 1120

Operations on Limits, and Functions Actlng on Limits (specifically, we used Part (1) of
Corollary 3.15 with b = 1).

3.17 Example: Let z; = % for £ > 0. Find klim Tp.
— 00
1
Solution: We have z, = 5tk — i3 p1/3 048 o 100 = —o0

ork—k2 %/;%2*%*1 J0+0-1
where we used Basic Limits, Extended Operations, and Functions Acting on Limits.

3.18 Example: Let x; = sin ! (k' —VEk2+ k) for £k > 0. Find klim Th.
—00

- _ i3 e i) R N | -1 1
Solution: Note that k — Vk* +k = FVIETE  RRVERTE 14y i5T — g0 2
and so zj = sin™! (k —Vk?2 — k:) — s sin! ( — %) =—%-

3.19 Theorem: (Comparison) Let (zy) and (y
Suppose that xj < yi for all k. Then

k) be sequences in an ordered field F.

(1) if z;; — a and yi — b then a < b,
(2) if xy, — oo then y, — o0, and
(3) if y, — —oo then x}, — —oo.

Proof: We prove Part (1). Suppose that xx — a and y, — b. Suppose for a contradiction,

that a > b. Choose m; € Z so that k > m; = |z — a| < 222. Choose my € Z so that
k>me = |yy — b < 222, Let k = max{ml,mg} Since ]xk - a| < a2b < 22b we have
xk>a—“7_b:a+b Smce|yk—b|<—< ,Wehaveyk<b—i— S :“T“’. This is

not possible since x; < yp.
3.20 Example: Let 2, = (2 +sink)Ink for k > 1. Find lim Tk

Solution: For all £ > 1 we have sink > —1 so ( +sink) > 5 and hence x, > 5 lnk:
Since xj, > % Ink for all £ > 1 and % Ink — % o0 = 00, it follovvs that zp — oo by the
Comparison Theorem.

3.21 Theorem: (Squeeze) Let (xy), (yx) and (zj) be sequences in an ordered field F.
(1) If z, <y < 2y, for all k and z — a and z; — a then yi — a.

(2) If |z| < yi for all k and y,, — 0 then xj — 0.

Proof: We prove Part (1). Suppose that xp < yi < zj for all k, and suppose that z; — a
and zp — a. Let € > 0. Choose my € Z so that k > m; = |z}, — a| < ¢, choose my € Z
so that &k > my = |z — a| < € and let m = max{mi, m2}. Then for k > m we have
a—e<xp<yr<zr <a+eandso |yy —al <e Thus yp — a, as required.

. _ k+tan"lk . :
3.22 Example: Let xz; = m for k> 1. Find klglgo Tk-

Solution: For all £ > 1 we have —3 < tan~ 1 k < 5 and —1 <sink <1 and so
k-5 < k+tan~ 'k < k+ 35

2k+1 ~ 2k+sink — 2k—1"
k+2

k+tan™ 1k 1
2k+sin k -

. . k—
As in previous examples, we have 7,1 and — = , and so zp =

2k+1
by the Squeeze Theorem.



3.23 Definition: Let (zj) be a sequence in an ordered set X. We say that the sequence
(k) is bounded above by b € X when x;, < b for all k. We say that the sequence (z) is
bounded below by b € X when b < zy, for all k. We say (xj) is bounded above when
it is bounded above by some element b € X, we say that (x) is bounded below when it
is bounded below by some b € X, and we say that (z;) is bounded when it is bounded
above and bounded below.

3.24 Definition: Let (zj) be a sequence in an ordered field F'. We say that (xj) is
increasing (for k > p) when for all k,1 € Z>,, if k <[ then x; < x;. We say that (xy) is
strictly increasing (for k£ > p) when for all k,l € Z>,, if k£ <[ then x;, < x;. Similarly,
we say that (vi) is decreasing when for all k,l € Z>,, if £ <[ the z; > z; and we say
that (xy) is strictly decreasing when for all k,l € Z>,, if £ < [ the z; > z;. We say
that (rx) is monotonic when it is either increasing or decreasing.

3.25 Theorem: (Monotonic Convergence) Let (i) be a sequence in R.

(1) Suppose (z}) is increasing. If (xy) is bounded above then xy — sup{xy}, and if (z)
is not bounded above then x; — co.
(2) Suppose () is decreasing. If (xy) is bounded below then xj — inf{xy}, and if (z}) is
not bounded below then xj — —oc.

Proof: We prove Part (1) in the case that (xj)r>, is increasing and bounded above, say
by b € R. Let A = {zx|k > p} (so A is the range of the sequence (xj)). Note that A is
nonempty and bounded above (indeed b is an upper bound for A). By the Completeness
Property of R, A has a supremum in R. Let a = sup{xzy|k > p}. Note that a > x}, for all
k > p and a < b, by the definition of the supremum. Let ¢ > 0. By the Approximation
Property of the supremum, we can choose an index m > p so that the element z,, € A
satisfies a — € < z,,, < a. Since (xy) is increasing, for all k£ > m we have z; > x,,, so we
have a — € < z,,, < x}, < a and hence |z — a| < e. Thus kli)r{)loxk =a <b.

3.26 Example: Let 21 = % and let xx11 =5 — xi for k > 1. Determine whether (xy)
converges, and if so then find the limit.

Solution: Suppose, for now, that (rj) does converge, say x; — a. By Independence of
Converge on Initial Terms, we also have ;41 — a. Using Operations on Limits, we have
a= lim x4+ = lim (5—%) = 5—%. Since a = 5—%, we have a? = 5a—4 or equivalently

k— o0 k—oo k
(a —1)(a — 4) = 0. We have proven that if the sequence converges then its limit must be
equal to 1 or 4.

The first few terms of the sequence are z; = %, To = 2 and x3 = 3. Since the terms
appear to be increasing, we shall try to prove that 1 < x,, < x,41 <4 for all n > 1. This
is true when n = 1. Suppose it is true when n = k. Then we have

1<z <z <d=1>L>_L >l—0 4<_ L < 1 <

T — Tr41 — 4 E— Tkl —

= 1<5- 2 <5—- A <d= 1<y <appp <4

Th+4+1

Thus, by the Principle of Induction, we have 1 < x,, < x,4+1 <4 for all n > 1.

Since x,, < x,41 for all n > 1, the sequence is increasing, and since x,, < 4 for all
n > 1, the sequence is bounded above by 4. By the Monotone Convergence Theorem, the
sequence does converge. By the first paragraph, we know the limit must be either 1 or 4,
and since the sequence starts at x1 = 2 and increases, the limit must be 4.



3.27 Theorem: (The Nested Interval Theorem) Let Iy, 11,15, - be nonempty, closed
bounded intervals in R. Suppose that I 2 Iy D Iy D ---. Then () I # 0.
k=0

Proof: For each k > 1, let I}, = [ay, bk] with ap < bi. For each k, since I, C I;4; we have
ak+1 < ap < by < bgy1. Since ap > apyq for all k, the sequence (ay) is increasing. Since
ar < bp <bg_1 <--- < by for all k, the sequence (ay) is bounded above by b;. Since (ax)
is increasing and bounded above, it converges. Let a = sup{a;} = kll)ngo ay. Similarly, (by)

is decreasing and bounded below by aq, and so it converges. Let b = inf{b;} = klim by
— 00

Fix m > 1. For all £ > m we have a,, < by, < b1 < --- < bg. Since ap < by for all £,
by the Comparison Theorem we have a < b, and so the interval [a, b] is not empty. Since
(ar) is increasing with ap — a, it follows (we leave the proof as an exercise) that ay < a
for all & > 1. Similarly, we have by, > b for all £ > 1 and so [a,b] C [ag,bi] = Ix. Thus
oo oo
[a,b] € () Ir, and so () I # 0.
k=1 k=1
3.28 Definition: Let (z4)r>, be a sequence in a set X Given a strictly increasing function
fiZ>y — Z>,, write k; = f(I) and let y; = xy, for all [ > ¢. Then the sequence (y;);>4 is
called a subsequence of the sequence ()r>p. In other words, a subsequence of (xx)r>p
is a sequence of the form

<qu,xkq+1,xkq+2,---> with p < k?q < kq+1 < k‘q+2 <L el

Given a bijective function f : Z>, — Z>,, write k; = f(l) and let y; = x, for [ > 1. Then
the sequence (y;);>4 is called a rearrangement of the sequence (zy).

3.29 Theorem: Let (xy) be a sequence in an ordered field F. Suppose that x; — a.
Then

(1) every subsequence of (xy) converges to a, and
(2) every rearrangement of (x;) converges to a.

Proof: We shall prove Parts (1) and (2) simultaneously. Let f : Z>, — Z>, be an
injective map. Write k; = f(I) and let y; = xy, for K > [. Let ¢ > 0. Choose m; € Z so
that k > m; = |z — a| < e. Since f is injective, there are only finitely many indices
[ with p < f(I) < my. Choose m € Z with m larger than every such index [. Then for
[ > m we have k; = f(l) > my and so |y; — a| = |xg, —a| <e.

3.30 Theorem: (Bolzano-Weirstrass) Every bounded sequence in R has a convergent
subsequence.

Proof: Let (zj) be a bounded sequence in R. Choose a,b € R with a < xj, for all k£ and
xg < bfor all k. Then we have xj, € [a, ] for all k. We define a sequence of nonempty closed
intervals recursively as follows. Let Iy = [ag, bo] = [a, b]. Note that Iy = [a, “T*'b] U [“TH’, b}.
Let I; = [a1,b1] be equal to one of the two intervals [a, “TH’} and [GTH’, b], chosen in such a
way that there are infinitely many indices k with z € I,. Suppose we have chosen intervals
I; = [a;j,b;] with b; —a; = %(b—a) for 1 < j<mn,suchthat Iy DI DI, D--- D1,
and such that for each index j, there are infinitely many indices k with z;, € I;. Note that
I, = [an,by] = [an, “";b"] U [“";b”,bn]. Let I,,41 be equal to one of the two intervals
[an, %] and [%, bn}, chosen in such a way that there are infinitely many indices k
with x € I,41. In this way, we obtain a sequence (I;);>0 of nonempty closed intervals.
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By the Nested Interval Theorem, I; is not empty. Choose a point ¢ with ¢ € I,, for
=0
every n > 0. ’
We shall now construct a subsequence of (zj) which converges to ¢. Since for each
J = 0 there exist infinitely many indices k with z; € I;, we can construct a subsequence
of (zx) as follows. Choose kg so that x, € Iy, then choose k1 > kg so that zy, € I1, then
choose kg > ki with xy, € I, and so on. In this way, we obtain a subsequence <.rkj) §>0
of (xx) with zy, € I; for all j > 0. We claim that x3, — c as j — oo. Let € > 0 Choose
m € Z so that (b —a) < e. For j > m, since ¢ € [a,b] C [a;,b;] and z, € [a;,b;], it
follows that

|\zk, — c| = max{ay,,c} —min{ay,,c} <bj —a; =57(b—a) < gx(b—a) <e

Thus zg, — ¢ as j — 00, as claimed.

3.31 Definition: Let (ry)r>, be a sequence in an ordered field F.. We say that (zy) is
Cauchy when

Ve >03dm e ZVk,leZs, (k,lzm:>\a:k—xl]§e).

3.32 Theorem: (Cauchy Criterion for Convergence)

(1) For a sequence (xy) in an ordered field F, if (x)) converges then it is Cauchy.
(2) For a sequence (xy) in R, if (xy) is Cauchy then it converges.

Proof: To prove Part (1), let (zx) be a sequence in an ordered field F' and suppose that
r — a. Let € > 0 and choose m € Z so that k > m = |z}, — a] < §. Then for k,1 > m
we h ave

\a:k—:z:l] = \:z;k—a+a—a:l| < \xk—a\+|a—xll < %—i—%:é.

Thus (zy) is Cauchy.

To prove Part (2), let (zx)r>p be a sequence in R and suppose that (xj) is Cauchy.
We claim that (xj) is bounded. Since (zy) is Caucy, we can choose m € Z so that
k,l > m = |z — x;| < 1. In particular, for all & > m we have |z — z,,| < 1 and so
x| = |k — T + Ti| < |2k — Tin| + || < 1+ |2|. It follows that (xy) is bounded by
b= maX{|xp|7 |mp+1|7 B |$m,1| ; 1+ |:L‘m|}

Because () is bounded, it has a convergent subsequence, by the Bolzano Weierstrass

Theorem. Let (xy;) be a convergent subsequence of (x;) and let a = lim z,. We claim
J—0o0

that x; — a. Let € > 0. Since (z}) is Cauchy, we can choose m € Z so that k,l > m =
lzx — x| < §. Since xp;, — a we can choose mg € Z so that j > mg = [z, —a| < 5.
Choose an index j > mg so that k; > m. Then for all kK > m we have

[z —a| = |zp — 2p, + a2k, —a| < |vp — k| + ok, —al| < S+ S =€

Thus xp — a, as claimed.



