
MATH 147 Calculus 1, Lecture Notes by Stephen New

Chapter 3: Sequences

3.1 Definition: For p ∈ Z, let Z≥p = {k ∈ Z|k ≥ p}. A sequence in a set A is a function
of the form x : Z≥p → A for some p ∈ Z. Given a sequence x : Z≥p → A, the kth term of
the sequence is the element xk = x(k) ∈ A, and we denote the sequence x by

〈xk〉k≥p = 〈xk|k ≥ p〉 = 〈xp, xp+1, xp+2, · · ·〉.

Note that the range of the sequence 〈xk〉k≥p is the set {xk}k≥p = {xk|k ≥ p}.

3.2 Definition: Let F be an ordered field and let 〈xk〉k≥p be a sequence in F . For a ∈ F
we say that the sequence 〈xk〉k≥p converges to a (or that the limit of 〈xk〉k≥p is equal
to a), and we write xk → a (as k →∞), or we write lim

k→∞
xk = a, when

∀ 0 < ε ∈ F ∃m ∈ Z ∀k ∈ Z≥p
(
k ≥ m =⇒ |xk − a| ≤ ε

)
.

We say that the sequence 〈xk〉k≥p converges (in F ) when there exists a ∈ F such that
〈xk〉k≥p converges to a. We say that the sequence 〈xk〉k≥p diverges (in F ) when it does
not converge (to any a ∈ F ). We say that 〈xk〉k≥p diverges to infinity, or that the
limit of 〈xk〉k≥p is equal to infinity, and we write xk → ∞ (as k → ∞), or we write
lim
k→∞

xk =∞, when

∀r ∈ F ∃m ∈ Z ∀k ∈ Z≥p
(
k ≥ m =⇒ xk ≥ r

)
.

Similarly we say that 〈xk〉k≥p diverges to −∞, or that the limit of 〈xk〉k≥p is equal to
negative infinity, and we write xk → −∞ (as k →∞), or we write lim

k→∞
xk = −∞ when

∀r ∈ R ∃m ∈ Z ∀k ∈ Z≥p
(
k ≥ m =⇒ xk ≤ r

)
.

3.3 Example: Let 〈xk〉k≥0 be the sequence in R given by xk = (−2)k
k! for k ≥ 0. Show

that lim
k→∞

xk = 0.

Solution: Note that for k ≥ 2 we have

|xk| = 2k

k! =
(
2
1

) (
2
2

) (
2
3

)
· · ·
(

2
k−1

) (
2
k

)
≤ 2

1 ·
2
n = 4

n .

Given ε ∈ R with ε > 0, we can choose m ∈ Z≥2 with m ≥ 4
ε and then for all k ≥ m we

have |xk − 0| = |xk| ≤ 4
k ≤

4
m ≤ ε. Thus lim

k→∞
xk = 0, by the definition of the limit.

3.4 Example: Let 〈ak〉k≥0 be the Fibonacci sequence in R, which is defined recursively
by a0 = 0, a1 = 1 and by ak = ak−1 + ak−2 for k ≥ 2. Show that lim

k→∞
ak =∞.

Solution: We have a0 = 0, a1 = 1, a2 = 1 and a3 = 2. Note that ak ≥ k − 1 when
k ∈ {0, 1, 2, 3}. Let n ≥ 4 and suppose, inductively, that ak ≥ k − 1 for all k ∈ Z with
0 ≤ k < n. Then an = an−1 +an−2 ≥ (n−2) + (n−3) = n+n−5 ≥ n+ 4−5 = n−1. By
the Strong Principle of Induction, we have an ≥ n− 1 for all n ≥ 0. Given r ∈ R we can
choose m ∈ Z≥0 with m ≥ r+ 1, and then for all k ≥ m we have ak ≥ k − 1 ≥ m− 1 ≥ r.
Thus lim

k→∞
ak =∞ by the definition of the limit.
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3.5 Example: Let xk = (−1)k for k ≥ 0. Show that 〈xk〉k≥0 diverges.

Solution: Suppose, for a contradiction, that 〈xk〉k≥0 converges and let a = lim
k→∞

xk. By

taking ε = 1
2 in the definition of the limit, we can choose m ∈ Z so the for all k ∈ N,

if k ≥ m then |xk − a| ≤ 1
2 . Choose k ∈ N with 2k ≥ m. Since |x2k − a| ≤ 1

2 and
x2k = (−1)2k = 1, we have |1 − a| ≤ 1

2 so that 1
2 ≤ a ≤ 3

2 . Since |x2k+1 − a| ≤ 1
2 and

x2k+1 = (−1)2k+1 = −1, we also have | − 1 − a| ≤ 1
2 which implies that − 3

2 ≤ a ≤ − 1
2 .

But then we have a ≤ − 1
2 and a ≥ 1

2 , which is not possible.

3.6 Theorem: (Independence of the Limit on the Initial Terms) Let 〈xk〉k≥p be a sequence
in an ordered field F .

(1) If q ≥ p and yk = xk for all k ≥ q, then 〈xk〉k≥p converges if and only if 〈yk〉k≥q
converges, and in this case lim

k→∞
xk = lim

k→∞
yk.

(2) If l ≥ 0 and yk = xk+l for all k ≥ p, then 〈xk〉k≥p converges if and only if 〈yk〉k≥p
converges, and in this case lim

k→∞
xk = lim

k→∞
yk.

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. Let q ≥ p and let
yk = xk for k ≥ q. Suppose 〈xk〉k≥p converges and let a = lim

k→∞
xk. Let ε > 0. Choose

m ∈ Z so that for all k ∈ Z≥p, if k ≥ m then |xk − a| ≤ ε. Let k ∈ Z≥q with k ≥ m.
Since q ≥ p we also have k ∈ Z≥p and so |yk − a| = |xk − a| ≤ ε. Thus 〈yk〉k≥q converges
with lim

k→∞
yk = a. Conversely, suppose that 〈yk〉k≥q converges and let a = lim

k→∞
yk. Let

ε > 0. Choose m1 ∈ Z so that for all k ∈ Z≥q, if k ≥ m1 then |yk − a| ≤ ε. Choose
m = max{m1, q}. Let k ∈ Z≥p with k ≥ m. Since k ≥ m, we have k ≥ q and k ≥ m1 and
so |xk − a| = |yk − a| ≤ ε. Thus 〈xk〉k≥p converges with lim

k→∞
xk = a.

3.7 Remark: Because of the above theorem, we often denote the sequence 〈xk〉k≥p simply
as 〈xk〉 (omitting the initial index p from our notation).

3.8 Theorem: (Uniqueness of the Limit) Let 〈xk〉 be a sequence in an ordered field F .
If 〈xk〉 has a limit (finite or infinite) then the limit is unique.

Proof: Suppose, for a contradiction, that xk → ∞ and xk → −∞. Since xk → ∞ we can
choose m1 ∈ Z so that k ≥ m1 =⇒ xk ≥ 1. Since xk → −∞ we can choose m2 ∈ Z so
that k ≥ m2 =⇒ xk ≤ −1. Choose any k ∈ Z≥p with k ≥ m1 and k ≥ m2. Then xk ≥ 1
and xk ≤ −1, which is not possible.

Suppose, for a contradiction, that xk → ∞ and xk → a ∈ F . Since xk → a we can
choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| ≤ 1. Since xk → ∞ we can choose m2 ∈ Z
so that k ≥ m2 =⇒ xk ≥ a + 2. Choose any k ∈ Z≥p with k ≥ m1 and k ≥ m2. Then
we have |xk − a| ≤ 1 so that x ≤ a + 1 and we have xk ≥ a + 2, which is not possible.
Similarly, it is not possible to have xk → −∞ and xk → a ∈ F .

Finally suppose, for a contradiction, that xk → a and xk → b where a, b ∈ F with

a 6= b. Since xk → a we can choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| ≤ |a−b|3 . Since

xk → b we can choose m2 ∈ Z so that k ≥ m2 =⇒ |xk − b| ≤ |a−b|3 . Choose any k ∈ Z≥p
with k ≥ m1 and k ≥ m2. Then we have |xk − a| ≤ b−a

3 and |xk − b| ≤ b−a
3 and so, using

the Triangle Inequality, we have

|a− b| = |a− xk + xk − b| ≤ |xk − a|+ |xk − b| ≤ |a−b|3 + |a−b|
3 < |a− b|,

which is not possible.
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3.9 Theorem: (Basic Limits) In any ordered field F , for a ∈ F we have

lim
k→∞

a = a , lim
k→∞

k =∞ and lim
k→∞

1

k
= 0.

Proof: The proof is left as an exercise.

3.10 Theorem: (Operations on Limits) Let 〈xk〉 and 〈yk〉 be sequences in an ordered
field F and let c ∈ F . Suppose that 〈xk〉 and 〈yk〉 both converge with xk → a and yk → b.
Then

(1) 〈c xk〉 converges with c xk → ca,
(2) 〈xk + yk〉 converges with (xk + yk)→ a+ b,
(3) 〈xk − yk〉 converges with (xk − yk)→ a− b,
(4) 〈xkyk〉 converges with xkyk → ab, and
(5) if b 6= 0 then 〈xk/yk〉 converges with xk/yk → a/b.

Proof: We prove Parts (4) and (5) leaving the proofs of the other parts as an exercise.
First we prove Part (4). Note that for all k we have

|xkyk−ab| = |xkyk−xkb+xkb−ab| ≤ |xkyk−xkb|+ |xkb−ab| = |xk| |yk− b|+ |b||xk−a|.

Since xk → a we can choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| ≤ 1 and we can choose
m2 ∈ Z so that k ≥ m2 =⇒ |xk − a| ≤ ε

2(1+|b|) . Since yk → b we can choose m3 ∈ Z so

that k ≥ m3 =⇒ |yk − b| ≤ ε
2(1+|a|) . Let m = max{m1,m2,m3} and let k ≥ m. Then we

have |xk − a| ≤ 1, |xk − a| ≤ ε
2(1+|b|) and |xk − b| ≤ ε

2(1+|a|) . Since |xk − a| ≤ 1, we have

|xk| = |xk − a+ a| ≤ |xk − a|+ |a| ≤ 1 + |a|. By our above calculation (where we found a
bound for |xkyk − ab|) we have

|xkyk − ab| ≤ |xk||yk − b|+ |b||xk − a| ≤ (1 + |a|)|yk − b|+ (1 + |b|)|xk − a|
≤ (1 + |a|) ε

2(1+|a|) + (1 + |b|) ε
2(1+|b|) = ε.

Thus we have xkyk → ab, by the definition of the limit.
To prove Part (5), suppose that b 6= 0. Since yk → b 6= 0, we can choose m1 ∈ Z so

that that k ≥ m1 =⇒ |yk − b| ≤ |b|2 . Then for k ≥ m1 we have

|b| = |b− yk + yk| ≤ |b− yk|+ |yk| ≤ |b|2 + |yk|

so that
|yk| ≥ |b| − |b|2 = |b|

2 > 0.

In particular, we remark that when k ≥ m1 we have yk 6= 0 so that 1
yk

is defined. Note
that for all k ≥ m1 we have∣∣∣∣ 1

yk
− 1

b

∣∣∣∣ =
|b− yk|
|yk| |b|

≤ |b− yk||b|
2 · |b|

=
2

|b|2
· |yk − b|.

Let ε > 0. Choose m2 ∈ Z so that k ≥ m2 =⇒ |yk − b| ≤ |b|
2ε
2 . Let m = max{m1,m2}.

For k ≥ m we have k ≥ m1 and k ≥ m2 and so |yk| ≥ |b|
2

2 and |yk − b| ≤ |b|
2ε
2 and so∣∣∣∣ 1

yk
− 1

b

∣∣∣∣ ≤ 2
|b|2 · |yk − b| ≤

2
|b|2 ·

|b|2ε
2 = ε.

This proves that lim
k→∞

1
yk

= 1
b . Using Part (4), we have lim

k→∞
xk
yk

= lim
k→∞

(
xk · 1yk

)
= a· 1b = a

b .
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3.11 Example: Let xk = k2+1
2k2+k+3 for k ≥ 0. Find lim

k→∞
xk.

Solution: We have xk = k2+1
2k2+k+2 =

1+( 1
k )

2

2+ 1
k+3·( 1

k )
2 −→ 1+02

2+0+3·02 = 1
2 where we used the Basic

Limits 1→ 1, 2→ 2 and 1
k → 0 together with Operations on Limits.

3.12 Definition: The above theorem can be extended to include many situations involving
infinite limits. To deal with these cases, given an ordered field F , we define the extended
ordered field F̂ to be the set

F̂ = F ∪ {−∞,∞}.

We extend the order relation < on F to an order relation on F̂ by defining −∞ <∞ and
−∞ < a and a < ∞ for all a ∈ F . We partially extend the operations + and · to F̂ ; for
a ∈ F we define

∞+∞ =∞ , ∞+ a =∞ , (−∞) + (−∞) = −∞ , (−∞) + a ,

∞ ·∞ =∞ , (∞)(−∞) = −∞ , (−∞)(−∞) =∞ ,

∞ · a =

{
∞ if a > 0

−∞ if a < 0
and (−∞)(a) =

{
−∞ if a > 0,

∞ if a < 0,

but other values, including ∞ + (−∞), ∞ · 0 and −∞ · 0 are left undefined in F̂ . In a
similar way, we partially extend the inverse operations − and ÷ to F̂ . For example, for
a ∈ F we define

∞−(−∞) =∞ ,−∞−∞ = −∞ , ∞−a =∞ ,−∞−a = −∞ , a−∞ = −∞ , a−(−∞) =∞ ,

a

∞
= 0 ,

∞
a

=

{
∞ if a > 0

−∞ if a < 0
and

−∞
a

=

{
−∞ if a > 0

∞ if a < 0

with other values, including ∞−∞, ∞∞ and ∞0 , left undefined. The expressions which are

left undefined in F̂ , including

∞−∞ , ∞ · 0 , ∞
∞

,
∞
0
,
a

0

are known as indeterminate forms.

3.13 Theorem: (Extended Operations on Limits) Let 〈xk〉 and 〈yk〉 be sequences in F .
Suppose that lim

k→∞
xk = u and lim

k→∞
yk = v where u, v ∈ F̂ .

(1) if u+ v is defined in F̂ then lim
k→∞

(xk + yk) = u+ v,

(2) if u− v is defined in F̂ then lim
k→∞

(xk − yk) = u− v,

(3) if u · v is defined in F̂ then lim
k→∞

(xk · yk) = u · v, and

(4) if u/v is defined in F̂ then lim
k→∞

(xk/yk) = u/v.

Proof: The proof is left as an exercise.
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3.14 Theorem: (Monotonic Surjective Functions) Let I and J be intervals in an ordered
field F . Suppose f : I → J is increasing and surjective. Let 〈xk〉 be a sequence in I. Then

(1) If xk → a ∈ I then f(xk)→ f(a) ∈ J ,
(2) if xk → u where u ∈ F ∪ {∞} is the right endpoint of I, then f(xk) → v where
v ∈ F ∪ {∞} is the right endpoint of J , and
(3) if xk → u where u ∈ F ∪ {−∞} is the left endpoint of I then f(xk) → v where
v ∈ F ∪ {−∞} is the left endpoint of J .

Analogous results hold when f : I → J is decreasing and surjective.

Proof: We prove Part (1). Let a ∈ I, suppose xk → a, and let b = f(a) ∈ J . Note
that since f is surjective, it has a right inverse. Let g : J → I be a right inverse of f .
Let ε > 0. We consider several cases, depending on whether or not b is an endpoint of
J . Suppose first that b is not an endpoint of J . Choose ε0 with 0 < ε0 ≤ ε so that
[b − ε0, b + ε0] ⊆ J . Note that since f is increasing we have g(b − ε0) < a < g(b + ε0)
(since g(b − ε0) ≥ a =⇒ b − ε = f

(
g(b − ε0)

)
≤ f(a) = b which is impossible, and

a ≥ g(b+ ε0) =⇒ b = f(a) ≥ f
(
g(b+ ε0)

)
= b+ ε0 which is impossible). Since xk → a we

can choose m ∈ Z so that k ≥ m =⇒ g(b− ε0) ≤ xk ≤ g(b+ ε0). Then for k ≥ m we have
b− ε0 = f

(
g(b− ε0)

)
≤ f(xk) ≤ f

(
g(b+ ε0)

)
= g + ε0. Thus f(xk)→ b = f(a).

Next consider the case that b is equal to one (but not both) of the endpoints of J , say
b is the right endpoint of J , and say the left endpoint of J is smaller than b. In this case,
we choose ε0 with 0 < ε0 ≤ ε so that [b − ε0, b] ⊆ J . Note that since f is increasing we
have g(b − ε0) < a. Choose m ∈ Z so that k ≥ m =⇒ g(b − ε0) ≤ xk. Then for k ≥ m,
since f is increasing we have b− ε0 ≤ f(xk). Since b is the right endpoint of J , it follows
that b− ε0 ≤ f(xk) ≤ b for all k ≥ m, and so f(xk)→ b = f(a).

Finally, note that if b is equal to both the left and right endpoints of J , then we have
J = {b} and so f(xk) = b for all k, and hence f(xk)→ b.

3.15 Corollary: (Basic Elementary Functions Acting on Limits) Let 〈xk〉 be a sequence
in R and let b ∈ R. Then

(1) if xk → a > 0 then xk
b → ab,

if xk →∞ then lim
k→∞

xk
b =

{
∞ if b > 0

0 if b < 0,

(2) if xk → a and b > 0 then bxk → ba,

if xk →∞ and b > 0 then lim
k→∞

bxk =

{
∞ if b > 1

0 if 0 < b < 1,

(3) if xk → a > 0 and b > 0 then logb xk → logb a,

if xk →∞ and b > 0 then lim
k→∞

xk =

{
∞ if b > 1

−∞ if 0 < b < 1

(4) if xk → a then sinxk → sin a and cosxk → cos a
if xk → a, where a 6= π

2 + 2π t with t ∈ Z, then tanxk → tan a

(5) if xk → a ∈ [−1, 1] then sin−1 xk → sin−1 a and cos−1 xk → cos−1 a
if xk → a then tan−1 xk → tan−1 a
if xk →∞ then tan−1 xk → π

2 ,
if xk → −∞ then tan−1 xk → −π2 .

Proof: All of these follow immediately from the previous theorem, except for the first
statement in Part (4) (some care is needed when sin a = ±1 or cos a = ±1).
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3.16 Example: Let xk =
√
3k2+1
k+2 for k ≥ 0. Find lim

k→∞
xk.

Solution: We have xk =
√
3k2+1
k+2 =

√
3+ 1

k2

1+2· 1k
−→

√
3+0

1+2·0 =
√

3 where we used Basic Limits,

Operations on Limits, and Functions Acting on Limits (specifically, we used Part (1) of
Corollary 3.15 with b = 1

2 ).

3.17 Example: Let xk = 1+3k
3√2+k−k2 for k ≥ 0. Find lim

k→∞
xk.

Solution: We have xk = 1+3k
3√2+k−k2 =

1
k+3

3
√

2
k2

+ 1
k−1
· k1/3 −→ 0+3

3
√
0+0−1 · ∞ = −1 · ∞ = −∞

where we used Basic Limits, Extended Operations, and Functions Acting on Limits.

3.18 Example: Let xk = sin−1
(
k −
√
k2 + k

)
for k ≥ 0. Find lim

k→∞
xk.

Solution: Note that k −
√
k2 + k = k2−(k2+k)

k+
√
k2+k

= −k
k+
√
k2+k

= −1
1+
√

1+ 1
k

−→ −1
1+
√
1+0

= − 1
2 ,

and so xk = sin−1
(
k −
√
k2 − k

)
−→ sin−1

(
− 1

2

)
= −π6 .

3.19 Theorem: (Comparison) Let 〈xk〉 and 〈yk〉 be sequences in an ordered field F .
Suppose that xk ≤ yk for all k. Then

(1) if xk → a and yk → b then a ≤ b,
(2) if xk →∞ then yk →∞, and
(3) if yk → −∞ then xk → −∞.

Proof: We prove Part (1). Suppose that xk → a and yk → b. Suppose, for a contradiction,
that a > b. Choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| ≤ a−b

3 . Choose m2 ∈ Z so that

k ≥ m2 =⇒ |yk − b| ≤ a−b
3 . Let k = max{m1,m2}. Since |xk − a| ≤ a−b

3 < a−b
2 , we have

xk > a − a−b
2 = a+b

2 . Since |yk − b| ≤ a−b
3 < a−b

2 , we have yk < b + a−b
2 = a+b

2 . This is
not possible since xk ≤ yk.

3.20 Example: Let xk = ( 3
2 + sin k) ln k for k ≥ 1. Find lim

k→∞
xk.

Solution: For all k ≥ 1 we have sin k ≥ −1 so ( 3
2 + sin k) ≥ 1

2 and hence xk ≥ 1
2 ln k.

Since xk ≥ 1
2 ln k for all k ≥ 1 and 1

2 ln k −→ 1
2 · ∞ = ∞, it follows that xk → ∞ by the

Comparison Theorem.

3.21 Theorem: (Squeeze) Let 〈xk〉, 〈yk〉 and 〈zk〉 be sequences in an ordered field F .

(1) If xk ≤ yk ≤ zk for all k and xk → a and zk → a then yk → a.
(2) If |xk| ≤ yk for all k and yk → 0 then xk → 0.

Proof: We prove Part (1). Suppose that xk ≤ yk ≤ zk for all k, and suppose that xk → a
and zk → a. Let ε > 0. Choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − a| ≤ ε, choose m2 ∈ Z
so that k ≥ m2 =⇒ |zk − a| ≤ ε and let m = max{m1,m2}. Then for k ≥ m we have
a− ε ≤ xk ≤ yk ≤ zk ≤ a+ ε and so |yk − a| ≤ ε. Thus yk → a, as required.

3.22 Example: Let xk = k+tan−1 k
2k+sin k for k ≥ 1. Find lim

k→∞
xk.

Solution: For all k ≥ 1 we have −π2 < tan−1 k < π
2 and −1 ≤ sin k ≤ 1 and so

k − π
2

2k + 1
≤ k + tan−1 k

2k + sin k
≤

k + π
2

2k − 1
.

As in previous examples, we have
k−π2
2k+1 →

1
2 and

k+π
2

2k−1 →
1
2 , and so xk = k+tan−1 k

2k+sin k →
1
2

by the Squeeze Theorem.
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3.23 Definition: Let 〈xk〉 be a sequence in an ordered set X. We say that the sequence
〈xk〉 is bounded above by b ∈ X when xk ≤ b for all k. We say that the sequence 〈xk〉 is
bounded below by b ∈ X when b ≤ xk for all k. We say 〈xk〉 is bounded above when
it is bounded above by some element b ∈ X, we say that 〈xk〉 is bounded below when it
is bounded below by some b ∈ X, and we say that 〈xk〉 is bounded when it is bounded
above and bounded below.

3.24 Definition: Let 〈xk〉 be a sequence in an ordered field F . We say that 〈xk〉 is
increasing (for k ≥ p) when for all k, l ∈ Z≥p, if k ≤ l then xk ≤ xl. We say that 〈xk〉 is
strictly increasing (for k ≥ p) when for all k, l ∈ Z≥p, if k < l then xk < xl. Similarly,
we say that 〈xk〉 is decreasing when for all k, l ∈ Z≥p, if k ≤ l the xk ≥ xl and we say
that 〈xk〉 is strictly decreasing when for all k, l ∈ Z≥p, if k < l the xk > xl. We say
that 〈xk〉 is monotonic when it is either increasing or decreasing.

3.25 Theorem: (Monotonic Convergence) Let 〈xk〉 be a sequence in R.

(1) Suppose 〈xk〉 is increasing. If 〈xk〉 is bounded above then xk → sup{xk}, and if 〈xk〉
is not bounded above then xk →∞.
(2) Suppose 〈xk〉 is decreasing. If 〈xk〉 is bounded below then xk → inf{xk}, and if 〈xk〉 is
not bounded below then xk → −∞.

Proof: We prove Part (1) in the case that 〈xk〉k≥p is increasing and bounded above, say
by b ∈ R. Let A = {xk|k ≥ p} (so A is the range of the sequence 〈xk〉). Note that A is
nonempty and bounded above (indeed b is an upper bound for A). By the Completeness
Property of R, A has a supremum in R. Let a = sup{xk|k ≥ p}. Note that a ≥ xk for all
k ≥ p and a ≤ b, by the definition of the supremum. Let ε > 0. By the Approximation
Property of the supremum, we can choose an index m ≥ p so that the element xm ∈ A
satisfies a − ε < xm ≤ a. Since 〈xk〉 is increasing, for all k ≥ m we have xk ≥ xm, so we
have a− ε ≤ xm ≤ xk ≤ a and hence |xk − a| < ε. Thus lim

k→∞
xk = a ≤ b.

3.26 Example: Let x1 = 4
3 and let xk+1 = 5 − 4

xn
for k ≥ 1. Determine whether 〈xk〉

converges, and if so then find the limit.

Solution: Suppose, for now, that 〈xk〉 does converge, say xk → a. By Independence of
Converge on Initial Terms, we also have xk+1 → a. Using Operations on Limits, we have
a = lim

k→∞
xk+1 = lim

k→∞

(
5− 4

xk

)
= 5− 4

a . Since a = 5− 4
a , we have a2 = 5a−4 or equivalently

(a− 1)(a− 4) = 0. We have proven that if the sequence converges then its limit must be
equal to 1 or 4.

The first few terms of the sequence are x1 = 4
3 , x2 = 2 and x3 = 3. Since the terms

appear to be increasing, we shall try to prove that 1 ≤ xn ≤ xn+1 ≤ 4 for all n ≥ 1. This
is true when n = 1. Suppose it is true when n = k. Then we have

1 ≤ xk ≤xk+1 ≤ 4 =⇒ 1 ≥ 1
xk
≥ 1

xk+1
≥ 1

4 =⇒ −4 ≤ − 4
xk
≤ − 4

xk+1
≤ −1

=⇒ 1 ≤ 5− 4
xk
≤ 5− 4

xk+1
≤ 4 =⇒ 1 ≤ xk+1 ≤ xk+2 ≤ 4.

Thus, by the Principle of Induction, we have 1 ≤ xn ≤ xn+1 ≤ 4 for all n ≥ 1.
Since xn ≤ xn+1 for all n ≥ 1, the sequence is increasing, and since xn ≤ 4 for all

n ≥ 1, the sequence is bounded above by 4. By the Monotone Convergence Theorem, the
sequence does converge. By the first paragraph, we know the limit must be either 1 or 4,
and since the sequence starts at x1 = 2 and increases, the limit must be 4.
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3.27 Theorem: (The Nested Interval Theorem) Let I0, I1, I2, · · · be nonempty, closed

bounded intervals in R. Suppose that I0 ⊇ I1 ⊃ I2 ⊃ · · ·. Then
∞⋂
k=0

Ik 6= ∅.

Proof: For each k ≥ 1, let Ik = [ak, bk] with ak < bk. For each k, since Ik ⊆ Ik+1 we have
ak+1 ≤ ak < bk ≤ bk+1. Since ak ≥ ak+1 for all k, the sequence 〈ak〉 is increasing. Since
ak < bk ≤ bk−1 ≤ · · · ≤ b1 for all k, the sequence 〈ak〉 is bounded above by b1. Since 〈ak〉
is increasing and bounded above, it converges. Let a = sup{ak} = lim

k→∞
ak. Similarly, 〈bk〉

is decreasing and bounded below by a1, and so it converges. Let b = inf{bk} = lim
k→∞

bk.

Fix m ≥ 1. For all k ≥ m we have am < bm ≤ bm+1 ≤ · · · ≤ bk. Since ak ≤ bk for all k,
by the Comparison Theorem we have a ≤ b, and so the interval [a, b] is not empty. Since
〈ak〉 is increasing with ak → a, it follows (we leave the proof as an exercise) that ak ≤ a
for all k ≥ 1. Similarly, we have bk ≥ b for all k ≥ 1 and so [a, b] ⊆ [ak, bk] = Ik. Thus

[a, b] ⊆
∞⋂
k=1

Ik, and so
∞⋂
k=1

Ik 6= ∅.

3.28 Definition: Let 〈xk〉k≥p be a sequence in a set X Given a strictly increasing function
f : Z≥q → Z≥p, write kl = f(l) and let yl = xkl for all l ≥ q. Then the sequence 〈yl〉l≥q is
called a subsequence of the sequence 〈xk〉k≥p. In other words, a subsequence of 〈xk〉k≥p
is a sequence of the form〈

xkq , xkq+1 , xkq+2 , · · ·
〉

with p ≤ kq < kq+1 < kq+2 < · · · .

Given a bijective function f : Z≥q → Z≥p, write kl = f(l) and let yl = xkl for l ≥ 1. Then
the sequence 〈yl〉l≥q is called a rearrangement of the sequence 〈xk〉.

3.29 Theorem: Let 〈xk〉 be a sequence in an ordered field F . Suppose that xk → a.
Then

(1) every subsequence of 〈xk〉 converges to a, and
(2) every rearrangement of 〈xk〉 converges to a.

Proof: We shall prove Parts (1) and (2) simultaneously. Let f : Z≥q → Z≥p be an
injective map. Write kl = f(l) and let yl = xkl for k ≥ l. Let ε > 0. Choose m1 ∈ Z so
that k ≥ m1 =⇒ |xk − a| ≤ ε. Since f is injective, there are only finitely many indices
l with p ≤ f(l) < m1. Choose m ∈ Z with m larger than every such index l. Then for
l ≥ m we have kl = f(l) ≥ m1 and so |yl − a| = |xkl − a| ≤ ε.

3.30 Theorem: (Bolzano-Weirstrass) Every bounded sequence in R has a convergent
subsequence.

Proof: Let 〈xk〉 be a bounded sequence in R. Choose a, b ∈ R with a ≤ xk for all k and
xk ≤ b for all k. Then we have xk ∈ [a, b] for all k. We define a sequence of nonempty closed
intervals recursively as follows. Let I0 = [a0, b0] = [a, b]. Note that I0 =

[
a, a+b2

]
∪
[
a+b
2 , b

]
.

Let I1 = [a1, b1] be equal to one of the two intervals
[
a, a+b2

]
and

[
a+b
2 , b

]
, chosen in such a

way that there are infinitely many indices k with xk ∈ I1. Suppose we have chosen intervals
Ij = [aj , bj ] with bj − aj = 1

2j (b − a) for 1 ≤ j ≤ n, such that I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ In
and such that for each index j, there are infinitely many indices k with xk ∈ Ij . Note that
In = [an, bn] =

[
an,

an+bn
2

]
∪
[
an+bn

2 , bn
]
. Let In+1 be equal to one of the two intervals[

an,
an+bn

2

]
and

[
an+bn

2 , bn
]
, chosen in such a way that there are infinitely many indices k

with xk ∈ In+1. In this way, we obtain a sequence 〈Ij〉j≥0 of nonempty closed intervals.
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By the Nested Interval Theorem,
∞⋂
j=0

Ij is not empty. Choose a point c with c ∈ In for

every n ≥ 0.
We shall now construct a subsequence of 〈xk〉 which converges to c. Since for each

j ≥ 0 there exist infinitely many indices k with xk ∈ Ij , we can construct a subsequence
of 〈xk〉 as follows. Choose k0 so that xk0 ∈ I0, then choose k1 > k0 so that xk1 ∈ I1, then
choose k2 > k1 with xk2 ∈ I2, and so on. In this way, we obtain a subsequence 〈xkj 〉j≥0
of 〈xk〉 with xkj ∈ Ij for all j ≥ 0. We claim that xkj → c as j → ∞. Let ε > 0 Choose
m ∈ Z so that 1

2m (b − a) ≤ ε. For j ≥ m, since c ∈ [a, b] ⊆ [aj , bj ] and xkj ∈ [aj , bj ], it
follows that

|xkj − c| = max{xkj , c} −min{xkj , c} ≤ bj − aj = 1
2j (b− a) ≤ 1

2m (b− a) ≤ ε.

Thus xkj → c as j →∞, as claimed.

3.31 Definition: Let 〈xk〉k≥p be a sequence in an ordered field F . We say that 〈xk〉 is
Cauchy when

∀ε > 0 ∃m ∈ Z ∀k, l ∈ Z≥p
(
k, l ≥ m =⇒ |xk − xl| ≤ ε

)
.

3.32 Theorem: (Cauchy Criterion for Convergence)

(1) For a sequence 〈xk〉 in an ordered field F , if 〈xk〉 converges then it is Cauchy.
(2) For a sequence 〈xk〉 in R, if 〈xk〉 is Cauchy then it converges.

Proof: To prove Part (1), let 〈xk〉 be a sequence in an ordered field F and suppose that
xk → a. Let ε > 0 and choose m ∈ Z so that k ≥ m =⇒ |xk − a| ≤ ε

2 . Then for k, l ≥ m
we h ave

|xk − xl| = |xk − a+ a− xl| ≤ |xk − a|+ |a− xl| ≤ ε
2 + ε

2 = ε.

Thus 〈xk〉 is Cauchy.
To prove Part (2), let 〈xk〉k≥p be a sequence in R and suppose that 〈xk〉 is Cauchy.

We claim that 〈xk〉 is bounded. Since 〈xk〉 is Caucy, we can choose m ∈ Z so that
k, l ≥ m =⇒ |xk − xl| ≤ 1. In particular, for all k ≥ m we have |xk − xm| ≤ 1 and so
|xk| = |xk − xm + xm| ≤ |xk − xm|+ |xm| ≤ 1 + |xm|. It follows that 〈xk〉 is bounded by
b = max

{
|xp|, |xp+1|, · · · , |xm−1| , 1 + |xm|

}
.

Because 〈xk〉 is bounded, it has a convergent subsequence, by the Bolzano Weierstrass
Theorem. Let 〈xkj 〉 be a convergent subsequence of 〈xk〉 and let a = lim

j→∞
xkj . We claim

that xk → a. Let ε > 0. Since 〈xk〉 is Cauchy, we can choose m ∈ Z so that k, l ≥ m =⇒
|xk − xl| ≤ ε

2 . Since xkj → a we can choose m0 ∈ Z so that j ≥ m0 =⇒ |xkj − a| ≤ ε
2 .

Choose an index j ≥ m0 so that kj ≥ m. Then for all k ≥ m we have

|xk − a| = |xk − xkj + xkj − a| ≤ |xk − xkj |+ |xkj − a| ≤ ε
2 + ε

2 = ε.

Thus xk → a, as claimed.
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