
MATH 147 Calculus 1, Lecture Notes by Stephen New

Chapter 2: Injective and Surjective Functions and Cardinality

2.1 Definition: Let X and Y be sets and let f : X → Y . Recall that the domain of f
and the range of f are the sets

Domain(f) = X , Range(f) = f(X) =
{
f(x)

∣∣x ∈ X
}
.

For A ⊆ X, the image of A under f is the set

f(A) =
{
f(x)

∣∣x ∈ A
}
.

For B ⊆ Y , the inverse image of B under f is the set

f−1(B) =
{
x ∈ X

∣∣f(x) ∈ B
}
.

2.2 Definition: Let X, Y and Z be sets, let f : X → Y and let g : Y → Z. We define
the composite function g ◦ f : X → Z by (g ◦ f)(x) = g

(
f(x)

)
for all x ∈ X.

2.3 Definition: We say that f is injective (or one-to-one, written as 1 : 1) when for
every y ∈ Y there exists at most one x ∈ X such that f(x) = y. Equivalently, f is
injective when for all x1, x2 ∈ X, if f(x1) = f(x2) then x1 = x2. We say that f is
surjective (or onto) when for every y ∈ Y there exists at least one x ∈ X such that
f(x) = y. Equivalently, f is surjective when Range(f) = Y . We say that f is bijective
(or invertible) when f is both injective and surjective, that is when for every y ∈ Y there
exists exactly one x ∈ X such that f(x) = y. When f is bijective, we define the inverse
of f to be the function f−1 : Y → X such that for all y ∈ Y , f−1(y) is equal to the unique
element x ∈ X such that f(x) = y. Note that when f is bijective so is f−1, and in this
case we have (f−1)−1 = f .

2.4 Theorem: Let f : X → Y and let g : Y → Z. Then

(1) if f and g are both injective then so is g ◦ f ,
(2) if f and g are both surjective then so is g ◦ f , and
(3) if f and g are both invertible then so is g ◦ f , and in this case (g ◦ f)−1 = f−1 ◦ g−1.

Proof: To prove Part (1), suppose that f and g are both injective. Let x1, x2 ∈ X. If
g(f(x1)) = g(f(x2)) then since g is injective we have f(x1) = f(x2), and then since f is
injective we have x1 = x2. Thus g ◦ f is injective.

To prove Part (2), suppose that f and g are surjective. Given z ∈ Z, since g is
surjective we can choose y ∈ Y so that g(y) = z, then since f is surjective we can choose
x ∈ X so that f(x) = y, and then we have g(f(x)) = g(y) = z. Thus g ◦ f is surjective.

Finally, note that Part (3) follows from Parts (1) and (2).

2.5 Definition: For a set X, we define the identity function on X to be the function
IX : X → X given by IX(x) = x for all x ∈ X. Note that for f : X → Y we have
f ◦ IX = f and IY ◦ f = f .

2.6 Definition: Let X and Y be sets and let f : X → Y . A left inverse of f is a function
g : Y → X such that g ◦ f = IX . Equivalently, a function g : Y → X is a left inverse of f
when g

(
f(x)

)
= x for all x ∈ X. A right inverse of f is a function h : Y → X such that

f ◦ h = IY . Equivalently, a function h : Y → X is a right inverse of f when f
(
h(y)

)
= y

for all y ∈ Y .
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2.7 Theorem: Let X and Y be nonempty sets and let f : X → Y . Then

(1) f is injective if and only if f has a left inverse,
(2) f is surjective if and only if f has a right inverse, and
(3) f is bijective if and only if f has a left inverse g and a right inverse h, and in this case
we have g = h = f−1.

Proof: To prove Part (1), suppose first that f is injective. Since X 6= ∅ we can choose
a ∈ X and then define g : Y → X as follows: if y ∈ Range(f) then (using the fact that f is
1:1) we define g(y) to be the unique element xy ∈ X with f(xy) = y, and if y /∈ Range(f)
then we define g(y) = a. Then for every x ∈ X we have y = f(x) ∈ Range(f), so
g(y) = xy = x, that is g

(
f(x)

)
= x. Conversely, if f has a left inverse, say g, then f is 1:1

since for all x1, x2 ∈ X, if f(x1) = f(x2) then x1 = g
(
f(x1)

)
= g
(
f(x2)

)
= x2.

To prove Part (2), suppose first that f is onto. For each y ∈ Y , choose xy ∈ X
with f(xy) = y, then define g : X → Y by g(y) = xy (we need the Axiom of Choice for
this). Then g is a right inverse of f since for every y ∈ Y we have f

(
g(y)

)
= f(xy) = y.

Conversely, if f has a right inverse, say g, then f is onto since given any y ∈ Y we can
choose x = g(y) and then we have f(x) = f

(
g(y)

)
= y.

To prove Part (3), suppose first that f is bijective. The inverse function f−1 : Y → X
is a left inverse for f because given x ∈ X we can let y = f(x) and then f−1(y) = x so
that f−1

(
f(x)

)
= f−1(y) = x. Similarly, f−1 is a right inverse for f because given y ∈ Y

we can let x be the unique element in X with y = f(x) and then we have x = f−1(y) so
that f

(
f−1(y)

)
= f(x) = y. Conversely, suppose that g is a left inverse for f and h is a

right inverse for f . Since f has a left inverse, it is injective by Part (1). Since f has a right
inverse, it is surjective by Part (2). Since f is injective and surjective, it is bijective. As
shown above, the inverse function f−1 is both a left inverse and a right inverse. Finally,
note that g = f−1 = h because for all y ∈ Y we have

g(y) = g
(
f
(
f−1(y)

))
= f−1(y) = f−1

(
f
(
h(y)

))
= h(y) .

2.8 Corollary: Let X and Y be sets. Then there exists an injective map f : X → Y if
and only if there exists a surjective map g : Y → X.

Proof: Suppose f : X → Y is an injective map. Then f has a left inverse. Let g be a left
inverse of f . Since g ◦ f = IX , we see that f is a right inverse of g. Since g has a right
inverse, g is surjective. Thus there is a surjective map g : Y → X. Similarly, if g : Y → X
is surjective, then it has a right inverse f : X → Y which is injective.

2.9 Definition: Let A and B be sets. We say that A and B have the same cardinality,
and we write |A| = |B|, when there exists a bijective map f : A→ B (or equivalently when
there exists a bijective map g : Y → X). We say that the cardinality of A is less than
or equal to the cardinality of B, and we write |A| ≤ |B|, when there exists an injective
map f : A → B (or equivalently when there exists a surjective map g : Y → X). We say
that the cardinality of A is less than the cardinality of B, and we write |A| < |B|, when
|A| ≤ |B| and |A| 6= |B|, (that is when there exists an injective map f : A→ B but there
does not exist a bijective map g : A → B). We also write |A| ≥ |B| when |B| ≤ |A| and
|A| > |B| when |B| < |A|.
2.10 Example: The map f : N → 2N given by f(k) = 2k is bijective, so |2N| = |N |.
The map g : N→ Z given by g(2k) = k and g(2k + 1) = −k − 1 for k ∈ N is bijective, so
we have |Z| = |N|. The map h : N×N→ N given by h(k, l) = 2k(2l + 1)− 1 is bijective,
so we have |N×N| = |N|.
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2.11 Theorem: For all sets A, B and C,

(1) |A| = |A|,
(2) if |A| = |B| then |B| = |A|,
(3) if |A| = |B| and |B| = |C| then |A| = |C|,
(4) |A| ≤ |B| if and only if (|A| = |B| or |A| < |B|), and
(5) if |A| ≤ |B| and |B| ≤ |C| then |A| ≤ |C|.

Proof: Part (1) holds because the identity function IA : A → A is bijective. Part (2)
holds because if f : A → B is bijective then so is f−1 : B → A. Part (3) holds because if
f : A → B and g : B → C are bijective then so is the composite g ◦ f : A → C. The rest
of the proof is left as an exercise.

2.12 Definition: Let A be a set. For each n ∈ N, let Sn = {0, 1, 2, · · · , n−1}. For n ∈ N,
we say that the cardinality of A is equal to n, or that A has n elements, and we write
|A| = n, when |A| = |Sn|. We say that A is finite when |A| = n for some n ∈ N. We say
that A is infinite when A is not finite. We say that A is countable when |A| = |N|.

2.13 Note: When a set A is finite with |A| = n, and when f : A → Sn is a bijection, if
we let ak = f−1(k) for each k ∈ Sn then we have A = {a0, a1, · · · , ak−1} with the elements
ak distinct. Conversely, if A = {a0, a1, · · · , ak−1} with the elements ak all distinct, then
we define a bijection f : A→ Sn by f(ak) = k. Thus we see that A is finite with |A| = n
if and only if A is of the form A = {a0, a1, · · · , an−1} with the elements ak all distinct.
Similarly, a set A is countable if and only if A is of the form A = {a0, a1, a2, · · ·} with the
elements ak all distinct.

2.14 Note: For n ∈ N, if A is a finite set with |A| = n + 1 and a ∈ A then |A \ {a}| = n.
Indeed, if A = {a0, a1, · · · , an} with the elements ai distinct, and if a = ak so that we have
A \ {a} = {a0, a1, · · · , ak−1, ak+1, · · · , an}, then we can define a bijection f : Sn → A \ {a}
by f(i) = ai for 0 ≤ i < k and f(i) = ai+1 for k ≤ i < n.

2.15 Theorem: Let A be a set. Then the following are equivalent.

(1) A is infinite.
(2) A contains a countable subset.
(3) |N| ≤ |A|
(4) There exists a map f : A→ A which is injective but not surjective.

Proof: To prove that (1) implies (2), suppose that A is infinite. Since A 6= ∅ we can
choose an element a0 ∈ A. Since A 6= {a0} we can choose an element a1 ∈ A \ {a0}.
Since A 6= {a0, a1} we can choose a3 ∈ A \ {a0, a1}. Continue this procedure: having
chosen distinct elements a0, a1, · · · , an−1 ∈ A, since A 6= {a0, a1, · · · , an−1} we can choose
an ∈ A \ {a0, a1, · · · , an−1}. In this way, we obtain a countable set {a0, a1, a2, · · ·} ⊆ A.

Next we show that (2) is equivalent to (3). Suppose that A contains a countable
subset, say {a0, a1, a2, · · ·} ⊆ A with the element ai distinct. Since the ai are distinct, the
map f : N → A given by f(k) = ak is injective, and so we have |N| ≤ |A|. Conversely,
suppose that |N| ≤ |A|, and chose an injective map f : N→ A. Considered as a map from
N to f(N), f is bijective, so we have |N| = |f(N)| hence f(N) is a countable subset of A.

Next, let us show that (2) implies (4). Suppose that A has a countable subset, say
{a0, a1, a2, · · ·} ⊆ A with the element ai distinct. Define f : A → A by f(ak) = ak+1 for
all k ∈ N and by f(b) = b for all b ∈ A \ {a0, a1, a2, · · ·}. Then f is injective but not
surjective (the element a0 is not in the range of f).
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Finally, to prove that (4) implies (1) we shall prove that if A is finite then every
injective map f : A→ A is surjective. We prove this by induction on the cardinality of A.
The only set A with |A| = 0 is the set A = ∅, and then the only function f : A→ A is the
empty function, which is surjective. Since that base case may appear too trivial, let us
consider the next case. Let n = 1 and let A be a set with |A| = 1, say A = {a}. The only
function f : A → A is the function given by f(a) = a, which is surjective. Let n ≥ 1 and
suppose, inductively, that for every set A with |A| = n, every injective map f : A → A is
surjective. Let B be a set with |B| = n + 1 and let g : B → B be injective. Suppose, for a
contradiction, that g is not surjective. Choose an element b ∈ B which is not in the range
of g so that we have g : B → B \ {b}. Let A = B \ {b} and let f : A → A be given by
f(x) = g(x) for all x ∈ A. Since g : B → A is injective and f(x) = g(x) for all x ∈ A, f is
also injective. Again since g is injective, there is no element x ∈ B \ {b} with g(x) = g(b),
so there is no element x ∈ A with f(x) = g(b), and so f is not surjective. Since |A| = n
(by the above note), this contradicts the induction hypothesis. Thus f must be surjective.
By the Principle of Induction, for every n ∈ N and for every set A with |A| = n, every
injective function f : A→ A is surjective.

2.16 Corollary: Let A and B be sets.

(1) If A is countable then A is infinite.
(2) When |A| ≤ |B|, if B is finite then so is A (equivalently if A is infinite then so is B).
(3) If |A| = n and |B| = m then |A| = |B| if and only if n = m.
(4) If |A| = n and |B| = m then |A| ≤ |B| if and only if n ≤ m.
(5) When one of the two sets A and B is finite, if |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

Proof: Part (1) is immediate: if A is countable then |N| = |A|, hence |N| ≤ |A|, and so A
is infinite, by Theorem 2.15..

To prove Part (2), suppose that |A| ≤ |B and that |A| is infinite. Since A is infinite,
we have |N| ≤ |A| (by Theorem 2.15). Since |N| ≤ |A| and |A| ≤ |B| we have |N| ≤ |B|
(by Theorem 2.11). Since |N| ≤ |B|, B is infinite (by Theorem 2.15 again).

To Prove Part (3), suppose that |A| = n and |B| = m. If n = m then we have
Sn = Sm and so |A| = |Sn| = |Sm| = |B|. Conversely, suppose that |A| = |B|. Suppose,
for a contradiction, that n 6= m, say n > m, and note that Sm

⊂6= Sn. Since |A| = |B| we

have |Sn| = |A| = |B| = |Sm| so we can choose a bijection f : Sn → Sm. Since Sm
⊂6= Sn,

we can consider f as a function f : Sn → Sn which is injective but not surjective. This
contradicts Theorem 2.16, and so we must have n = m. This proves Part (3).

To prove Part (4), we again suppose that |A| = n and |B| = m. If n ≤ m then Sn ⊆ Sm

so the inclusion map I : Sn → Sm is injective and we have |A| = |Sn| ≤ |Sm| = |B|.
Conversely, suppose that |A| ≤ |B| and suppose, for a contradiction, that n > m. Since
|A| ≤ |B| we have |Sn| = |A| ≤ |B| = |Sm| so we can choose an injective map f : Sn → Sm.
Since n > m we have Sm

⊂6= Sn so we can consider f as a map f : Sn → Sn, and this map

is injective but not surjective. This contradicts Theorem 2.16, and so n ≤ m.
Finally, to prove Part (5) we suppose that one of the two sets A and B is finite, and

that |A| ≤ |B| and |B| ≤ |A|. If A is finite then, since |B| ≤ |A|, Part (2) implies that B is
finite. If B is finite then, since |A| ≤ |B|, Part (2) implies that A is finite. Thus, in either
case, we see that A and B are both finite. Since A and B are both finite with |A| ≤ |B|
and |B| ≤ |A|, we must have |A| = |B| by Parts (3) and (4).
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2.17 Theorem: Let A be a set. Then |A| ≤ |N| if and only if A is finite or countable.

Proof: First we claim that every subset of N is either finite or countable. Let A ⊆ N and
suppose that A is not finite. Since A 6= ∅, we can set a0 = minA (using the Well-Ordering
Property of N). Note that {0, 1, · · · , a0} ∩A = {a0}. Since A 6= {a0} (so the set A \ {a0}
is nonempty) we can set a1 = minA \ {a0}. Then we have a0 < a1 and {0, 1, 2, · · · , a1} ∩
A = {a0, a1}. Since A 6= {a0, a1} we can set a2 = minA \ {a0, a1}. Then we have
a0 < a1 < a2 and {0, 1, 2, · · · , a3} ∩ A = {a0, a1, a2}. We continue the procedure: having
chosen a0, a1, · · · , an−1 ∈ A with a0 < a1 < · · · < an−1 such that A ∩ {0, 1, · · · , an−1} =
{a0, a1, · · · , an−1}, since A 6= {a0, a1, · · · , an−1} we can set an = minA\{a0, a1, · · · , an−1},
and then we have a0 < a1 < · · · < an−1 < an and A{0, 1, 2, · · · , an}∩A = {a0, a1, · · · , an}.
In this way, we obtain a countable set {a0, a1, a2, · · ·} ⊆ A with a0 < a1 < a2 < · · ·
with the property that for all m ∈ N, {0, 1, 2, · · · , am} ∩ A = {a0, a1, · · · , am}. Since
0 ≤ a0 < a1 < a2 < · · ·, it follows (by induction) that ak ≥ k for all k ∈ N. It follows in
turn that A ⊆ {a0, a1, a2 · · ·} because given m ∈ A, since m ≤ am we have

m ∈ {0, 1, 2, · · · ,m} ∩A ⊆ {0, 1, 2, · · · , am} ∩A = {a0, a1, · · · , am}.

Thus A = {a0, a1, a2, · · ·} and the elements ai are distinct, so A is countable. This proves
our claim that every subset of N is either finite or countable.

Now suppose that |A| ≤ |N | and choose an injective map f : A → N. Since f is
injective, when we consider it as a map f : A→ f(A), it is bijective, and so |A| = |f(A)|.
Since f(A) ⊆ N, the previous paragraph shows that f(A) is either finite or countable. If
f(A) is finite with |f(A)| = n then |A| = |f(A)| = |Sn|, and if f(A) is countable then we
have |A| = |f(A)| = |N|. Thus A is finite or countable.

2.18 Theorem: Let A be a set. Then

(1) |A| < |N| if and only if A is finite,
(2) |N| < |A| if and only if A is neither finite nor countable, and
(3) if |A| ≤ |N| and |N| ≤ |A| the |A| = |N|.

Proof: Part (1) follows from Theorem 2.15 because

|A| < |N| ⇐⇒ (|A| ≤ |N| and |A| 6= |N|)
⇐⇒ (A is finite or countable and A is not countable)

⇐⇒ A is finite

and Part (2) follows from Theorem 2.17 because

|N| < |A| ⇐⇒ (|N| ≤ |A| and |N| 6= |A|)
⇐⇒ (A is not finite and A is not countable.)

To prove Part (3), suppose that |A| ≤ |N| and |N| ≤ |A|. Since |A| ≤ |N|, we know
that A is finite or countable by Theorem 2.17. Since |N| ≤ |A|, we know that that A is
infinite by Theorem 2.15. Since A is finite or countable and A is not finite, it follows that
A is countable. Thus |A| = |N|.

2.19 Definition: Let A be a set. When A is countable we write |A| = ℵ0. When A is
finite we write |A| < ℵ0. When A is infinite we write |A| ≥ ℵ0. When A is either finite or
countable we write |A| ≤ ℵ0 and we say that A is at most countable. when A is neither
finite nor countable we write |A| > ℵ0 and we say that A is uncountable.
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2.20 Theorem:

(1) If A and B are countable sets, then so is A×B.
(2) If A and B are countable sets, then so is A ∪B.
(3) If A0, A1, A2, · · · are countable sets, then so is

⋃∞
k=0 Ak.

(4) Q is countable.

Proof: To prove Parts (1) and (2), let A = {a0, a1, a2, · · ·} with the ai distinct and let
B = {b0, b1, b2, · · ·} with the bi distinct. Since every positive integer can be written uniquely
in the form 2k(2l+1) with k, l ∈ N, the map f : A×B → N given by f(ak, bl) = 2k(2l+1)−1
is bijective, and so |A × B| = |N|. This proves Part (1). Since the map g : N → A ∪ B
given by g(k) = ak is injective, we have |N| ≤ |A∪B|. Since the map h : N→ A∪B given
by h(2k) = ak and h(2k+1) = bk is surjective, we have |A∪B| ≤ |N |. Since |N| ≤ |A∪B|
and |A ∪B| ≤ |N|, we have |A ∪B| = |N| by Part (3) of Theorem 2.18. This proves (2).

To prove Part (3), for each k ∈ N, let Ak = {ak0, ak1, ak2, · · ·} with the aki distinct.
Since the map f : N →

⋃∞
k=0 Ak given by f(k) = a0,k is injective, |N| ≤

∣∣⋃∞
k=0 Ak

∣∣.
Since N×N is countable by Part (1), and since the map g : N×N→

⋃∞
k=0 Ak given by

g(k, l) = ak,l is surjective, we have
∣∣⋃∞

k=0 Ak

∣∣ ≤ |N×N| = |N|. By Part (3) of Theorem

2.18, we have
∣∣⋃∞

k=0 Ak

∣∣ = |N|, as required.
Finally, we prove Part (4). Since the map f : N → Q given by f(k) = k is injective,

we have |N| ≤ |Q|. Since the map g : Q → Z × Z, given by g
(
a
b

)
= (a, b) for all

a, b ∈ Z with b > 0 and gcd(a, b) = 1, is injective, and since Z × Z is countable, we have
|Q| ≤ |Z× Z| = |N|. Since |N| ≤ |Q| and |Q| ≤ |N|, we have |Q| = |N|, as required.

2.21 Definition: For a set A, let P(A) denote the power set of A, that is the set of all
subsets of A, and let 2A denote the set of all functions from A to S2 = {0, 1}.

2.22 Theorem:

(1) For every set A,
∣∣P(A)

∣∣ =
∣∣2A∣∣.

(2) For every set A, |A| <
∣∣P(A)

∣∣.
(3) R is uncountable.

Proof: Let A be any set.Define a map g : P(A)→ 2A as follows. Given S ∈ P(A), that is
given S ⊆ A, we define g(S) ∈ 2A to be the map g(S) : A→ {0, 1} given by

g(S)(a) =

{
1 if a ∈ S,

0 if a /∈ S.

Define a map h : 2A → P(A) as follows. Given f ∈ 2A, that is given a map f : A→ {0, 1},
we define h(f) ∈ P(A) to be the subset

h(f) =
{
a ∈ A

∣∣f(a) = 1
}
⊆ A.

The maps g and h are the inverses of each other because for every S ⊆ A and every
f : A→ {0, 1} we have

f = g(S) ⇐⇒ ∀a ∈ A f(a) = g(S)(a) ⇐⇒ ∀a ∈ A f(a) =

{
1 if a ∈ S,

0 if a /∈ S,

⇐⇒ ∀a ∈ A
(
f(a) = 1 ⇐⇒ a ∈ S

)
⇐⇒

{
a ∈ A

∣∣f(a) = 1
}

= S ⇐⇒ h(f) = S.

This completes the proof of Part (1).
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Let us prove Part (2). Again we let A be any set. Since the the map f : A → P(A)
given by f(a) = {a} is injective, we have |A| ≤

∣∣P(A)
∣∣. We need to show that |A| 6=

∣∣P(A)
∣∣.

Let g : A→ P(A) be any map. Let S =
{
a ∈ A

∣∣a /∈ g(a)
}

. Note that S cannot be in the
range of g because if we could choose a ∈ A so that g(a) = S then, by the definition of S,
we would have a ∈ S ⇐⇒ a /∈ g(a) ⇐⇒ a /∈ S which is not possible. Since S is not in
the range of g, the map g is not surjective. Since g was an arbitrary map from A to P(A),
it follows that there is no surjective map from A to P(A). Thus there is no bijective map
from A to P(A) and so we have |A| 6=

∣∣P(A)
∣∣, as desired.

Finally, we shall prove that R is uncountable using the fact (which we did not prove)
that every real number has a unique decimal expansion which does not end with an infinite
string of 9’s. We define a map g : 2N → R as follows. Given f ∈ 2N, that is given a map
f : N → {0, 1}, we define g(f) to be the real number g(f) ∈ [0, 1) with the decimal
expansion g(f) = .f(0)f(1)f(2)f(3) · · · (for those who have seen infinite series, this is

the number g(f) =
∞∑
k=0

f(k)10−k−1). By the uniqueness of decimal expansions, the map

g is injective, so we have
∣∣2N∣∣ ≤ |R|. Thus |N| <

∣∣P(N)
∣∣ =

∣∣2N∣∣ ≤ |R|, and so R is
uncountable, by Part (2) of Theorem 2.18.

2.23 Theorem: (Cantor - Schroeder - Bernstein) Let A and B be sets. Suppose that
|A| ≤ |B| and |B| ≤ |A|. Then |A| = |B|

Proof: We sketch a proof. Choose injective functions f : A → B and g : B → A. Since
the functions f : A → f(A), g : B → g(B) and f : g(B) → f

(
g(B)

)
are bijective we have

|A| = |f(A)| and |B| = |g(B)| =
∣∣f(g(B))

∣∣. Also note that f
(
g(B)

)
⊆ f(A) ⊆ B. Let

X = f
(
g(B)

)
, Y = f(A) and Z = B. Then we have X ⊆ Y ⊆ Z and we have |X| = |Z|

and we need to show that |Y | = |Z|. The composite h = f ◦ g : Z → X is a bijection.
Define sets Zn and Yn for n ∈ N recursively by

Z0 = Z, Zn = h(Zn−1) and Y0 = Y , Yn = h(Yn−1).

Since Y0 = Y , Z0 = Z, Z1 = h(Z0) = h(Z) = X and X ⊆ Y ⊆ Z, we have

Z1 ⊆ Y0 ⊆ Z0.

Also note that for 1 ≤ n ∈ N,

Zn ⊆ Yn−1 ⊆ Zn−1 =⇒ h(Zn) ⊆ h(Yn−1) ⊆ h(Zn−1) =⇒ Zn+1 ⊆ Yn ⊆ Zn.

By the Induction Principle, it follows that Zn ⊆ Yn−1 ⊆ Zn−1 for all n ≥ 1, so we have

Z0 ⊇ Y0 ⊇ Z1 ⊇ Y1 ⊇ Z2 ⊇ Y2 ⊇ · · ·

Let Un = Zn \ Yn, U =
∞⋃

n=1
Un and V = Z \ U . Define H : Z → Y by

H(x) =

{
h(x) if x ∈ U,

x if x ∈ V.

Verify that H is bijective.

2.24 Exercise: Show that |R| =
∣∣2N∣∣.

Solution: We may include a solution later.
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