
MATH 147 Calculus 1, Lecture Notes by Stephen New

Chapter 1: Sets, Fields and Orders

1.1 Definition: For sets A and B, we use the following notation. We write x ∈ A when
x is an element of the set A. We denote the empty set, that is the set with no elements,
by ∅. We write A = B when the sets A and B are equal, that is when A and B have the
same elements. We write A ⊆ B (some books write A ⊂ B) when A is a subset of B,
that is when every element of A is also an element of B. We write A ⊂ B, or for emphasis
A ⊂6= B, when A is a proper subset of B, they is when A ⊆ B but A 6= B. We denote the

union of A and B by A∪B, the intersection of A and B by A∩B, the set A remove B
by A \B and the product of A and B by A×B, that is

A ∪B =
{
x
∣∣x ∈ A or x ∈ B

}
,

A ∩B =
{
x
∣∣x ∈ A and x ∈ B

}
,

A \B =
{
x
∣∣x ∈ A∣∣x /∈ B}, and

A×B =
{

(a, b)
∣∣x ∈ A and b ∈ B

}
.

We say that A and B are disjoint when A ∩B = ∅.
1.2 Theorem: (Properties of Sets) Let A,B,C ⊆ X. Then

(1) (Idempotence) A ∪A = A, A ∩A = A,
(2) (Identity) A ∪ ∅ = A, A ∩ ∅ = ∅, A ∪X = X, A ∩X = A,
(3) (Associativity) (A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C) = A ∩ (B ∩ C),
(4) (Commutativity) A ∪B = B ∪A and A ∩B = B ∩A,
(5) (Distributivity) A∩ (B ∪C) = (A∩B)∪ (A∩C) and A∪ (B ∩C) = (A∪B)∩ (A∪C),
(6) (De Morgan’s Laws) X \(A∪B) = (X \A)∩(X \B) and X \(A∩B) = (X \A)∪(X \B).

Proof: The proof is left as an exercise.

1.3 Definition: We write N = {0, 1, 2, · · ·} for the set of natural numbers (which we
take to include the number 0), Z = {0,±1,±2, · · ·} for the set of integers, Q for the set of
rational numbers and we write R for the set of real numbers. We assume familiarity
with the algebraic operations + , − , · , ÷ and with the order relations < , ≤ , > , ≥ on
these sets. Some of the fundamental properties of these operations and order relations are
discussed in this chapter.

1.4 Definition: For a, b ∈ R with a ≤ b we write

(a, b) =
{
x ∈ R

∣∣a < x < b
}
, [a, b] =

{
x ∈ R

∣∣a ≤ x ≤ b} ,
(a, b] =

{
x ∈ R

∣∣a < x ≤ b
}
, [a, b) =

{
x ∈ R

∣∣a ≤ x < b
}
,

(a,∞) =
{
x ∈ R

∣∣a < x
}
, [a,∞) =

{
x ∈ R

∣∣a ≤ x} ,
(−∞, b) =

{
x ∈ R

∣∣x ≤ b} , (−∞, b] =
{
x ∈ R

∣∣x ≤ b} ,
(−∞,∞) = R .

An interval in R is any set of one of the above forms. In the case that a = b we have
(a, b) = [a, b) = (a, b] = ∅ and [a, b] = {a}, and these intervals are called degenerate
intervals. The intervals ∅, (a, b), (a,∞), (−∞, b) and (−∞,∞) are called open intervals.
The intervals ∅, [a, b], [a,∞), (−∞, b] and (−∞,∞) are called closed intervals.
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1.5 Definition: Let A and B be sets. A relation on A×B is a subset r ⊆ A×B. When
r is a relation on A × B and a ∈ A and b ∈ B, we say that a and b are related under r
and we write arb when (a, b) ∈ r. The domain and range of the relation r are the sets
Domain(r) =

{
x ∈ A

∣∣xry for some y ∈ B
}

and Range(r) =
{
y ∈ B

∣∣xry for some x ∈ A
}

.

1.6 Definition: Let A and B be sets. A function from A to B is a relation f on A×B
with the property that for every x ∈ A there exists a unique element y ∈ B such that xfy.
When f is a function from A to B, we write f : A→ B. When f : A→ B and x ∈ A we
denote the unique element y ∈ B for which xfy by f(x). Note that Domain(f) = A and
Range(f) ⊆ B. A binary operation on A is a function f : A×A→ A

1.7 Definition: A field is a set F with two distinct elements 0, 1 ∈ F and two binary
operations + and · such that

(1) (Additive Associativity) for all x, y, z ∈ F we have (x+ y) + z = x+ (y + z),
(2) (Additive Commutativity) for all x, y ∈ F we have x+ y = y + x,
(3) (Additive Identity) for all x ∈ F we have 0 + x = x,
(4) (Additive Inverse) for all x ∈ F there exists a unique y ∈ F such that x+ y = 0,
(5) (Multiplicative Associativity) for all x, y, z ∈ F we have (x · y) · z = x · (y · z),
(6) (Multiplicative Commutativity) for all x, y ∈ F we have x · y = y · x,
(7) (Multiplicative Identity) for all x ∈ F we have 1 · x = x,
(8) (Multiplicative Inverse) for all 0 6= x ∈ F there exists a unique y ∈ F such that x·y = 1.
(9) (Distributivity) for all x, y, z ∈ F we have x · (y + z) = (x · y) + (x · z).

1.8 Theorem: Q and R are fields.

Proof: We omit the proof, but we remark that Z is not a field because it does not satisfy
Property (8).

1.9 Notation: Let F be a field and let a, b ∈ F . We denote the unique additive inverse of
a by −a and we write a−b = a+(−b). We usually write a·b simply as ab, and, when a 6= 0,
we denote the unique multiplicative inverse of a by a−1 and we write b÷ a = b

a = b a−1.

1.10 Theorem: Let F be a field. Then for all x, y, z ∈ F we have

(1) (Additive Cancellation) if x+ y = x+ z then y = z,
(2) (Uniqueness of Additive Identity) if x+ y = x then y = 0,
(3) (Multiplicative Cancellation) if xy = xz then either x = 0 or y = z,
(4) (Uniqueness of Multiplicative Identity) if xy = x then y = 1,
(5) (No Zero Divisors) if xy = 0 then x = 0 or y = 0.

Proof: The proof is left as an exercise.

1.11 Theorem: (Properties of Fields) Let F be a field. Then for all x, y ∈ F we have
0 · x = 0, −(−x) = x, −(x+ y) = −x− y, (−1)x = −x, (−x) y = −(xy), (−x)(−y) = xy,
(a−1)−1 = a, (ab)−1 = a−1b−1 and (−a)−1 = −a−1.

Proof: The proof is left as an exercise.

2



1.12 Definition: An order on a set X is a binary relation ≤ on X such that

(1) (Totality) for all x, y ∈ X, either x ≤ y or y ≤ x,
(2) (Antisymmetry) for all x, y ∈ X, if x ≤ y and y ≤ x then x = y, and
(3) (Transitivity) for all x, y, z ∈ X, if x < y and y < z then x < z.

An ordered set is a set X with on order ≤.

1.13 Theorem: Each of N, Z, Q and R is an ordered set using its standard order ≤.
Under the inclusions N ⊆ Z ⊆ Q ⊆ R the orders coincide (so that for example when
a, b ∈ N we have a ≤ b in N if and only if a ≤ b in R).

Proof: We omit the proof.

1.14 Notation: When ≤ is an order on X, we write x < y when x ≤ y and x 6= y, we
write x ≥ y when y ≤ x and we write x > y when y < x.

1.15 Definition: An ordered field is a field F with an order≤ such that for all x, y, z ∈ F
(1) if x ≤ y then x+ z ≤ y + z, and
(2) if 0 ≤ x and 0 ≤ y then 0 ≤ xy.

When F is an ordered field and x ∈ F we say that x is positive when x > 0, we say x is
negative when x < 0, we say x is nonpositive when x ≤ 0, and we say x is nonnegative
when x ≥ 0.

1.16 Theorem: Q and R are ordered fields.

Proof: We omit the proof.

1.17 Theorem: (Properties of Ordered Fields) Let F be an ordered field. Then for all
x, y, z ∈ F
(1) if x > 0 then −x < 0, and if x < 0 then −x > 0,
(2) if x > 0 and y < z then xy < xz,
(3) if x < 0 and y < z then xy > xz,
(4) if x 6= 0 then x2 > 0, and in particular 1 > 0, and
(5) if 0 < x < y then 0 < 1

y <
1
x .

Proof: The proof is left as an exercise.

1.18 Definition: Let F be an ordered field. For a ∈ F we define the absolute value of
a to be

|a| =

{
a if a ≥ 0,

−a if a ≤ 0.

1.19 Theorem: (Properties of Absolute Value) Let F be an ordered field. For all x, y ∈ F
(1) (Positive Definiteness) |x| ≥ 0 with |x| = 0 ⇐⇒ x = 0,
(2) (Symmetry) |x− y| = |y − x|,
(3) (Multiplicativeness) |xy| = |x| |y|
(4) (Triangle Inequality)

∣∣|x| − |y|∣∣ ≤ |x+ y| ≤ |x|+ |y|, and
(5) (Approximation) for a, b ∈ F with b ≥ 0 we have |x− a| ≤ b ⇐⇒ a− b ≤ x ≤ a+ b.

Proof: The proof is left as an exercise.
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1.20 Theorem: (Induction Principle) Let m ∈ Z. Let F (n) be a statement about n.
Suppose that

(1) F (m) is true, and
(2) for all k ∈ Z with k ≥ m, if F (k) is true then F (k + 1) is true.

Then F (n) is true for all n ∈ Z with n ≥ m.

Proof: We omit the proof.

1.21 Theorem: (Basic Order Properties in Z)

(1) for n ∈ Z we have n ∈ N if and only if n ≥ 0,
(2) for all k, n ∈ Z we have k ≤ n if and only if k < n+ 1.

Proof: We omit the proof.

1.22 Theorem: (Strong Induction Principle) Let m ∈ Z. Let F (n) be a statement about
n. Suppose that for all n ∈ Z with n ≥ m, if F (k) is true for all k ∈ Z with m ≤ k < n
then F (n) is true. Then F (n) is true for all n ∈ Z with n ≥ m.

Proof: Let G(n) be the statement “F (k) is true for all m ≤ k < n”. Note that G(m) is
true vacuously since there are no elements k with m ≤ k < m. Let n ∈ Z with n ≥ m and
suppose, inductively, that G(n) is true, in other words that F (k) is true for all m ≤ k < n.
It follows from the hypothesis of the theorem that F (n) is true, and so we have F (k) true
for all k ∈ Z with m ≤ k ≤ n. By the Basic Order Property (2), it follows that F (k)
is true for all k ∈ Z with m ≤ k < n + 1, or equivalently that G(n + 1) is true. By the
Induction Principle, it follows that G(n) is true for all n ∈ Z with n ≥ m. Let n ∈ Z with
n ≥ m. Since G(n) is true, we know that F (k) is true for all k ∈ Z with m ≤ k < n. By
the hypothesis of the theorem, it follows that F (n) is true. Thus F (n) is true for all n ∈ Z
with n ≥ m.

1.23 Example: Let a0 = 0 and a1 = 1 and for n ≥ 2 let an = an−1 + 6an−2. Show that
an = 1

5

(
3n − (−2)n

)
for all n ≥ 0.

Solution: We claim that an = 1
5

(
3n − (−2)n

)
for all n ≥ 0. When n = 0 we have

an = a0 = 0 and 1
5

(
3n − (−2)n

)
= 1

5

(
30 − (−2)0

)
= 0 , so the claim is true when n = 0.

When n = 1 we have an = a1 = 1 and 1
5

(
3n − (−2)n

)
= 1

5

(
3− (−2)

)
= 1, so the claim is

true when n = 1. Let n ≥ 2 and suppose the claim is true for all k < n. In particular we
suppose the claim is true for n−1 and n−2, that is we suppose an−1 = 1

5

(
3n−1−(−2)n−1

)
and an−2 = 1

5

(
3n−2 − (−2)n−2

)
. Then

an = an−1 + 6an−2

= 1
5

(
3n−1 − (−2)n−1

)
+ 6

5

(
3n−2 − (−2)n−2

)
=
(
1
5 · 3

n−1 + 6
5 · 3

n−2
)
−
(
1
5 (−2)n−1 + 6

5 (−2)n−2
)

=
(
3
5 · 3

n−2 + 6
5 · 3

n−2
)
−
(
− 2

5 (−2)n−2 + 6
5 (−2)n−2

)
= 9

5 · 3
n−2 − 4

5 (−2)n−2 = 1
5 · 3

n − 1
5 (−2)n

= 1
5

(
3n − (−2)n

)
= 1

5

(
3n − (−2)n

)
.

By Strong Induction, we have an = 1
5

(
3n − (−2)n

)
for all n ≥ 0.
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1.24 Definition: Let X be an ordered set and let A ⊆ X. We say that A is bounded
above (in X) when there exists an element b ∈ X such that x ≤ b for all x ∈ A, and in
this case we say that b is an upper bound for A (in X).

We say that A is bounded below (in X) when there exists an element a ∈ X such
that a ≤ x for all x ∈ A, and in this case we say that a is a lower bound for A (in X).
We say that A is bounded (in X) when A is bounded above and bounded below.

1.25 Definition: LetX be an ordered set and let A ⊆ X. We say that A has a supremum
(or a least upper bound) (in X) when there exists an element b ∈ X such that b is an
upper bound for A with b ≤ c for every upper bound c ∈ X for A, and in this case we
say that b is the supremum (or the least upper bound) of A (in X) (note that if the
supremum exists then it is unique by antisymmetry) and we write b = supA. When the
supremum b = supA exists and we have b ∈ A, then we also say that b is the maximum
element of A and we write b = maxA.

We say that A has an infimum (or a greatest lower bound) (in X) when there
exists an element a ∈ X such that a is a lower bound for A with c ≤ a for every lower
bound c for A, and in this case we say that a is the infimum (or the greatest lower
bound) of A (in X) and we write a = inf A. When a = inf A ∈ A we also say that a is
the minimum element of A and we write a = minA.

1.26 Example: Let A = (0,∞) and B = [1,
√

2). The set A is bounded below but
not bounded above. The numbers −1 and 0 are both lower bounds for A and we have
inf A = 0. The set A has no minimum element and no maximum element. The set B is
bounded above and bellow. The numbers 0 and 1 are both lower bounds for B and the
numbers

√
2 and 3 are both upper bounds for B. We have inf B = 1 and supB =

√
2.

The set B has a minimum element, namely minB = inf B = 1, but B has no maximum
element.

1.27 Theorem: (Completeness Properties of R)

(1) Every nonempty subset of R which is bounded above in R has a supremum in R.
(2) Every nonempty subset of R which is bounded below in R has an infimum in R.

Proof: We omit the proof.

1.28 Theorem: (Approximation Property of Supremum and Infimum) Let ∅ 6= A ⊆ R.

(1) If b = supA then for all 0 < ε ∈ R there exists x ∈ A with b− ε < x ≤ b, and
(2) if a = inf A then for all 0 < ε ∈ R there exists x ∈ A with a ≤ x < a+ ε.

Proof: Let b = supA. Let ε > 0. Suppose, for a contradiction, that there is no element
x ∈ A with b− ε < x, or equivalently that for all x ∈ A we have b− ε ≥ x. Let c = b− ε.
Note that c is an upper bound for A since x ≤ b− ε = c for all x ∈ A. Since b = supA and
c is an upper bound for A we have b ≤ c. But since ε > 0 we have b > b− ε = c giving the
desired contradiction. This proves that there exists x ∈ A with b− ε < x. Choose such an
element x ∈ A. Since b = supA we know that b is an upper bound for A and hence b ≥ x.
Thus we have b− ε < x ≤ b, as required.
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1.29 Theorem: (Well-Ordering Properties of Z in R)

(1) Every nonempty subset of Z which is bounded above in R has a maximum element.
(2) Every nonempty subset of Z which is bounded below in R has a minimum element, in
particular every nonempty subset of N has a minimum element.

Proof: We prove Part (1). Let A be a nonempty subset of Z which is bounded in R.
By Completeness, A has a supremum in R. Let n = supA. We must show that n ∈ A.
Suppose, for a contradiction, that n /∈ A. By the Approximation Property (using ε = 1),
we can choose a ∈ A with n − 1 < a ≤ n. Note that a 6= n since a ∈ A and n /∈ A and
so we have a < n. By the Approximation Property again (using ε = n− a) we can choose
b ∈ A with a < b ≤ n. Since a < b we have b− a > 0. Since n− 1 < a and b ≤ n we have
1 = n− (n− 1) > b− a. But then we have b− a ∈ Z with 0 < b− a < 1 which contradicts
the Basic Order Properties of Z (since b − a < 1 =⇒ b − a ≤ 0). Thus n ∈ A so A has a
maximum element.

1.30 Theorem: (Floor and Ceiling Properties of Z in R)

(1) (Floor Property) For every x ∈ R there exists a unique n ∈ Z with x− 1 < n ≤ x.
(2) (Ceiling Property) For every x ∈ R there exists a unique m ∈ Z with x ≤ m < x+ 1.

Proof: We prove Part (1). First we prove uniqueness. Let x ∈ R and suppose that
n,m ∈ Z with x − 1 < n ≤ x and x − 1 < m ≤ x. Since x − 1 < n we have x < n + 1.
Since m ≤ x and x < n + 1 we have m < n + 1 hence m ≤ n. Similarly, we have n ≤ m.
Since n ≤ m and m ≤ n, we have n = m. This proves uniqueness.

Next we prove existence. Let x ∈ R. First let us consider the case that x ≥ 0.
Let A = {k ∈ Z k ≤ x}. Note that A 6= ∅ because 0 ∈ A and A is bounded above in
R by x. By The Well-Ordering Property of Z in R, A has a maximum element. Let
n = maxA. Since n ∈ A we have n ∈ Z and n ≤ x. Also note that x − 1 < n since
x − 1 ≥ n =⇒ x ≥ n + 1 =⇒ n + 1 ∈ A =⇒ n 6= maxA. Thus for n = maxA we have
n ∈ Z with x− 1 < n ≤ x, as required.

Next consider the case that x < 0. If x ∈ Z we can take n = x. Suppose that
x /∈ Z. We have −x > 0 so, by the previous paragraph, we can choose m ∈ Z with
−x − 1 < m ≤ −x. Since m ∈ Z but x /∈ Z we have m 6= −x so that −x − 1 < m < −x
and hence x < −m < x + 1. Thus we can take n = −m − 1 to get x − 1 < n < x. This
completes the proof of Part (1).

1.31 Definition: Given x ∈ R we define the floor of x to be the unique n ∈ Z with
x − 1 < n ≤ x and we denote the floor of x by bxc. The function f : R → Z given by
f(x) = bxc is called the floor function.

1.32 Theorem: (Archimedean Properties of Z in R)

(1) For every x ∈ R there exists n ∈ Z with n > x.
(2) For every x ∈ R there exists m ∈ Z with m < x.

Proof: Let x ∈ R. Let n = bxc + 1 and m = bxc − 1. Since x − 1 < bxc we have
x < bxc+ 1 = n and since bxc ≤ x we have m = bxc − 1 ≤ x− 1 < x.

1.33 Theorem: (Density of Q in R) For all a, b ∈ R with a < b there exists q ∈ Q with
a < q < b.

Proof: Let a, b ∈ R with a < b. By the Archimidean Property, we can choose n ∈ Z with
n > 1

b−a > 0. Then n(b − a) > 1 and so nb > na + 1. Let k = bna + 1c. Then we have

na < k ≤ na+ 1 < nb hence a < k
n < b. Thus we can take q = k

n to get a < q < b.
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