MATH 147 Calculus 1, Lecture Notes by Stephen New

Chapter 1: Sets, Fields and Orders

1.1 Definition: For sets A and B, we use the following notation. We write x € A when
x is an element of the set A. We denote the empty set, that is the set with no elements,
by (). We write A = B when the sets A and B are equal, that is when A and B have the
same elements. We write A C B (some books write A C B) when A is a subset of B,
that is when every element of A is also an element of B. We write A C B, or for emphasis
A % B, when A is a proper subset of B, they is when A C B but A # B. We denote the

union of A and B by AU B, the intersection of A and B by AN B, the set A remove B
by A\ B and the product of A and B by A x B, that is
AUB = {x‘xererB},
ANB= {x‘xeAandeB},
A\ B = {z|z € A|lz ¢ B}, and
Ax B={(a,b)|z € Aand b€ B}.
We say that A and B are disjoint when AN B = ().
1.2 Theorem: (Properties of Sets) Let A, B,C C X. Then

(1) (Idempotence) AUA=A, ANA=A,

(2) (Identity) AUD=A, Anl=0, AUX =X, AnNX = A,

(3) (Associativity) (AUB)UC = AU (BUC) and (ANB)NC)=AN(BNC),

(4) (Commutativity) AUB =BUA and ANB=BNA,

(5) (Distributivity) AN (BUC) = (ANB)U(ANC) and AU(BNC) = (AUB)N(AUC),
(6) (De Morgan’s Laws) X \ (AUB) = (X\A)N(X\B) and X\ (ANB) = (X\A)U(X\B).

Proof: The proof is left as an exercise.

1.3 Definition: We write N = {0,1,2,---} for the set of natural numbers (which we
take to include the number 0), Z = {0, +1, £2, - - -} for the set of integers, Q for the set of
rational numbers and we write R for the set of real numbers. We assume familiarity
with the algebraic operations +, —, -, — and with the order relations <, <, >, > on
these sets. Some of the fundamental properties of these operations and order relations are
discussed in this chapter.

1.4 Definition: For a,b € R with a < b we write

(a,b) ={zeR|a<z<b}, [a,b] ={z€eR|a <z <b},

(a,b] ={z €eRla<z <b}, [a,b) ={z e R|a <z <b},

(a,00) = {xGR‘a<x} , la,00) = {:1: ER’agx},
(—00,b) = {z € Rz < b}, (—00,b] = {z € R|z < b},
(—00,0) =R.

An interval in R is any set of one of the above forms. In the case that a = b we have
(a,b) = [a,b) = (a,b] = () and [a,b] = {a}, and these intervals are called degenerate

intervals. The intervals ), (a,b), (a,0), (—00,b) and (—o0,00) are called open intervals.
The intervals 0, [a,b], [a,c0), (=00, b] and (—o0,00) are called closed intervals.
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1.5 Definition: Let A and B be sets. A relation on A x B is a subset r C A x B. When
r is a relation on A X B and a € A and b € B, we say that a and b are related under r
and we write arb when (a,b) € r. The domain and range of the relation r are the sets
Domain(r) = {z € A‘:m“y for some y € B} and Range(r) = {y € B‘xry for some z € A}.

1.6 Definition: Let A and B be sets. A function from A to B is a relation f on A x B
with the property that for every x € A there exists a unique element y € B such that x fy.
When f is a function from A to B, we write f : A — B. When f: A — B and z € A we
denote the unique element y € B for which zfy by f(z). Note that Domain(f) = A and
Range(f) € B. A binary operation on A is a function f: Ax A — A

1.7 Definition: A field is a set F' with two distinct elements 0,1 € F' and two binary
operations + and - such that

) (Additive Associativity) for all z,y,2 € F we have (x +y) + 2z =z + (y + 2),
(Additive Commutativity) for all x,y € F we have z +y =y + x,

(Additive Identity) for all x € F' we have 0 + x = =z,

(Additive Inverse) for all x € F' there exists a unique y € F' such that v +y = 0,
(Multiplicative Associativity) for all z,y,z € F we have (z-y)-z=x-(y- 2),
(Multiplicative Commutativity) for all z,y € F' we have z -y =y - x,

(Multiplicative Identity) for all € F' we have 1 -z = z,

(Multiplicative Inverse) for all 0 # x € F' there exists a unique y € F such that z-y = 1.
(9) (Distributivity) for all z,y,z € F we have z - (y + 2) = (x - y) + (z - 2).

1.8 Theorem: Q and R are fields.

(1
(2)
(3)
(4)
(5)
(6)
(7)
(8)
9

Proof: We omit the proof, but we remark that Z is not a field because it does not satisfy
Property (8).

1.9 Notation: Let F' be a field and let a,b € F'. We denote the unique additive inverse of
a by —a and we write a—b = a+(—b). We usually Write a-b simply as ab, and, When a # 0,
we denote the unique multiplicative inverse of a by a~! and we write b+ a = o= =ba 1.

1.10 Theorem: Let F' be a field. Then for all x,y,z € F we have

(1) (Additive Cancellation) if x +y = x + z then y = z,

(2) (Uniqueness of Additive Identity) if x +y = x then y = 0,

(3) (Multiplicative Cancellation) if xy = xz then either xt =0 or y = z,
(4) (Uniqueness of Multiplicative Identity) if vy = x then y = 1,

(5) (No Zero Divisors) if zy = 0 then x =0 or y = 0.

Proof: The proof is left as an exercise.

1.11 Theorem: (Properties of Fields) Let F be a field. Then for all x,y € F we have

0-2=0,—(=2) =2z, —(z+y) = —z —y, (- = —z, (=2)y = —(2y), (-2)(~y) = 2y,
(a1t =a, (ab)™t =a 107t and (—a)™! = —a™ L.

Proof: The proof is left as an exercise.



1.12 Definition: An order on a set X is a binary relation < on X such that

(1) (Totality) for all z,y € X, either z <y or y < z,
(2) (Antisymmetry) for all z,y € X, if <y and y < z then x = y, and
(3) (Transitivity) for all z,y,z € X, if z <y and y < z then z < z.

An ordered set is a set X with on order <.
1.13 Theorem: FEach of N, Z, Q and R is an ordered set using its standard order <.

Under the inclusions N C Z C Q C R the orders coincide (so that for example when
a,b € N we have a < b in N if and only if a < b in R).

Proof: We omit the proof.

1.14 Notation: When < is an order on X, we write z < y when = < y and = # y, we
write z > y when y < z and we write £ > y when y < z.
1.15 Definition: An ordered field is a field F with an order < such that for all x,vy,z € F

(1) if x <y then x + 2z <y + z, and
(2) if 0 <z and 0 < y then 0 < zy.

When F' is an ordered field and = € F' we say that = is positive when z > 0, we say x is
negative when z < 0, we say z is nonpositive when x < 0, and we say x is nonnegative
when x > 0.

1.16 Theorem: Q and R are ordered fields.
Proof: We omit the proof.
1.17 Theorem: (Properties of Ordered Fields) Let F' be an ordered field. Then for all

r,y,z € F

(1) if x > 0 then —x < 0, and if x < 0 then —z > 0,
(2) ifx >0 and y < z then zy < xz,

(3) if x <0 and y < z then zy > xz,

(4) if z # 0 then x®> > 0, and in particular 1 > 0, and
(5)if0<a <ythen0 <, < L.

Proof: The proof is left as an exercise.

1.18 Definition: Let F' be an ordered field. For a € F' we define the absolute value of

a to be
aifa>0,
la| = .
—aif a <0.

1.19 Theorem: (Properties of Absolute Value) Let F' be an ordered field. For all z,y € F
(1) (Positive Definiteness) |z| > 0 with |x| =0 <= x =0,

(2) (Symmetry) |z —y| = |y — ],

(3) (Multiplicativeness) |xy| = |z||y|

(4) (Triangle Inequality) Hx\ — ]yH <|z+y| <l|z|+ |y|, and

(5) (Approximation) for a,b € F with b > 0 we have |t —a| <b <= a—b<z <a+0b.

Proof: The proof is left as an exercise.



1.20 Theorem: (Induction Principle) Let m € Z. Let F(n) be a statement about n.
Suppose that

(1) F(m) is true, and

(2) for all k € Z with k > m, if F(k) is true then F(k + 1) is true.

Then F(n) is true for all n € Z with n > m.

Proof: We omit the proof.

1.21 Theorem: (Basic Order Properties in Z)

(1) for n € Z we have n € N if and only if n > 0,
(2) for all k,n € Z we have k < n if and only if k < n + 1.

Proof: We omit the proof.

1.22 Theorem: (Strong Induction Principle) Let m € Z. Let F(n) be a statement about
n. Suppose that for all n € Z with n > m, if F (k) is true for all k € Z withm < k <n
then F'(n) is true. Then F'(n) is true for all n € Z with n > m.

Proof: Let G(n) be the statement “F'(k) is true for all m < k < n”. Note that G(m) is
true vacuously since there are no elements k£ with m < k <m. Let n € Z with n > m and
suppose, inductively, that G(n) is true, in other words that F'(k) is true for all m < k < n.
It follows from the hypothesis of the theorem that F(n) is true, and so we have F(k) true
for all £ € Z with m < k < n. By the Basic Order Property (2), it follows that F'(k)
is true for all k € Z with m < k < n + 1, or equivalently that G(n + 1) is true. By the
Induction Principle, it follows that G(n) is true for all n € Z with n > m. Let n € Z with
n > m. Since G(n) is true, we know that F(k) is true for all k£ € Z with m < k < n. By
the hypothesis of the theorem, it follows that F'(n) is true. Thus F'(n) is true for all n € Z
with n > m.

1.23 Example: Let ag = 0 and a; = 1 and for n > 2 let a,, = an_1 + 6a,_2. Show that
an = (3" — (=2)") for all n > 0.

Solution: We claim that a, = (3™ — (—=2)") for all n > 0. When n = 0 we have
an =ap=0and (3" — (-2)") = £(3° = (-2)°) =0, so the claim is true when n = 0.
When n =1 we have a,, = a; = 1 and 1 (3" — (=2)") = £(3 — (-2)) = 1, so the claim is
true when n = 1. Let n > 2 and suppose the claim is true for all £ < n. In particular we
suppose the claim is true for n—1 and n— 2, that is we suppose a,,_1 = %(3”_1 — (—2)”_1)
and a,—o = £ (3772 — (=2)""2). Then

ap = ap—1 + 6ay,_2
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By Strong Induction, we have a,, = %(3” — (—2)”) for all n > 0.



1.24 Definition: Let X be an ordered set and let A C X. We say that A is bounded
above (in X) when there exists an element b € X such that < b for all x € A, and in
this case we say that b is an upper bound for A (in X).

We say that A is bounded below (in X) when there exists an element a € X such
that a < z for all z € A, and in this case we say that a is a lower bound for A (in X).
We say that A is bounded (in X) when A is bounded above and bounded below.

1.25 Definition: Let X be an ordered set and let A C X. We say that A has a supremum
(or a least upper bound) (in X) when there exists an element b € X such that b is an
upper bound for A with b < ¢ for every upper bound ¢ € X for A, and in this case we
say that b is the supremum (or the least upper bound) of A (in X) (note that if the
supremum exists then it is unique by antisymmetry) and we write b = sup A. When the
supremum b = sup A exists and we have b € A, then we also say that b is the maximum
element of A and we write b = max A.

We say that A has an infimum (or a greatest lower bound) (in X) when there
exists an element a € X such that a is a lower bound for A with ¢ < a for every lower
bound ¢ for A, and in this case we say that a is the infimum (or the greatest lower
bound) of A (in X) and we write a = inf A. When a = inf A € A we also say that a is
the minimum element of A and we write a = min A.

1.26 Example: Let A = (0,00) and B = [1,v/2). The set A is bounded below but
not bounded above. The numbers —1 and 0 are both lower bounds for A and we have
inf A = 0. The set A has no minimum element and no maximum element. The set B is
bounded above and bellow. The numbers 0 and 1 are both lower bounds for B and the
numbers v/2 and 3 are both upper bounds for B. We have inf B = 1 and sup B = v/2.
The set B has a minimum element, namely min B = inf B = 1, but B has no maximum
element.

1.27 Theorem: (Completeness Properties of R)

(1) Every nonempty subset of R which is bounded above in R has a supremum in R.
(2) Every nonempty subset of R which is bounded below in R has an infimum in R.

Proof: We omit the proof.

1.28 Theorem: (Approximation Property of Supremum and Infimum) Let ) # A C R.

(1) If b = sup A then for all 0 < € € R there exists x € A with b — e < z < b, and
(2) if a = inf A then for all 0 < € € R there exists x € A with a <z < a + €.

Proof: Let b = sup A. Let ¢ > 0. Suppose, for a contradiction, that there is no element
x € A with b — e < x, or equivalently that for all z € A we have b —e¢ > z. Let c=b —e.
Note that ¢ is an upper bound for A since x < b—¢e = ¢ for all x € A. Since b = sup A and
¢ is an upper bound for A we have b < c¢. But since € > 0 we have b > b — ¢ = ¢ giving the
desired contradiction. This proves that there exists x € A with b — e < x. Choose such an
element x € A. Since b = sup A we know that b is an upper bound for A and hence b > x.
Thus we have b — e < x < b, as required.



1.29 Theorem: (Well-Ordering Properties of Z in R)

(1) Every nonempty subset of Z which is bounded above in R has a maximum element.
(2) Every nonempty subset of Z which is bounded below in R has a minimum element, in
particular every nonempty subset of N has a minimum element.

Proof: We prove Part (1). Let A be a nonempty subset of Z which is bounded in R.
By Completeness, A has a supremum in R. Let n = sup A. We must show that n € A.
Suppose, for a contradiction, that n ¢ A. By the Approximation Property (using e = 1),
we can choose a € A with n — 1 < a < n. Note that a # n since a € A and n ¢ A and
so we have a < n. By the Approximation Property again (using e = n — a) we can choose
bec Awitha<b<mn. Sincea < bwe have b —a > 0. Since n — 1 < a and b < n we have
1=n—(n—1)>b—a. But then we have b — a € Z with 0 < b — a < 1 which contradicts
the Basic Order Properties of Z (since b —a <1 = b—a <0). Thus n € A so A has a
maximum element.

1.30 Theorem: (Floor and Ceiling Properties of Z in R)

(1) (Floor Property) For every x € R there exists a unique n € Z withx —1 <n < z.
(2) (Ceiling Property) For every x € R there exists a unique m € Z with x < m < z + 1.

Proof: We prove Part (1). First we prove uniqueness. Let z € R and suppose that
nméeZwithr—1l<n<zandzr—1<m<z Sincexz—1<n we have r < n + 1.
Since m < x and x < n + 1 we have m < n + 1 hence m < n. Similarly, we have n < m.
Since n < m and m < n, we have n = m. This proves uniqueness.

Next we prove existence. Let x € R. First let us consider the case that x > 0.
Let A ={k € Z k < z}. Note that A # () because 0 € A and A is bounded above in
R by z. By The Well-Ordering Property of Z in R, A has a maximum element. Let
n = maxA. Since n € A we have n € Z and n < z. Also note that x — 1 < n since
r—1>n=zxz>n+1=n+1¢€ A= n # maxA. Thus for n = max A we have
n € Z with x — 1 <n < x, as required.

Next consider the case that x < 0. If x € Z we can take n = x. Suppose that
x ¢ Z. We have —z > 0 so, by the previous paragraph, we can choose m € Z with
—z—1<m< —z. Since m € Z but x ¢ Z we have m # —z so that —z — 1 <m < —x
and hence x < —m < x 4+ 1. Thus we can take n = —m — 1 to get x — 1 < n < x. This
completes the proof of Part (1).

1.31 Definition: Given z € R we define the floor of x to be the unique n € Z with
x —1 < n < z and we denote the floor of x by |z|. The function f : R — Z given by
f(x) = |x] is called the floor function.

1.32 Theorem: (Archimedean Properties of Z in R)

(1) For every x € R there exists n € Z with n > x.

(2) For every x € R there exists m € Z with m < x.

Proof: Let z € R. Let n = || +1 and m = [z] — 1. Since x — 1 < |z| we have
x < |z]+1=nandsince || <zwehavem=|z]-1<z-1<u=.

1.33 Theorem: (Density of Q in R) For all a,b € R with a < b there exists ¢ € Q with
a<q<hb.

Proof: Let a,b € R with a < b. By the Archimidean Property, we can choose n € Z with
n > s~ > 0. Then n(b —a) > 1 and so nb > na + 1. Let k = [na + 1]. Then we have
na < k <na+1<nb hence a < % < b. Thuswecantakeq:%togeta<q<b.
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