
MATH 147 Calculus 1, Lecture Notes by Stephen New

Appendix 2: Exponential and Trigonometric Functions

2.1 Definition: Let X and Y be sets and let f : X → Y . We say that f is injective (or
one-to-one, written as 1 : 1) when for every y ∈ Y there exists at most one x ∈ X such
that f(x) = y. Equivalently, f is injective when for all x1, x2 ∈ X, if f(x1) = f(x2) then
x1 = x2. We say that f is surjective (or onto) when for every y ∈ Y there exists at least
one x ∈ X such that f(x) = y. Equivalently, f is surjective when Range(f) = Y . We say
that f is bijective (or invertible) when f is both injective and surjective, that is when
for every y ∈ Y there exists exactly one x ∈ X such that f(x) = y. When f is bijective,
we define the inverse of f to be the function f−1 : Y → X such that for all y ∈ Y , f−1(y)
is equal to the unique element x ∈ X such that f(x) = y. Note that when f is bijective so
is f−1, and in this case we have (f−1)−1 = f .

2.2 Example: Let f(x) = 1
3

√
12x− x2 for 0 ≤ x ≤ 6. Show that f is injective and find

a formula for its inverse function.

Solution: Note that when 0 ≤ x ≤ 6 (indeed when 0 ≤ x ≤ 12) we have 12x − x2 =
x(12− x) ≥ 0, so that 1

3

√
12x− x2 exists, and we have 12x− x2 = 36− (x− 6)2 ≤ 36 so

that 1
3

√
12x− x2 ≤ 1

3

√
36 = 2. Thus if 0 ≤ x ≤ 6 then f(x) = 1

3

√
12x− x2 exists and we

have 0 ≤ f(x) ≤ 2. Let x, y ∈ R with 0 ≤ x ≤ 6 and 0 ≤ y ≤ 2. Then we have

y = f(x) ⇐⇒ y = 1
3

√
12x− x2

⇐⇒ 3y =
√

12x− x2

⇐⇒ 9y2 = 12x− x2 , since y ≥ 0

⇐⇒ x2 − 12x+ 9y2 = 0

⇐⇒ x =
12±

√
144− 36y2

2
= 6± 3

√
4− y2 , by the Quadratic Formula

⇐⇒ x = 6− 3
√

4− y2 since x ≤ 6.

Verify that when 0 ≤ y ≤ 2 we have 0 ≤ 4 − y2 ≤ 4 so that
√

4− y2 exists and we have

0 ≤ 6 − 3
√

4− y2 ≤ 6. Thus when we consider f as a function f : [0, 6] → [0, 2], it is

bisectve and its inverse f−1 : [0, 2]→ [0, 6] is given by f−1(y) = 6− 3
√

4− y2.

2.3 Definition: Let F be a field and let f : A ⊆ F → F . We say that f is even when
f(−x) = f(x) for all x ∈ F and we say that f is odd when f(−x) = −f(x) for all x ∈ F .

2.4 Definition: Let F be an ordered field and let f : A ⊆→ F . We say that f is
increasing when it has the property that for all x, y ∈ A, if x < y then f(x) < f(y), and
we say f is decreasing when for all x, y ∈ A with x < y we have f(x) > f(y). We say that
f is monotonic when f is either increasing or decreasing. Note that every monotonic
function is injective.
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2.5 Remark: We assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. These functions can be defined rigorously. We shall give a
brief description of how one can define the exponential and logarithmic function rigorously,
and we shall provide an informal (non-rigorous) description of the trigonometric and inverse
trigonometric functions.

2.6 Definition: Let us outline one possible way to define the value of xy for suitable real
numbers x, y ∈ R. First we define x0 = 1 for all x ∈ R. Then for n ∈ Z with n ≥ 1 we
define xn recursively by xn = x · xn−1 for all x ∈ R. Also, for n ∈ Z with n ≥ 1 we define
x−n = 1

xn for all x 6= 0. At this stage we have defined xy for y ∈ Z.

When 0 < n ∈ Z is odd, for all x ∈ R we define x1/n = y where y is the unique real
number such that yn = x (to be rigorous, one must prove that this number y exists and
is unique). When 0 < n ∈ Z is even, for x ≥ 0 we define x1/n = y where y is the unique
nonnegative real number such that yn = x (again, to be rigorous a proof is required). Also,
for 0 < n ∈ Z we define x−1/n = 1

x1/n , which is defined for x 6= 0 if n is odd, and is defined
for x > 0 when n is even. When n,m ∈ Z with n > 0 and m > 0 and gcd(n,m) = 1, we
define xn/m = (xn)1/m, which is defined for all x ∈ R when m is odd and for x ≥ 0 when
m is even, and we define x−n/m = 1

xn/m , defined for x 6= 0 when m is odd and for x > 0
when m is even. At this stage, we have defined xy for y ∈ Q.

When x > 1 and y ∈ R, we define xy = sup
{
xt
∣∣t ∈ Q, t ≤ y

}
(to be rigorous,

one needs to prove that the supremum exists and that when y ∈ Q this agrees with our
previous definition). When 0 < x < 1 and y ∈ R we define xy = inf

{
xt
∣∣t ∈ Q, t ≤ y

}
.

Finally, we define 1y = 1 for all y ∈ R and we define 0y = 0 for all y > 0.

2.7 Theorem: (Properties of Exponentials) Let a, b, x, y ∈ R with a, b > 0. Then

(1) a0 = 1,
(2) ax+y = ab ac,
(3) ax−y = ax/ay,
(4) (ax)y = axy,
(5) (ab)x = axbx.

Proof: We omit the proof.

2.8 Theorem: (Properties of Power Functions)

(1) When a > 0, the function f : [0,∞) → [0,∞) given by f(x) = xa is increasing and
bijective and its inverse function is given by f−1(x) = x1/a.
(2) When a < 0, the function f : (0,∞) → (0,∞) given by f(x) = xa is decreasing and
bijective and its inverse is given by f−1(x) = a1/x.

Proof: We omit the proof.

2.9 Definition: A function of the form f(x) = xa is called a power function.
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2.10 Theorem: (Properties of Exponential Functions)

(1) When a > 1 the function f : R→ (0,∞) given by f(x) = ax is increasing and bijective.
(2) When 0 < a < 1 the function f : R → (0,∞) given by f(x) = ax is decreasing and
bijective.

Proof: We omit the proof.

2.11 Definition: For a > 0 with a 6= 1, the function f : R→ (0,∞) given by f(x) = ax

is called the base a exponential function, its inverse function f−1 : (0,∞)→ R is called
the base a logarithmic function, and we write f−1(x) = loga x. By the definition of the
inverse function, we have loga(ax) = x for all x ∈ R and eloga y = y for all y > 0, and for
all x, y ∈ R with y > 0 we have y = ax ⇐⇒ x = loga y.

2.12 Theorem: (Properties of Logarithms) Let a, b, x, y ∈ (0,∞). Then

(1) loga 1 = 0,
(2) loga(xy) = loga x+ loga y,
(3) loga(x/y) = loga x− loga y,
(4) loga(xy) = y loga x, and
(5) logb x = loga x/ loga b,
(6) if a > 1, the function g : (0,∞)→ R given by g(x) = loga x is increasing and bijective.

Proof: The proof is left as an exercise.

2.13 Definition: There is a number e ∈ R called natural base, with e ∼= 2.71828, which
can be defined in many ways, for example we can define

e = sup
{(

1 + 1
n

)n∣∣∣1 ≤ n ∈ Z
}

(to be rigorous, one must prove that the set A =
{

(1+ 1
n )n
∣∣1 ≤ n ∈ Z

}
is bounded above).

The logarithm to the base e is called the natural logarithm, and we write

lnx = loge x for x > 0.

The properties of exponentials and logarithms in Theorems 2.13 and 2.18 give

e0 = 1 , ax+y = exey , ex−y = ex/ey , (ex)y = exy,

ln 1 = 0 , ln(xy) = lnx+ ln y , ln(x/y) = lnx− ln y , lnxy = y lnx

loga x =
lnx

ln a
and ax = ex ln a.
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2.14 Definition: We define the trigonometric functions informally as follows. For θ ≥ 0,
we define cos θ and sin θ to be the x- and y-coordinates of the point at which we arrive when
we begin at the point (1, 0) and travel for a distance of θ units counterclockwise around the
unit circle x2 + y2 = 1. For θ ≤ 0, cos θ and sin θ are the x and y-coordinates of the point
at which we arrive when we begin at (1, 0) and travel clockwise around the unit circle for a
distance of |θ units. When cos θ 6= 0 we define sec θ = 1/ cos θ and tan θ = sin θ/ cos θ, and
when sin θ 6= 0 we define csc θ = 1/ sin θ and cot θ = cos θ/ sin θ. (This definition is not
rigorous because we did not define what it means to travel around the circle for a given
distance).

(x, y) = (cos θ, sin θ)

θ

(1, 0)

2.15 Definition: We define π, informally, to be the distance along the top half of the
unit circle from (1, 0) to (−1, 0), and so we have cosπ = −1 and sinπ = 0. By symmetry,
the distance from (1, 0) to (0, 1) along the circle is equal to π

2 so we also have cos π2 = 0
and sin π

2 = 1.

2.16 Theorem: (Basic Trigonometric Properties) For θ ∈ R we have

(1) cos2 θ + sin2 θ = 1,
(2) cos(−θ) = cos θ and sin(−θ) = − sin θ,
(3) cos(θ + π) = − cos θ and sin(θ + π) = − sin θ,
(4) cos(θ + 2π) = cos θ and sin(θ + 2π) = sin θ).

Proof: Informally, these properties can all be seen immediately from the above definitions.
We omit a rigorous proof.

2.17 Theorem: (Trigonometric Ratios) Let θ ∈
(
0, π2

)
. For a right angle triangle with

an angle of size θ and with sides of lengths x, y and r as shown, we have

r y

θ
x

cos θ =
x

r
, sin θ =

y

r
and tan θ =

y

x
.

Proof: We can see this informally by scaling the picture in Definition 2.17 by a factor of r.

2.18 Theorem: (Special Trigonometric Values) We have the following exact trigonometric
values.

θ 0 π
6

π
4

π
3

π
2

cos θ 1
√
3
2

√
2
2

1
2 0

sin θ 0 1
2

√
2
2

√
3
2 1

Proof: This follows from the above theorem using certain particular right angled triangles.
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2.19 Theorem: (Trigonometric Sum Formulas) For α, β ∈ R we have

cos(α+ β) = cosα cosβ − sinα sinβ , and

sin(α+ β) = sinα cosβ + cosα sinβ.

Proof: Informally, we can prove this with the help of a picture. The picture below illustrates
the situation when α, β ∈

(
0, π2

)
.

B c F

d

α A

E
b

β α a
O D C (1,0)

In the picture, O is the origin, A is the point with coordinates (cosα, sinα) and B is the
point (x, y) =

(
cos(α + β), sin(α + β)

)
. In triangle ODE we see that cosα = OD

OE = a
cos β

and sinα = DE
OE = b

cos β , and so a = cosα cosβ , b = sinα cosβ. In triangle EFB, verify

that the angle at E has size α, and so we have cosα = EF
EB = d

sin β and sinα = BF
BE = c

sin β ,
and so c = sinα sinβ , d = cosα sinβ. The x and y-coordinates of the point B are x = a−c
and y = b+ d, and so

cos(α+ β) = x = a− c = cosα cosβ − sinα sinβ , and

sin(α+ β) = y = b+ d = sinα cosβ − cosα sinβ.

This proves the theorem (informally) in the case that α, β ∈
(
0, π2

)
. One can then show

that the theorem holds for all α, β ∈ R by using the Basic Trigonometric Properties (2),
(3) and (4).

2.20 Theorem: (Double Angle Formulas) For all x, y ∈ R we have

(1) sin 2x = 2 sinx cosx and cos 2x = cos2− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x, and

(2) cos2 x =
1 + cos 2x

2
and sin2 x =

1− cos 2x

2
.

Proof: The proof is left as an exercise.

2.21 Theorem: (Trigonometric Functions)

(1) The function f : [0, π]→ [−1, 1] defined by f(x) = cosx is decreasing and bijective.
(2) The function g :

[
− π

2 ,
π
2

]
→ [−1, 1] given by g(x) = sinx is increasing and bijective.

(3) The function h :
(
− π

2 ,
π
2

)
given by h(x) = tanx is increasing and bijective.

Proof: We omit the proof.

2.22 Definition: The inverses of the functions f , g and h in the above theorem are called
the inverse cosine, the inverse sine, and the inverse tangent functions. We write
f−1(x) = cos−1 x, g−1 = sin−1 x and h−1(x) = tan−1 x. By the definition of the inverse
function, we have
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2.23 Definition: Let A and B be sets, let F be a field, let c ∈ F . Let f : A → F and
g : B → F . We define the functions cf , f + g , f − g , f · g : A ∩B → F by

(cf)(x) = c f(x)

(f + g)(x) = f(x) + g(x)

(f − g)(x) = f(x)− g(x)

(f · g)(x) = f(x)g(x)

for all x ∈ A ∩B, and for C = {x ∈ A ∩B | g(x) 6= 0} we define f/g : C → F by

(f/g)(x) = f(x)/g(x)

for all x ∈ C.

2.24 Definition: A polynomial function over a field F is a function f : F → F
which can be obtained from the functions 1 and x using (finitely many applications of)
the operations cf , f + g, f − g, f · g and f ◦ g. In other words, a polynomial is a function
of the form

f(x) =
n∑
i=0

cix
i = c0 + c1x+ c2x

2 + · · ·+ cnx
n

for some n ∈ N and some ci ∈ F . The numbers ci are called the coefficients of the
polynomial and when cn 6= 0 the number n is called the degree of the polynomial.

2.25 Definition: A rational function over a field F is a function f : A ⊆ F → F
which can be obtained from the functions 1 and x using (finitely many applications of)
the operations cf , f + g, f − g, f · g, f/g and f ◦ g. In other words, a rational function is
a function of the form

f(x) = p(x)/q(x)

for some polynomials p and q.

2.26 Definition: The functions 1, x, x1/n with 0 < n ∈ Z, ex, lnx, sinx and sin−1 x,
are called the basic elementary functions. An elementary function is any function
f : A ⊆ R→ R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations cf , f + g, f − g, f · g, f/g and f ◦ g.

2.27 Example: The following functions are elementary

|x| =
√
x2,

cosx = sin
(
x+ π

2

)
,

tan−1 x = sin−1
( x√

1 + x2

)
,

f(x) =
e
√
x+sin x

tan−1(lnx)

We shall see later that every elementary function is continuous in its domain, so any
function which is discontinuos at a point in its domain cannot be elementary.
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