MATH 147 Calculus 1, Lecture Notes by Stephen New

Appendix 2: Exponential and Trigonometric Functions

2.1 Definition: Let X and Y be sets and let f: X — Y. We say that f is injective (or
one-to-one, written as 1:1) when for every y € Y there exists at most one x € X such
that f(z) = y. Equivalently, f is injective when for all 21,22 € X, if f(x1) = f(x2) then
x1 = 2. We say that f is surjective (or onto) when for every y € Y there exists at least
one z € X such that f(z) =y. Equivalently, f is surjective when Range(f) =Y. We say
that f is bijective (or invertible) when f is both injective and surjective, that is when
for every y € Y there exists exactly one x € X such that f(z) = y. When f is bijective,
we define the inverse of f to be the function f~!:Y — X such that forally € Y, f~(y)
is equal to the unique element x € X such that f(z) = y. Note that when f is bijective so
is f~1, and in this case we have (f~1)~! = f.

2.2 Example: Let f(x) = %\/ 122 — 22 for 0 < z < 6. Show that f is injective and find

a formula for its inverse function.

Solution: Note that when 0 < x < 6 (indeed when 0 < z < 12) we have 122 — 2% =
2(12 — ) > 0, so that $v/12z — z2 exists, and we have 12z — 2% = 36 — (z — 6)% < 36 so
that % 122 — 22 < % 36 = 2. Thus if 0 < x < 6 then f(z) = %\/123@ — 22 exists and we
have 0 < f(z) < 2. Let z,y € R with 0 <z <6 and 0 <y < 2. Then we have

y=f(zx) <= y= %\/121‘—332
3y =V 12z — 22
9y? = 122 — 2® | since y > 0
22— 122+ 9y =0

(|

12 + /144 — 3692
T = 5 - 6 +3+/4 —y? , by the Quadratic Formula

x=06—3v4—1y? since x < 6.

[

Verify that when 0 < y < 2 we have 0 < 4 — y? < 4 so that /4 — 32 exists and we have
0 <6 —3y4—y? < 6. Thus when we consider f as a function f : [0,6] — [0,2], it is
bisectve and its inverse f~!:[0,2] — [0,6] is given by f~1(y) = 6 — 3/4 — y2.

2.3 Definition: Let F be a field and let f : A C F — F. We say that f is even when
f(=z) = f(zx) for all x € F' and we say that f is odd when f(—z) = —f(x) for all x € F.

2.4 Definition: Let F' be an ordered field and let f : A C— F. We say that f is
increasing when it has the property that for all z,y € A, if x <y then f(x) < f(y), and
we say f is decreasing when for all z,y € A with z < y we have f(z) > f(y). We say that
f is monotonic when f is either increasing or decreasing. Note that every monotonic
function is injective.



2.5 Remark: We assume familiarity with exponential, logarithmic, trigonometric and
inverse trigonometric functions. These functions can be defined rigorously. We shall give a
brief description of how one can define the exponential and logarithmic function rigorously,
and we shall provide an informal (non-rigorous) description of the trigonometric and inverse
trigonometric functions.

2.6 Definition: Let us outline one possible way to define the value of x¥ for suitable real
numbers z,y € R. First we define 2% = 1 for all € R. Then for n € Z with n > 1 we
define z™ recursively by ™ = x - 2"~ ! for all x € R. Also, for n € Z with n > 1 we define
x" = # for all x # 0. At this stage we have defined x¥ for y € Z.

When 0 < n € Z is odd, for all z € R we define '/ = y where y is the unique real
number such that y” = x (to be rigorous, one must prove that this number y exists and
is unique). When 0 < n € Z is even, for x > 0 we define /™ = y where y is the unique
nonnegative real number such that y” = x (again, to be rigorous a proof is required). Also,

for 0 < n € Z we define z=1/" = xll/m which is defined for x # 0 if n is odd, and is defined
for x > 0 when n is even. When n,m € Z with n > 0 and m > 0 and ged(n,m) = 1, we
define 2™/™ = (™)%™ which is defined for all € R when m is odd and for 2 > 0 when
m is even, and we define z="/™ = ﬁ, defined for x # 0 when m is odd and for x > 0
when m is even. At this stage, we have defined x¥ for y € Q.

When £ > 1 and y € R, we define z¥ = sup {xt|t e Q,t < y} (to be rigorous,
one needs to prove that the supremum exists and that when y € Q this agrees with our
previous definition). When 0 < x < 1 and y € R we define z¥ = inf {xt‘t € Q,t < y}

Finally, we define 1¥ =1 for all y € R and we define 0¥ = 0 for all y > 0.

2.7 Theorem: (Properties of Exponentials) Let a,b,z,y € R with a,b > 0. Then
(1) a® =1,

(2) a*tY = a’ a®,

(3) a® Y =a”/aY,

(4) (a”)¥ = a™,

(5) (ab)* = a®b".

Proof: We omit the proof.

2.8 Theorem: (Properties of Power Functions)

(1) When a > 0, the function f : [0,00) — [0,00) given by f(z) = x® is increasing and
bijective and its inverse function is given by f~!(z) = z'/2.

(2) When a < 0, the function f : (0,00) — (0,00) given by f(x) = z® is decreasing and
bijective and its inverse is given by f~!(z) = a'/*.

Proof: We omit the proof.

2.9 Definition: A function of the form f(x) = z® is called a power function.



2.10 Theorem: (Properties of Exponential Functions)

(1) When a > 1 the function f : R — (0, 00) given by f(x) = a” is increasing and bijective.
(2) When 0 < a < 1 the function f : R — (0,00) given by f(z) = a” is decreasing and
bijective.

Proof: We omit the proof.

2.11 Definition: For a > 0 with a # 1, the function f : R — (0,00) given by f(z) = a”®
is called the base a exponential function, its inverse function f=! : (0,00) — R is called
the base a logarithmic function, and we write f~1(x) = log, x. By the definition of the
inverse function, we have log,(a®) = x for all z € R and €!°%«¥ = y for all y > 0, and for
all z,y € R with y > 0 we have y = a* <= z =log, y.

2.12 Theorem: (Properties of Logarithms) Let a,b,z,y € (0,00). Then
(1) log,1 =0,
(2) log, (zy) =log, x + log, y,

(3) log,(z/y) = log, x —log, v,
(4) log,(z¥) = ylog, x, and

(5) log, x = log, x/log, b,
(6) if a > 1, the function g : (0,00) — R given by g(x) = log,  is increasing and bijective.

Proof: The proof is left as an exercise.

2.13 Definition: There is a number e € R called natural base, with e = 2.71828, which
can be defined in many ways, for example we can define

e :sup{(l-i- %)n)l <ne Z}
(to be rigorous, one must prove that the set A = {(1+2)"|1 <n € Z} is bounded above).
The logarithm to the base e is called the natural logarithm, and we write
Inz = log, x for = > 0.
The properties of exponentials and logarithms in Theorems 2.13 and 2.18 give
=1, a""V =¢Y, " Y =e"/eY, (%)Y =e"Y,
In1=0, In(zy) =Inz+lny, In(z/y) =lnz —Ilny, lnzY =ylnz
Inz

log, 2 =— and a”" =e
Ina

zlna



2.14 Definition: We define the trigonometric functions informally as follows. For 6 > 0,
we define cos 6 and sin 6 to be the z- and y-coordinates of the point at which we arrive when
we begin at the point (1,0) and travel for a distance of § units counterclockwise around the
unit circle z2 +y? = 1. For § < 0, cosf and sin @ are the x and y-coordinates of the point
at which we arrive when we begin at (1,0) and travel clockwise around the unit circle for a
distance of |# units. When cosf # 0 we define secf = 1/ cosf and tan € = sin 6/ cos #, and
when sinf # 0 we define cscf = 1/sinf and cot§ = cos@/sinf. (This definition is not
rigorous because we did not define what it means to travel around the circle for a given
distance).

(x,y) = (cosf,sin )

2.15 Definition: We define m, informally, to be the distance along the top half of the
unit circle from (1,0) to (—1,0), and so we have cosm™ = —1 and sin7 = 0. By symmetry,
the distance from (1,0) to (0,1) along the circle is equal to & so we also have cos 5 = 0
and sin § = 1.

2.16 Theorem: (Basic Trigonometric Properties) For § € R we have

(1) cos® 6 +sin? 0 = 1,

(2) cos(—0) = cos O and sin(—0) = —sin 6,

(3) cos(f + m) = —cos B and sin(f + w) = —sin 6,

(4) cos(0 + 2m) = cosf and sin(f + 27) = sin6).

Proof: Informally, these properties can all be seen immediately from the above definitions.

We omit a rigorous proof.
2.17 Theorem: (Trigonometric Ratios) Let 6 € (0, g) For a right angle triangle with
an angle of size 6 and with sides of lengths x, y and r as shown, we have

Y cosf == , sinf =2 and tanf = 2.
9 r r x

T

Proof: We can see this informally by scaling the picture in Definition 2.17 by a factor of r.

2.18 Theorem: (Special Trigonometric Values) We have the following exact trigonometric
values.

o 0§ I 3 3
V3 V21
cos @ 1 5 \/T» 3» 0
: 1 2 3
sin 0 0 5 5 5 1

Proof: This follows from the above theorem using certain particular right angled triangles.
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2.19 Theorem: (Trigonometric Sum Formulas) For o, 8 € R we have
cos(a+ ) = cosacos 8 — sinasin 5, and
sin(a + ) = sinacos f + cos asin 3.

Proof: Informally, we can prove this with the help of a picture. The picture below illustrates
the situation when «, 5 € (O, %)

B ¢ F
d
o A
E
b
g a
D C (1,0)

In the picture, O is the origin, A is the point with coordinates (cos a,sin«) and B is the
point (z,y) = (cos(a + B),sin(a + B)). In triangle ODE we see that coso = 9D _ _a

OF cos 8

and sina = % = ﬁ, and so a = cosacosf , b = sinacos . In triangle EF B, verify
: _ EF _ d . __ BF _ ¢

that the angle at F has size a, and so we have cosa = £5 = e and sina = g5 = S

and so ¢ = sinasin 8, d = cosasin 8. The x and y-coordinates of the point B are x = a—c
and y = b+ d, and so

cos(¢ + ) =x =a—c=cosacosff —sinasinf , and

sin(a+ ) =y =b+d=sinacos 3 — cos asin f3.

This proves the theorem (informally) in the case that «, 5 € (O, %) One can then show
that the theorem holds for all «, 8 € R by using the Basic Trigonometric Properties (2),
(3) and (4).

2.20 Theorem: (Double Angle Formulas) For all x,y € R we have

2 _sin®z =2cos?z —1=1—2sin’z, and
1 2 1 —cos?2
(2) cos® z = # and sin’?z = #

Proof: The proof is left as an exercise.

(1) sin2z = 2sinzcosx and cos2x = cos

2.21 Theorem: (Trigonometric Functions)

(1) The function f : [0, 7] — [—1, 1] defined by f(z) = cosx is decreasing and bijective.
(2) The function g : [ — 5, %] — [~1,1] given by g(x) = sin is increasing and bijective.
(3) The function h : ( -3, g) given by h(x) = tanx is increasing and bijective.

Proof: We omit the proof.

2.22 Definition: The inverses of the functions f, g and h in the above theorem are called
the inverse cosine, the inverse sine, and the inverse tangent functions. We write

fHz) =cos™ 'z, g7 =sin"'x and h~!(z) = tan~' z. By the definition of the inverse
function, we have



2.23 Definition: Let A and B be sets, let F' be a field, let ¢ € F. Let f: A — F and
g : B — F. We define the functions c¢f, f+g¢g, f—g, f-9g : ANB — F by

(cf)(x) = cf(z)
(f+9)(x) = f(z)+g(x)
(f —9)(z) = f(z) — g(x)

(f-9)(x)
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for all x € C.

2.24 Definition: A polynomial function over a field F' is a function f : F — F
which can be obtained from the functions 1 and z using (finitely many applications of)
the operations cf, f+g, f —g, f-g and f o g. In other words, a polynomial is a function
of the form .
f(z) = Zciﬂfi =co+cir+cex?+ -+

i=0
for some n € N and some ¢; € F. The numbers ¢; are called the coefficients of the
polynomial and when ¢,, # 0 the number n is called the degree of the polynomial.

2.25 Definition: A rational function over a field F is a function f : A C F — F
which can be obtained from the functions 1 and z using (finitely many applications of)
the operations cf, f+g¢, f —g, f-g, f/g and f o g. In other words, a rational function is
a function of the form

f(z) =p(z)/q(z)
for some polynomials p and gq.

2.26 Definition: The functions 1, z, /™ with 0 < n € Z, €*, Inz, sinz and sin™ ' z,
are called the basic elementary functions. An elementary function is any function
f+ACR — R which can be obtained from the basic elementary functions using (finitely
many applications of) the operations ¢f, f+g, f —g, f -9, f/g and fog.

2.27 Example: The following functions are elementary

|33| -V 1}2,
cos T = sin (oc + g),
tan 'z =sin™! (_33 )
V14 22/’
6\/E+sinx

fz) =

tan~!(In z)

We shall see later that every elementary function is continuous in its domain, so any
function which is discontinuos at a point in its domain cannot be elementary.



