

Appendix 2: Exponential and Trigonometric Functions

2.1 Definition: Let X and Y be sets and let $f : X \rightarrow Y$. We say that f is **injective** (or **one-to-one**, written as $1:1$) when for every $y \in Y$ there exists at most one $x \in X$ such that $f(x) = y$. Equivalently, f is injective when for all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$. We say that f is **surjective** (or **onto**) when for every $y \in Y$ there exists at least one $x \in X$ such that $f(x) = y$. Equivalently, f is surjective when $\text{Range}(f) = Y$. We say that f is **bijective** (or **invertible**) when f is both injective and surjective, that is when for every $y \in Y$ there exists exactly one $x \in X$ such that $f(x) = y$. When f is bijective, we define the **inverse** of f to be the function $f^{-1} : Y \rightarrow X$ such that for all $y \in Y$, $f^{-1}(y)$ is equal to the unique element $x \in X$ such that $f(x) = y$. Note that when f is bijective so is f^{-1} , and in this case we have $(f^{-1})^{-1} = f$.

2.2 Example: Let $f(x) = \frac{1}{3}\sqrt{12x - x^2}$ for $0 \leq x \leq 6$. Show that f is injective and find a formula for its inverse function.

Solution: Note that when $0 \leq x \leq 6$ (indeed when $0 \leq x \leq 12$) we have $12x - x^2 = x(12 - x) \geq 0$, so that $\frac{1}{3}\sqrt{12x - x^2}$ exists, and we have $12x - x^2 = 36 - (x - 6)^2 \leq 36$ so that $\frac{1}{3}\sqrt{12x - x^2} \leq \frac{1}{3}\sqrt{36} = 2$. Thus if $0 \leq x \leq 6$ then $f(x) = \frac{1}{3}\sqrt{12x - x^2}$ exists and we have $0 \leq f(x) \leq 2$. Let $x, y \in \mathbf{R}$ with $0 \leq x \leq 6$ and $0 \leq y \leq 2$. Then we have

$$\begin{aligned} y = f(x) &\iff y = \frac{1}{3}\sqrt{12x - x^2} \\ &\iff 3y = \sqrt{12x - x^2} \\ &\iff 9y^2 = 12x - x^2, \text{ since } y \geq 0 \\ &\iff x^2 - 12x + 9y^2 = 0 \\ &\iff x = \frac{12 \pm \sqrt{144 - 36y^2}}{2} = 6 \pm 3\sqrt{4 - y^2}, \text{ by the Quadratic Formula} \\ &\iff x = 6 - 3\sqrt{4 - y^2} \text{ since } x \leq 6. \end{aligned}$$

Verify that when $0 \leq y \leq 2$ we have $0 \leq 4 - y^2 \leq 4$ so that $\sqrt{4 - y^2}$ exists and we have $0 \leq 6 - 3\sqrt{4 - y^2} \leq 6$. Thus when we consider f as a function $f : [0, 6] \rightarrow [0, 2]$, it is bijective and its inverse $f^{-1} : [0, 2] \rightarrow [0, 6]$ is given by $f^{-1}(y) = 6 - 3\sqrt{4 - y^2}$.

2.3 Definition: Let F be a field and let $f : A \subseteq F \rightarrow F$. We say that f is **even** when $f(-x) = f(x)$ for all $x \in F$ and we say that f is **odd** when $f(-x) = -f(x)$ for all $x \in F$.

2.4 Definition: Let F be an ordered field and let $f : A \subseteq F \rightarrow F$. We say that f is **increasing** when it has the property that for all $x, y \in A$, if $x < y$ then $f(x) < f(y)$, and we say f is decreasing when for all $x, y \in A$ with $x < y$ we have $f(x) > f(y)$. We say that f is **monotonic** when f is either increasing or decreasing. Note that every monotonic function is injective.

2.5 Remark: We assume familiarity with exponential, logarithmic, trigonometric and inverse trigonometric functions. These functions can be defined rigorously. We shall give a brief description of how one can define the exponential and logarithmic function rigorously, and we shall provide an informal (non-rigorous) description of the trigonometric and inverse trigonometric functions.

2.6 Definition: Let us outline one possible way to define the value of x^y for suitable real numbers $x, y \in \mathbf{R}$. First we define $x^0 = 1$ for all $x \in \mathbf{R}$. Then for $n \in \mathbf{Z}$ with $n \geq 1$ we define x^n recursively by $x^n = x \cdot x^{n-1}$ for all $x \in \mathbf{R}$. Also, for $n \in \mathbf{Z}$ with $n \geq 1$ we define $x^{-n} = \frac{1}{x^n}$ for all $x \neq 0$. At this stage we have defined x^y for $y \in \mathbf{Z}$.

When $0 < n \in \mathbf{Z}$ is odd, for all $x \in \mathbf{R}$ we define $x^{1/n} = y$ where y is the unique real number such that $y^n = x$ (to be rigorous, one must prove that this number y exists and is unique). When $0 < n \in \mathbf{Z}$ is even, for $x \geq 0$ we define $x^{1/n} = y$ where y is the unique nonnegative real number such that $y^n = x$ (again, to be rigorous a proof is required). Also, for $0 < n \in \mathbf{Z}$ we define $x^{-1/n} = \frac{1}{x^{1/n}}$, which is defined for $x \neq 0$ if n is odd, and is defined for $x > 0$ when n is even. When $n, m \in \mathbf{Z}$ with $n > 0$ and $m > 0$ and $\gcd(n, m) = 1$, we define $x^{n/m} = (x^n)^{1/m}$, which is defined for all $x \in \mathbf{R}$ when m is odd and for $x \geq 0$ when m is even, and we define $x^{-n/m} = \frac{1}{x^{n/m}}$, defined for $x \neq 0$ when m is odd and for $x > 0$ when m is even. At this stage, we have defined x^y for $y \in \mathbf{Q}$.

When $x > 1$ and $y \in \mathbf{R}$, we define $x^y = \sup \{x^t \mid t \in \mathbf{Q}, t \leq y\}$ (to be rigorous, one needs to prove that the supremum exists and that when $y \in \mathbf{Q}$ this agrees with our previous definition). When $0 < x < 1$ and $y \in \mathbf{R}$ we define $x^y = \inf \{x^t \mid t \in \mathbf{Q}, t \leq y\}$. Finally, we define $1^y = 1$ for all $y \in \mathbf{R}$ and we define $0^y = 0$ for all $y > 0$.

2.7 Theorem: (Properties of Exponentials) Let $a, b, x, y \in \mathbf{R}$ with $a, b > 0$. Then

- (1) $a^0 = 1$,
- (2) $a^{x+y} = a^x a^y$,
- (3) $a^{x-y} = a^x / a^y$,
- (4) $(a^x)^y = a^{xy}$,
- (5) $(ab)^x = a^x b^x$.

Proof: We omit the proof.

2.8 Theorem: (Properties of Power Functions)

- (1) When $a > 0$, the function $f : [0, \infty) \rightarrow [0, \infty)$ given by $f(x) = x^a$ is increasing and bijective and its inverse function is given by $f^{-1}(x) = x^{1/a}$.
- (2) When $a < 0$, the function $f : (0, \infty) \rightarrow (0, \infty)$ given by $f(x) = x^a$ is decreasing and bijective and its inverse is given by $f^{-1}(x) = a^{1/x}$.

Proof: We omit the proof.

2.9 Definition: A function of the form $f(x) = x^a$ is called a **power function**.

2.10 Theorem: (*Properties of Exponential Functions*)

- (1) When $a > 1$ the function $f : \mathbf{R} \rightarrow (0, \infty)$ given by $f(x) = a^x$ is increasing and bijective.
- (2) When $0 < a < 1$ the function $f : \mathbf{R} \rightarrow (0, \infty)$ given by $f(x) = a^x$ is decreasing and bijective.

Proof: We omit the proof.

2.11 Definition: For $a > 0$ with $a \neq 1$, the function $f : \mathbf{R} \rightarrow (0, \infty)$ given by $f(x) = a^x$ is called the base a **exponential function**, its inverse function $f^{-1} : (0, \infty) \rightarrow \mathbf{R}$ is called the base a **logarithmic function**, and we write $f^{-1}(x) = \log_a x$. By the definition of the inverse function, we have $\log_a(a^x) = x$ for all $x \in \mathbf{R}$ and $e^{\log_a y} = y$ for all $y > 0$, and for all $x, y \in \mathbf{R}$ with $y > 0$ we have $y = a^x \iff x = \log_a y$.

2.12 Theorem: (*Properties of Logarithms*) Let $a, b, x, y \in (0, \infty)$. Then

- (1) $\log_a 1 = 0$,
- (2) $\log_a(xy) = \log_a x + \log_a y$,
- (3) $\log_a(x/y) = \log_a x - \log_a y$,
- (4) $\log_a(x^y) = y \log_a x$, and
- (5) $\log_b x = \log_a x / \log_a b$,
- (6) if $a > 1$, the function $g : (0, \infty) \rightarrow \mathbf{R}$ given by $g(x) = \log_a x$ is increasing and bijective.

Proof: The proof is left as an exercise.

2.13 Definition: There is a number $e \in \mathbf{R}$ called **natural base**, with $e \cong 2.71828$, which can be defined in many ways, for example we can define

$$e = \sup \left\{ \left(1 + \frac{1}{n}\right)^n \mid 1 \leq n \in \mathbf{Z} \right\}$$

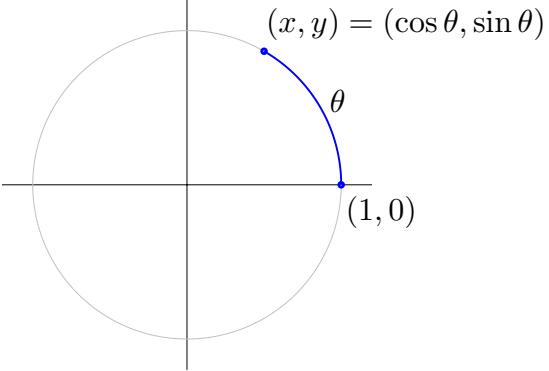
(to be rigorous, one must prove that the set $A = \left\{ \left(1 + \frac{1}{n}\right)^n \mid 1 \leq n \in \mathbf{Z} \right\}$ is bounded above). The logarithm to the base e is called the **natural logarithm**, and we write

$$\ln x = \log_e x \text{ for } x > 0.$$

The properties of exponentials and logarithms in Theorems 2.13 and 2.18 give

$$\begin{aligned} e^0 &= 1, \quad a^{x+y} = e^x e^y, \quad e^{x-y} = e^x / e^y, \quad (e^x)^y = e^{xy}, \\ \ln 1 &= 0, \quad \ln(xy) = \ln x + \ln y, \quad \ln(x/y) = \ln x - \ln y, \quad \ln x^y = y \ln x \\ \log_a x &= \frac{\ln x}{\ln a} \quad \text{and} \quad a^x = e^{x \ln a}. \end{aligned}$$

2.14 Definition: We define the trigonometric functions informally as follows. For $\theta \geq 0$, we define $\cos \theta$ and $\sin \theta$ to be the x - and y -coordinates of the point at which we arrive when we begin at the point $(1, 0)$ and travel for a distance of θ units counterclockwise around the unit circle $x^2 + y^2 = 1$. For $\theta \leq 0$, $\cos \theta$ and $\sin \theta$ are the x and y -coordinates of the point at which we arrive when we begin at $(1, 0)$ and travel clockwise around the unit circle for a distance of $|\theta|$ units. When $\cos \theta \neq 0$ we define $\sec \theta = 1/\cos \theta$ and $\tan \theta = \sin \theta/\cos \theta$, and when $\sin \theta \neq 0$ we define $\csc \theta = 1/\sin \theta$ and $\cot \theta = \cos \theta/\sin \theta$. (This definition is not rigorous because we did not define what it means to travel around the circle for a given distance).



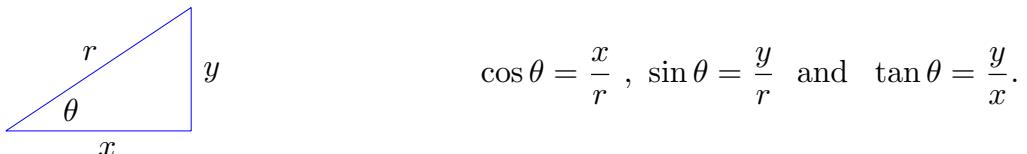
2.15 Definition: We define π , informally, to be the distance along the top half of the unit circle from $(1, 0)$ to $(-1, 0)$, and so we have $\cos \pi = -1$ and $\sin \pi = 0$. By symmetry, the distance from $(1, 0)$ to $(0, 1)$ along the circle is equal to $\frac{\pi}{2}$ so we also have $\cos \frac{\pi}{2} = 0$ and $\sin \frac{\pi}{2} = 1$.

2.16 Theorem: (Basic Trigonometric Properties) For $\theta \in \mathbf{R}$ we have

- (1) $\cos^2 \theta + \sin^2 \theta = 1$,
- (2) $\cos(-\theta) = \cos \theta$ and $\sin(-\theta) = -\sin \theta$,
- (3) $\cos(\theta + \pi) = -\cos \theta$ and $\sin(\theta + \pi) = -\sin \theta$,
- (4) $\cos(\theta + 2\pi) = \cos \theta$ and $\sin(\theta + 2\pi) = \sin \theta$.

Proof: Informally, these properties can all be seen immediately from the above definitions. We omit a rigorous proof.

2.17 Theorem: (Trigonometric Ratios) Let $\theta \in (0, \frac{\pi}{2})$. For a right angle triangle with an angle of size θ and with sides of lengths x , y and r as shown, we have



$$\cos \theta = \frac{x}{r}, \sin \theta = \frac{y}{r} \text{ and } \tan \theta = \frac{y}{x}.$$

Proof: We can see this informally by scaling the picture in Definition 2.17 by a factor of r .

2.18 Theorem: (Special Trigonometric Values) We have the following exact trigonometric values.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

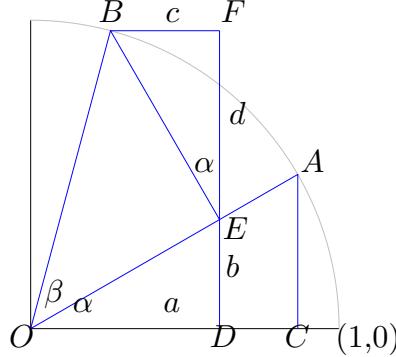
Proof: This follows from the above theorem using certain particular right angled triangles.

2.19 Theorem: (Trigonometric Sum Formulas) For $\alpha, \beta \in \mathbf{R}$ we have

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta, \text{ and}$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta.$$

Proof: Informally, we can prove this with the help of a picture. The picture below illustrates the situation when $\alpha, \beta \in (0, \frac{\pi}{2})$.



In the picture, O is the origin, A is the point with coordinates $(\cos \alpha, \sin \alpha)$ and B is the point $(x, y) = (\cos(\alpha + \beta), \sin(\alpha + \beta))$. In triangle ODE we see that $\cos \alpha = \frac{OD}{OE} = \frac{a}{\cos \beta}$ and $\sin \alpha = \frac{DE}{OE} = \frac{b}{\cos \beta}$, and so $a = \cos \alpha \cos \beta$, $b = \sin \alpha \cos \beta$. In triangle EFB , verify that the angle at E has size α , and so we have $\cos \alpha = \frac{EF}{EB} = \frac{d}{\sin \beta}$ and $\sin \alpha = \frac{BF}{EB} = \frac{c}{\sin \beta}$, and so $c = \sin \alpha \sin \beta$, $d = \cos \alpha \sin \beta$. The x and y -coordinates of the point B are $x = a - c$ and $y = b + d$, and so

$$\begin{aligned} \cos(\alpha + \beta) &= x = a - c = \cos \alpha \cos \beta - \sin \alpha \sin \beta, \text{ and} \\ \sin(\alpha + \beta) &= y = b + d = \sin \alpha \cos \beta + \cos \alpha \sin \beta. \end{aligned}$$

This proves the theorem (informally) in the case that $\alpha, \beta \in (0, \frac{\pi}{2})$. One can then show that the theorem holds for all $\alpha, \beta \in \mathbf{R}$ by using the Basic Trigonometric Properties (2), (3) and (4).

2.20 Theorem: (Double Angle Formulas) For all $x, y \in \mathbf{R}$ we have

- (1) $\sin 2x = 2 \sin x \cos x$ and $\cos 2x = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x$, and
- (2) $\cos^2 x = \frac{1 + \cos 2x}{2}$ and $\sin^2 x = \frac{1 - \cos 2x}{2}$.

Proof: The proof is left as an exercise.

2.21 Theorem: (Trigonometric Functions)

- (1) The function $f : [0, \pi] \rightarrow [-1, 1]$ defined by $f(x) = \cos x$ is decreasing and bijective.
- (2) The function $g : [-\frac{\pi}{2}, \frac{\pi}{2}] \rightarrow [-1, 1]$ given by $g(x) = \sin x$ is increasing and bijective.
- (3) The function $h : (-\frac{\pi}{2}, \frac{\pi}{2})$ given by $h(x) = \tan x$ is increasing and bijective.

Proof: We omit the proof.

2.22 Definition: The inverses of the functions f , g and h in the above theorem are called the **inverse cosine**, the **inverse sine**, and the **inverse tangent** functions. We write $f^{-1}(x) = \cos^{-1} x$, $g^{-1} = \sin^{-1} x$ and $h^{-1}(x) = \tan^{-1} x$. By the definition of the inverse function, we have

2.23 Definition: Let A and B be sets, let F be a field, let $c \in F$. Let $f : A \rightarrow F$ and $g : B \rightarrow F$. We define the functions $cf, f + g, f - g, f \cdot g : A \cap B \rightarrow F$ by

$$\begin{aligned}(cf)(x) &= cf(x) \\ (f + g)(x) &= f(x) + g(x) \\ (f - g)(x) &= f(x) - g(x) \\ (f \cdot g)(x) &= f(x)g(x)\end{aligned}$$

for all $x \in A \cap B$, and for $C = \{x \in A \cap B \mid g(x) \neq 0\}$ we define $f/g : C \rightarrow F$ by

$$(f/g)(x) = f(x)/g(x)$$

for all $x \in C$.

2.24 Definition: A **polynomial function** over a field F is a function $f : F \rightarrow F$ which can be obtained from the functions 1 and x using (finitely many applications of) the operations $cf, f + g, f - g, f \cdot g$ and $f \circ g$. In other words, a polynomial is a function of the form

$$f(x) = \sum_{i=0}^n c_i x^i = c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n$$

for some $n \in \mathbf{N}$ and some $c_i \in F$. The numbers c_i are called the **coefficients** of the polynomial and when $c_n \neq 0$ the number n is called the **degree** of the polynomial.

2.25 Definition: A **rational function** over a field F is a function $f : A \subseteq F \rightarrow F$ which can be obtained from the functions 1 and x using (finitely many applications of) the operations $cf, f + g, f - g, f \cdot g, f/g$ and $f \circ g$. In other words, a rational function is a function of the form

$$f(x) = p(x)/q(x)$$

for some polynomials p and q .

2.26 Definition: The functions $1, x, x^{1/n}$ with $0 < n \in \mathbf{Z}$, $e^x, \ln x, \sin x$ and $\sin^{-1} x$, are called the **basic elementary functions**. An **elementary function** is any function $f : A \subseteq \mathbf{R} \rightarrow \mathbf{R}$ which can be obtained from the basic elementary functions using (finitely many applications of) the operations $cf, f + g, f - g, f \cdot g, f/g$ and $f \circ g$.

2.27 Example: The following functions are elementary

$$\begin{aligned}|x| &= \sqrt{x^2}, \\ \cos x &= \sin\left(x + \frac{\pi}{2}\right), \\ \tan^{-1} x &= \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right), \\ f(x) &= \frac{e^{\sqrt{x}+\sin x}}{\tan^{-1}(\ln x)}\end{aligned}$$

We shall see later that every elementary function is continuous in its domain, so any function which is discontinuous at a point in its domain cannot be elementary.