
MATH 147 Calculus 1, Lecture Notes by Stephen New

Appendix 1. Introduction to the Foundations of Mathematics

1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs
contained paradoxes, and these paradoxes could be used to prove statements that were
known to be false. One well known paradox, outside of the realm of mathematics, is the
statement

“This statement is false”.

The above statement is true if and only if it is false. It is one form of a paradox known as
the liar’s paradox. After examining some lengthy and convoluted mathematical proofs
which contained paradoxes, Bertrand Russel came up with the following mathematical
paradox, which is somewhat similar to the liar’s paradox:

Let X be the set of all sets, and let S =
{
A ∈ X

∣∣A /∈ A
}

.
Note for example that Z /∈ Z so Z ∈ S, and X ∈ X so X /∈ S.
Then we have S ∈ S if and only if S /∈ S.

This paradox is known as Russel’s paradox. With Russel’s paradox, it was possible to
construct a proof by contradiction, which followed all the accepted rules of mathematical
proof, of any statement whatsoever. Mathematicians realized that they would need to
modify the accepted framework of mathematics in order to ensure that mathematical
paradoxes could no longer arise. They were led to consider the following three questions.

1. Exactly what is an allowable mathematical object?
2. Exactly what is an allowable mathematical statement?
3. Exactly what is an allowable mathematical proof?

Eventually, after a great deal of work by many mathematicians, a consensus was reached
as to the answers to these three questions. Roughly, the answers are as follows. Every
mathematical object is a mathematical set (this includes objects that we would not nor-
mally consider to be sets, such as the integer 1), and a mathematical set can be constructed
using certain specific rules, known as the ZFC axioms of set theory. Every mathematical
statement can be expressed as a so-called formula in a certain specific formal symbolic
language, which uses symbols rather than words from a spoken language, such as English.
Every mathematical proof is a finite list of ordered pairs (Sn, Fn) (which we think of as
proven theorems), where each Sn is a finite set of formulas (called the premises) and each
Fn is a single formula (called the conclusion), such that each pair (Sn, Fn) can be obtained
from previous pairs (Si, Fi) with i < n, using certain specific proof rules.

In the remainder of this appendix, we provide a fairly detailed answer to the first two of
the above three questions, beginning with the second question.
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A Formal Symbolic Language

1.2 Definition: We allow ourselves to use only symbols from the following symbol set

¬ not
∧ and
∨ or
→ implies
↔ if and only if
= equals
∈ is an element of
∀ for all
∃ there exists
(, ) parenthises

along with some variable symbols such as x, y, z, u, v, w, · · · or x1, x2, x3, · · ·.

1.3 Definition: A formula (in the formal symbolic language of first order set theory)
is a non-empty finite string of symbols, from the above list, which can be obtained using
finitely many applications of the following three rules.

1. If x and y are variable symbols, then each of the following strings are formulas.

x = y , x ∈ y

2. If F and G are formulas then each of the following strings are formulas.

¬F , (F ∧G) , (F ∨G) , (F → G) , (F ↔ G)

3. If x is a variable symbol and F is a formula then each of the following is a formula.

∀xF , ∃xF

1.4 Definition: Let x be a variable symbol and let F be a formula. For each occurrence
of the symbol x, which does not immediately follow a quantifier, in the formula F , we
define whether the occurrence of x is free or bound inductively as follows.

1. If F is a formula of one of the forms y = z or y ∈ z, where y and z are variable symbols
(possibly equal to x), then every occurrence of x in F is free, and no occurrence is bound.

2. If F is a formula of one of the forms ¬G, (G ∧ H), (G ∨ H), (G → H) or (G ↔ H),
where G and H are formulas, then each occurrence of the symbol x is either an occurrence
in the formula G or an occurrence in the formula H, and each free (respectively, bound)
occurrence of x in G remains free (respectivly, bound) in F , and similarly for each free (or
bound) occurrence of x in H.

3. If F is a formula of one of the forms ∀y G or ∃y G, where G is a formula and y is
a variable symbol (possibly equal to x), then if y is different than x then each free (or
bound) occurrence of x in G remains free (or bound) in the formula F , and if y is equal to
x then every free occurrence of x in G becomes bound in the formula F , and every bound
occurrence of x in G remains bound in the formula F .
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1.5 Definition: When a quantifier symbol occurs in a given formula F , and is followed
by the variable symbol x and then by the formula G, any free occurrence of x in G will
become bound in the given formula F (by an application of part 3 of the above definition),
and we shall say that that occurrence of x is bound by (that occurrence of) the quantifier
symbol, or that (that occurrence of) the quantifier symbol binds that occurrence of x.

1.6 Definition: A free variable in a formula F is any variable symbol that has at least
one free occurence in F . A formula F with no free variables is called a statement. When
the free variables in F all lie in the set {x1, x2, · · · , xn}, we shall write F as F (x1, · · · , xn)
and we shall say that F is a statement about the variables x1, x2, · · · , xn.

1.7 Example: In the following formula, determine which occurrences of the variable
symbols are free and which are bound, and for each bound occurrence, indicate which
quantifier binds it.

∀x ∃y
(
∀z(x ∈ y → ∃y y = z) ∧ ∀x(∃z z = u ∨ z ∈ x)

)
Solution: We indicate the free and bound occurrences and their binding quantifiers by
placing integral labels under the relevant symbols: the free variables are given the label 0,
each quantifier is given its own non-zero label, and each bound variable is given the same
label as its binding quantifier:

∀x∃y
(
∀z(x ∈ y → ∃y y = z) ∧ ∀x(∃z z = u ∨ z ∈ x)

)
1 2 3 1 2 4 4 3 5 6 6 0 0 5

We remark that the free variables in this formula are z and u, so we say that it is a
statement about z and u.

1.8 Example: Express that statement x =
{
y, {z}

}
as a formal symbolic formula.

Solution: We can express the given statement in each of the following ways.

x =
{
y, {z}

}
∀u
(
u ∈ x↔ u ∈

{
y, {z}

})
∀u
(
u ∈ x↔

(
u = y ∨ u = {z}

))
∀u
(
u ∈ x↔

(
u = y ∨ ∀v(v ∈ u↔ v = z)

))
The last expression is a formula.

1.9 Definition: When F (x) is a statement about x we sometimes write F (y) as a short
form for the formula ∀x

(
x = y → F (x)

)
, and we sometimes write

∃!y F (y)

which we read as “there exists a unique y such that F (y)”, as a short form for the formula

∃y
(
F (y) ∧ ∀z(F (z)→ z = y

)
which is short, in turn, for the formula

∃y
(
∀x(x = y → F (x)) ∧ ∀z

(
∀x(x = z → F (x))→ z = y

))
.
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The ZFC Axioms of Set Theory

1.10 Remark: Every mathematical set can be constructed using specific rules, which are
known as the ZFC axioms of set theory, or the Zermelo-Fraenkel axioms of set theory,
with the axiom of choice. We begin by listing the ZFC axioms, stating them informally.

Empty Set Axiom: There exists a set ∅ with no elements.

Extension Axiom: Two sets are equal if and only if they have the same elements.

Separation Axiom: If u is a set and F (x) is a statement about x,
{
x ∈ u

∣∣F (x)
}

is a set.

Pair Axiom: If u and v are sets then {u, v} is a set.

Union Axiom: If u is a set then
⋃
u =

⋃
v∈u

v is a set.

Power Set Axiom: If u is a set then P(u) =
{
v
∣∣v ⊆ u} is a set.

Axiom of Infinity: If we define the natural numbers to be the sets 0 = ∅, 1 = {0}, 2 = {0, 1},
3 = {0, 1, 2} and so on, then N = {0, 1, 2, 3, · · ·} is a set.

Replacement Axiom: If u is a set and F (x, y) is a statement about x and y with the
property that ∀x∃!y F (x, y) then

{
y
∣∣∃x ∈ u F (x, y)

}
is a set.

Axiom of Choice: Given a set u of non-empty pairwise disjoint sets, there exists a set
which contains exactly one element from each of the sets in u.

We now proceed to state each of the ZFC axioms formally (as a symbolic formula) and give
some indication as to how these axioms can be used as a rigorous framework for essentially
all of mathematics.

1.11 Definition: The Empty Set Axiom is the formula

∃u∀x ¬x ∈ u .

1.12 Definition: The Extension Axiom is the formula

∀u∀v
(
u = v ↔ ∀x(x ∈ u↔ x ∈ v)

)
.

1.13 Theorem: The empty set is unique.

Proof: Suppose that u and v are both empty. Let x be arbitrary. Since u is empty, we
have ¬x ∈ u and hence x ∈ u → x ∈ v. Similarly, since v is empty, we have ¬x ∈ v and
hence x ∈ v → x ∈ u. Since x ∈ u → x ∈ v and x ∈ v → x ∈ u, we have x ∈ u ↔ x ∈ v.
Since x was arbitrary, we have ∀x (x ∈ u↔ x ∈ v). By the Axiom of Extension, u = v.

1.14 Definition: We denote the unique empty set by ∅.

1.15 Remark: In a formal and rigorous treatment of the foundations of mathematics, we
would need to decide at this point how to interpret the use of the symbol ∅. One approach
is to add the symbol ∅ to our list of symbols, modify our definition of a formula to allow
the use of the new symbol ∅, and add the axiom ∀x ¬x ∈ ∅ to our list of axioms. Another
option is to interpret the use of the symbol as a shorthand notation for an expression which
can be expressed formally using the existing symbols, so that for example the expression
u = ∅ would be shorthand for the formula ∀x ¬x ∈ u.
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1.16 Definition: Given sets u and v, we say that u is a subset of v, and we write u ⊆ v,
when every element of u also lies in v, that is when ∀x (x ∈ u→ x ∈ v).

1.17 Definition: For any statement F (x) about x, the following formula is an axiom.

∀u∃v ∀x
(
x ∈ v ↔ (x ∈ u ∧ F (x))

)
More generally, for any statement F (x, u1, u2, · · · , un) about x, u1, u2, · · · , un, where n ≥ 0,
the following formula is an axiom.

∀u∀u1 · · · ∀un∃v ∀x
(
x ∈ v ↔

(
x ∈ u ∧ F (x, u1, · · · , un)

))
Any axiom of this form is called an Axiom of Separation.

1.18 Notation: Given sets u, u1, · · · , un and given a formula F (x, u1, · · · , un) about
x, u1, · · · , un, by the appropriate Axiom of Separation, there exists a set v with the prop-
erty that ∀x

(
x ∈ v ↔

(
x ∈ u∧ F (x, u1, · · · , un)

))
, and by the Extension Axiom, this set v

is unique, and we denote it by {
x ∈ u

∣∣F (x, u1, · · · , un)
}
.

1.19 Note: It is important to realize that a Separation Axiom only allows us to construct
a subset of a given set u, so for example we cannot use a Separation Axiom to show that
the collection S = {x

∣∣¬x ∈ x}, which is used to formulate Russel’s paradox, is a set.

1.20 Definition: The Pair Axiom is the formula

∀u∀v ∃w ∀x
(
x ∈ w ↔ (x = u ∨ x = v)

)
.

1.21 Notation: Given sets u and v, by the Pair Axiom there exists a set w with the
property that ∀x

(
x ∈ w ↔ (x = u ∨ x = v)

)
, and by the Extension Axiom, this set w is

unique, and we denote it by
{u, v}

1.22 Example: With this axiom, we can construct some non-empty sets. For example,
taking u = v = ∅ gives the set {∅, ∅} = {∅} (note that {∅} 6= ∅ by the Extension Axiom,
since ∅ ∈ {∅} but ∅ /∈ ∅). Then taking u = ∅ and v = {∅} gives the set

{
∅, {∅}

}
.

1.23 Definition: The Union Axiom is the formula

∀u∃w ∀x
(
x ∈ w ↔ ∃v (v ∈ u ∧ x ∈ v)

)
.

1.24 Definition: Given a set u, by the Union Axiom there exists a set w with the property
that ∀x

(
x ∈ w ↔ ∃v (v ∈ u ∧ x ∈ v)

)
, and by the Extension Axiom this set w is unique.

We call the set w the union of the elements in u, and we denote it by⋃
u =

⋃
v∈u

v .

Given two sets u and v, we define the union of u and v to be the set

u ∪ v =
⋃
{u, v} .

Given three sets u, v and w, note that {z} = {z, z} is a set and so {x, y, z} = {x, y} ∪ {z}
is also a set. More generally, if u1, u2, · · · , un are sets then {u1, u2, · · · , un} is a set and we
define the union of the sets u1, · · · , un to be

u1 ∪ u2 ∪ · · · ∪ un =
n⋃

k=1

uk =
⋃
{u1, u2, · · · , un} .
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1.25 Definition: Given a set u, we define the intersection of the elements in u to be
the set ⋂

u =
{
x ∈

⋃
u
∣∣∣ ∀v(v ∈ u→ x ∈ v)

}
Given two sets u and v, we define the intersection of u and v to be the set

u ∩ v =
⋂
{u, v} ,

and more generally, given sets u1, u2, · · · , un, we define the intersection of u1, u2, · · · , un
to be the set

u1 ∩ u2 ∩ · · · ∩ un =

n⋂
k=1

uk =
⋂{

u1, u2, · · · , un
}
.

1.26 Definition: The Power Set Axiom is the formula

∀u∃w ∀v (v ∈ w ↔ v ⊆ u) .

1.27 Definition: Given a set u, the set w with the property that ∀v(v ∈ w ↔ v ⊆ u)
(which exists by the Power Set Axiom and is unique by the Extension Axiom) is called the
power set of u and is denoted by P(u), so we have

P(u) =
{
v
∣∣v ⊆ u} .

1.28 Example: Find the power set of the set
{
∅, {∅}

}
.

Solution: We have
P
({
∅, {∅}

})
=
{
∅, {∅}, {{∅}},

{
∅, {∅}

}}
.

1.29 Definition: Given two sets x and y, we define the ordered pair (x, y) to be the set

(x, y) =
{
{x}, {x, y}

}
.

Given two sets u and v, note that if x ∈ u and y ∈ v then we have {x} ∈ P(u ∪ v) and
{x, y} ∈ P(u ∪ v) and so (x, y) =

{
{x}, {x, y}

}
∈ P

(
P(u ∪ v)

)
. We define the product

u× v to be the set
u× v =

{
(x, y)

∣∣x ∈ u ∧ y ∈ v} ,
that is

u× v =
{
z ∈ P

(
P(u ∪ v)

)∣∣∃x∃y((x ∈ u ∧ y ∈ v) ∧ z = (x, y)
)}
.

1.30 Exercise: Find
⋃(
{∅} ×

{
{∅}, {∅, {∅}}

})
.

1.31 Definition: We define

0 = ∅ , 1 = {0} = 0 ∪ {0} , 2 = {0, 1} = 1 ∪ {1} , 3 = {0, 1, 2} = 2 ∪ {2} ,

and so on. For a set x, we define the successor of x to be the set

x+ 1 = x ∪ {x} .

A set u is called inductive when it has the property that(
0 ∈ u ∧ ∀x (x ∈ u→ x+ 1 ∈ u)

)
.

1.32 Definition: The Axiom of Infinity is the formula

∃u
(
0 ∈ u ∧ ∀x (x ∈ u→ x+ 1 ∈ u)

)
,

so the Axiom of Infinity states that there exists an inductive set.
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1.33 Theorem: There exists a unique set w of the form

w =
{
x
∣∣x ∈ v for every inductive set v

}
.

Moreover, this set w is an inductive set.

Proof: By the axiom of infinity, there exists an inductive set, say u. Let w be the set

w =
{
x ∈ u

∣∣x ∈ v for every inductive set v
}

=
{
x ∈ u

∣∣∀v ((0 ∈ v ∧ ∀y (y ∈ v → y + 1 ∈ v)
)
→ x ∈ v

)}
.

We claim that this set w does not depend on the choice of u. To prove this, let u1 and u2
be two inductive sets and let

w1 =
{
x ∈ u1

∣∣x ∈ v for every inductive set v
}

w2 =
{
x ∈ u2

∣∣x ∈ v for every inductive set v
}
.

Then for any set x we have

x ∈ w1 ⇐⇒ x ∈ u1 and x ∈ v for every inductive set v

⇐⇒ x ∈ v for every inductive set v (since u1 is inductive)

⇐⇒ x ∈ u2 and x ∈ v for every inductive set v (since u2 is inductive)

⇐⇒ x ∈ w2 .

Thus w1 = w2, showing that w is unique. We leave it as an exercise to show that w is
inductive.

1.34 Definition: The unique set w in the above theorem is called the set of natural
numbers, and we denote it by N. We write

N =
{
x
∣∣x ∈ v for every inductive set v

}
= {0, 1, 2, 3 · · ·} .

For x, y ∈ N, we write x < y when x ∈ y and we write x ≤ y when x < y or x = y.

1.35 Notation: For a formula F , we write ∀x∈u F as a shorthand notation for the formula
∀x (x∈u→ F ). Similarly, we write ∃x∈u F as a shorthand notation for ∃x (x∈u ∧ F ).

1.36 Theorem: (Principle of Induction) Let F (x) be a statement about x. Suppose that

(1) F (0), and
(2) ∀x∈N

(
F (x)→ F (x+ 1)

)
.

Then ∀x∈N F (x).

Proof: Let u =
{
x ∈ N

∣∣F (x)
}

. By (1) we have 0 ∈ u. Let x ∈ u. Then x ∈ N and F (x).
Since x ∈ N we have x + 1 ∈ N (since N is inductive). Since x ∈ N and F (x) we have
F (x+ 1) by (2). Since x+ 1 ∈ N and F (x+ 1), we have x+ 1 ∈ u (by the definition of u).
We have shown that 0 ∈ u and that ∀x (x ∈ u → x+ 1 ∈ u), so u is inductive. Since u is
inductive, we have N ⊆ u (by the definition of N). Thus x ∈ N =⇒ x ∈ u =⇒ F (x).

1.37 Remark: In the above theorem, the expression F (0) is short for ∀x
(
x = 0→ F (x)

)
which in turn is short for ∀x

(
∀y ¬y ∈ x → F (x)

)
. Similarly, F (x + 1) is short for the

formula ∀y
(
y = x+ 1→ F (y)

)
, where F (y) is short for ∀x

(
x = y → F (x)

)
.
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1.38 Definition: Given a statement F (x, y) about x and y, the following formula is an
axiom:

∀u
(
∀x∃!y F (x, y)→ ∃w ∀y

(
y ∈ w ↔ ∃x∈u F (x, y)

))
,

where ∃!yF (x, y) is short for ∃y
(
F (x, y) ∧ ∀z

(
F (x, z) → z = y

))
with F (x, z) short for

the formula ∀y
(
y = z → F (x, y)

)
. More generally, given a statement F (x, y, u1, · · · , un)

about x, y, u1, · · · , un with n ≥ 0, the following formula is an axiom:

∀u∀u1 · · · ∀un
(
∀x∃!y F (x, y, u1, · · · , un)→ ∃w ∀y

(
y ∈ w ↔ ∃x∈u F (x, y, u1, · · · , un)

))
.

An axiom of this form is called a Replacement Axiom.

1.39 Notation: Given sets u, u1, · · · , un and given a statement F (x, y, u1, · · · , un) about
x, y, u1, · · · , un with the property that ∀x∃!y F (x, y, u1, · · · , un), for each set x we let
y = f(x) denote the unique set for which F (x, y, u1, · · · , un) holds, and then we denote the
unique set w, whose existence is stipulated by the above Replacement Axiom, by{

f(x)
∣∣x ∈ u} .

1.40 Example: If u is a set then the collection{
P(x)

∣∣x ∈ u}
is also a set, by the Replacement Axiom taking F (x, y) to be the formula y = P(x).

1.41 Definition: The Axiom of Choice is the formula given by

∀u
((
¬φ ∈ u ∧ ∀x∈u ∀y∈u (¬x = y → x ∩ y = ∅)

)
→ ∃w ∀v∈u ∃!x∈v x ∈ w

)
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Relations, Equivalence Relations, Functions and Recursion

1.42 Remark: We have now stated each of the ZFC axioms formally. Up until now, we
have used lower-case letters to denote all sets (and all elements of sets, which are also sets).
From now on, we shall often use upper-case letters to denote sets, as is more customary.

1.43 Definition: A binary relation R on a set X is a subset R ⊆ X × X. More
generally, a binary relation is any set R whose elements are ordered pais. For a binary
relation R, we usually write xRy instead of (x, y) ∈ R.

1.44 Definition: Let R and S be binary relations. The domain of R is

Domain(R) =
{
x
∣∣∃y xRy}

and the range of R is
Range(R) =

{
x
∣∣∃y xRy} .

For any set A, the image of A under R is

R(A) =
{
y | ∃x∈A xRy

}
and the inverse image of A under R is

R−1(A) =
{
x
∣∣ ∃y∈A xRy

}
.

The inverse of R is
R−1 =

{
(y, x)

∣∣(x, y) ∈ R
}

and the composite S composed with R is

S ◦R =
{

(x, z)
∣∣∃y xRy ∧ ySz} .

1.45 Theorem: Let A be a set and let R and S be binary relations. Then

(1) Domain(R), Range(R), R(A) and R−1(A) are sets, and
(2) R−1 and S ◦R are binary relations.

Proof: The proof is left as an exercise.

1.46 Definition: An equivalence relation on a set X is a binary relation R on X such
that

(1) R is reflexive, that is ∀x∈X xRx,
(2) R is symmetric, that is ∀x, y∈X (xRy → yRx), and
(3) R is transitive, that is ∀x, y, z∈X

(
(xRy ∧ yRz)→ xRz

)
.

1.47 Definition: Let R be an equivalence relation on the set X. For a ∈ X, the equiv-
alence class of a modulo R is the set

[a]R =
{
x ∈ X

∣∣xRa} .
1.48 Definition: A partition of a set X is a set S of non-empty pairwise disjoint sets
whose union is X, that is a set S such that

(1) ∀X,Y ∈ S
(
X 6= Y → X ∩ Y = ∅

)
, and

(2)
⋃
S = X.
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1.49 Theorem: Given a set X, we have the following correspondence between equivalence
relations on X and partitions of X.

(1) Given an equivalence relation R on X, the set of all equivalence classes

SR =
{

[a]R
∣∣ a ∈ X}

is a partition of X.

(2) Given a partition S of X, the relation RS on X defined by

RS =
{

(x, y) ∈ X ×X
∣∣∃A ∈ S (x ∈ A ∧ y ∈ A)

}
is an equivalence relation on X.

(3) Given an equivalence relation R on X we have RSR
= R, and given a partition S of X

we have SRS
= S.

Proof: The proof is left as an exercise.

1.50 Notation: Given an equivalence relation R on X, the set of all equivalence classes,
which we denoted by SR in the above theorem, is usually denoted by X/R, so

X/R =
{

[a]R
∣∣ a ∈ X} .

1.51 Definition: Let R be an equivalence relation. A set of representatives for R is a
subset of X which contains exactly one element from each equivalence class in X/R.

1.52 Remark: Notice that the Axiom of Choice is equivalent to the statement that every
equivalence relation has a set of representatives.

1.53 Definition: Given sets X and Y , a function from X to Y is a binary relation
f ⊆ X × Y with the property that

∀x∈X ∃! y∈Y (x, y) ∈ f .

More generally, a function is a binary relation with the property that

∀x∈Domain(f) ∃! y (x, y) ∈ f .

For a function f , we usually write y = f(x) instead of xfy. It is customary to use the
notation f : X → Y when X = Domain(f) and Y is any set with Range(f) ⊆ Y .

1.54 Definition: Let f : X → Y . The function f is called one-to-one (or injective)
when

∀y∈Y ∃ at most one x∈X y = f(x)

and f is called onto (or surjective) when

∀y∈Y ∃ at least one x∈X y = f(x) .

1.55 Definition: Let f : X → Y . Let IX and IY denote the identity functions on X
and Y respectively (that is IX(x) = x for all x ∈ X and IY (y) = y for all y ∈ Y ). A left
inverse of f is a function g : Y → X such that g ◦ f = IX . A right inverse of f is a
function H : Y → X such that f ◦H = IY . Note that if f has a left inverse g and a right
inverse H, then we have g = g ◦ IY = g ◦ f ◦H = IX ◦H = H. In this case we say that g
is the (unique two-sided) inverse of f .
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1.56 Theorem: Let f : X → Y . Then

(1) f is one-to-one if and only if f has a left inverse.
(2) f is onto if and only if f has a right inverse.
(3) f is one-to-one and onto if and only if f has a (two-sided) inverse.

Proof: The proof is left as an exercise. We remark that the Axiom of Choice is needed.

1.57 Definition: A function f : X → Y is called invertible (or bijective) when it is
one-to-one and onto, or equivalently, when it has a (unique two-sided) inverse.

1.58 Remark: The Axiom of Choice is equivalent to the statement that for every set S,
there exists a function f : S →

⋃
S with the property that ∀X ∈S

(
X 6= ∅ → f(X)∈X

)
.

Such a function f is called a choice function for the set S.

1.59 Theorem: (The Recursion Theorem)

(1) Let A be a set, let a ∈ A, and let g : A×N→ A. Then there exists a unique function
f : N→ A such that

f(0) = a and f(n+ 1) = g
(
f(n), n

)
for all n ∈ N .

(2) Let A and B be sets, let g : A→ B, and let h : A×B ×N→ B. Then there exists a
unique function f : A×N→ B such that for all a ∈ A we have

f(a, 0) = g(a) and f(a, n+ 1) = h
(
a, f(a, n), n

)
for all n ∈ N .

Proof: To prove part (1), note first that for each n ∈ N we can construct a (unique)
function fn : {0, 1, · · · , n} → A such that f(0) = a and fn(k + 1) = g

(
fn(k), k

)
for all k

with 0 ≤ k < n (that the functions fn exist and are unique can be proven by induction).
Notice that since {0, 1, · · · , n} = n+1, we have fn : (n+1)→ A, so fn ⊆ (n+1)×A ⊆ N×A,
and so all of the functions fn are subsets of N × A. We can combine all these functions
into a single function f : N→ A as follows. First we let

F =
{
f ⊆ N×A

∣∣∣ ∃n∈N
(
f : (n+1)→ A , f(0) = a , ∀k∈(n+1) f(k+1) = g

(
f(k), k

))}
,

and then we let
f =

⋃
F .

We leave it as an exercise to prove that indeed f is a function which satisfies the conditions
of the theorem.

We can prove part (2) in a similar manner. First we let

F =
{
f ⊆ A×N×B

∣∣∣∃n∈N
(
f : A× (n+ 1)→ B and

∀a∈A
(
f(a, 0) = g(a) ∧ ∀k∈(n+ 1) f(a, k + 1) = h

(
a, f(a, k), k

))}
,

then we let f =
⋃
F .
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The Construction of the Integers, Rational, Real and Complex Numbers

1.60 Definition: By part (2) of the Recursion Theorem, there is a unique function
s : N×N→ N such that for all a, b ∈ N we have

s(a, 0) = a , s(a, b+ 1) = s(a, b) + 1 .

We call s(a, b) the sum of a and b in N, and we write it as

a+ b = s(a, b) .

Also, there is a unique function p : N×N→ N such that for all a, b ∈ N we have

p(a, 0) = 0 , p(a, b+ 1) = p(a, b) + a .

We call p(a, b) the product of a and b in N, and we write it as

a · b = p(a, b) .

1.61 Remark: It can be shown (using induction) that the sum and product satisfy all
the usual properties in N.

1.62 Definition: We define the set of integers to be the set

Z =
(
N×N

)/
R

where R is the equivalence relation given by

(a, b)R(c, d)⇐⇒ a+ d = b+ c .

For [(a, b)] and [(c, d)] in Z, we define

[(a, b)] ≤ [(c, d)]⇐⇒ b+ c ≤ a+ d

[(a, b)] + [(c, d)] = [(a+ c, b+ d)]

[(a, b)] · [(c, d)] = [(ac+ bd, ad+ bc)] .

For n ∈ N, we write n = [(n, 0)] and −n = [(0, n)], so that every element of Z can be
written as ±n for some n ∈ N, and we can identify N with a subset of Z.

1.63 Remark: It can be shown that the ordering and the sum and product defined above
are well-defined and satisfy the usual properties in Z.

1.64 Definition: We define the set of rational numbers to be the set

Q =
(
N×P

)/
R

where P = {x ∈ N
∣∣x 6= 0} and R is the equivalence relation given by

(a, b)R(c, d)⇐⇒ ad = bc .

For [(a, b)] and [(c, d)] in Q, we define

[(a, b)] ≤ [(c, d)]⇐⇒ a · d ≤ b · c
[(a, b)] + [(c, d)] = [(a · d+ b · c, b · d)]

[(a, b)] · [(c, d)] = [(a · c, b · d)] .

For a ∈ N and b ∈ P, it is customary to write a
b = [(a, b)]. Also for a ∈ Z we write

a = [(a, 1)], and we identify Z with a subset of Q.
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1.65 Remark: It can be shown that the above ordering, sum and product are well-defined
and satisfy the usual rules in Q.

1.66 Definition: We define the set of real numbers to be the set

R =
{
x ⊆ Q

∣∣x 6= ∅ , x 6= Q , ∀a∈x ∀ b∈Q (b ≤ a→ b ∈ x) , ∀a∈x ∃ b∈x a < b
}
.

For x, y ∈ R, we define

x ≤ y ⇐⇒ x ⊆ y
x+ y =

{
a+ b

∣∣ a, b ∈ Q , a ∈ x , b ∈ y
}
.

For 0 ≤ x, y ∈ R we define

x · y =
{
a · b

∣∣ 0 ≤ a, b ∈ Q , a ∈ x , b ∈ y
}
∪
{
c ∈ Q

∣∣c < 0
}
,

and we leave, as an exercise, the definition of x · y in the case that x < 0 or y < 0.

1.67 Remark: It can be shown that the above ordering,sum and product are well-defined
and satisfy the usual rules in R.

1.68 Definition: We define the set of complex numbers to be the set

C = R×R .

We define addition and multiplication in C by

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (ac− bd, ad+ bc) .

We write i = (0, 1). For x ∈ R we write x = (x, 0), and we identify R with a subset of C.

1.69 Remark: It can be shown that the above sum and product are well-defined and
satisfy the usual rules in C.
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