

Appendix 1. Introduction to the Foundations of Mathematics

1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known to be false. One well known paradox, outside of the realm of mathematics, is the statement

“This statement is false”.

The above statement is true if and only if it is false. It is one form of a paradox known as the **liar’s paradox**. After examining some lengthy and convoluted mathematical proofs which contained paradoxes, Bertrand Russel came up with the following mathematical paradox, which is somewhat similar to the liar’s paradox:

Let X be the set of all sets, and let $S = \{A \in X \mid A \notin A\}$.

Note for example that $\mathbf{Z} \notin \mathbf{Z}$ so $\mathbf{Z} \in S$, and $X \in X$ so $X \notin S$.

Then we have $S \in S$ if and only if $S \notin S$.

This paradox is known as **Russel’s paradox**. With Russel’s paradox, it was possible to construct a proof by contradiction, which followed all the accepted rules of mathematical proof, of any statement whatsoever. Mathematicians realized that they would need to modify the accepted framework of mathematics in order to ensure that mathematical paradoxes could no longer arise. They were led to consider the following three questions.

1. Exactly what is an allowable mathematical object?
2. Exactly what is an allowable mathematical statement?
3. Exactly what is an allowable mathematical proof?

Eventually, after a great deal of work by many mathematicians, a consensus was reached as to the answers to these three questions. Roughly, the answers are as follows. Every mathematical object is a mathematical **set** (this includes objects that we would not normally consider to be sets, such as the integer 1), and a mathematical set can be constructed using certain specific rules, known as the **ZFC axioms** of set theory. Every mathematical statement can be expressed as a so-called **formula** in a certain specific formal symbolic language, which uses symbols rather than words from a spoken language, such as English. Every mathematical proof is a finite list of ordered pairs (S_n, F_n) (which we think of as proven *theorems*), where each S_n is a finite set of formulas (called the *premises*) and each F_n is a single formula (called the *conclusion*), such that each pair (S_n, F_n) can be obtained from previous pairs (S_i, F_i) with $i < n$, using certain specific proof rules.

In the remainder of this appendix, we provide a fairly detailed answer to the first two of the above three questions, beginning with the second question.

A Formal Symbolic Language

1.2 Definition: We allow ourselves to use only symbols from the following **symbol set**

\neg	not
\wedge	and
\vee	or
\rightarrow	implies
\leftrightarrow	if and only if
$=$	equals
\in	is an element of
\forall	for all
\exists	there exists
$(,)$	parenthesizes

along with some variable symbols such as x, y, z, u, v, w, \dots or x_1, x_2, x_3, \dots .

1.3 Definition: A **formula** (in the formal symbolic language of first order set theory) is a non-empty finite string of symbols, from the above list, which can be obtained using finitely many applications of the following three rules.

1. If x and y are variable symbols, then each of the following strings are formulas.

$$x = y, \quad x \in y$$

2. If F and G are formulas then each of the following strings are formulas.

$$\neg F, \quad (F \wedge G), \quad (F \vee G), \quad (F \rightarrow G), \quad (F \leftrightarrow G)$$

3. If x is a variable symbol and F is a formula then each of the following is a formula.

$$\forall x F, \quad \exists x F$$

1.4 Definition: Let x be a variable symbol and let F be a formula. For each occurrence of the symbol x , which does not immediately follow a quantifier, in the formula F , we define whether the occurrence of x is **free** or **bound** inductively as follows.

1. If F is a formula of one of the forms $y = z$ or $y \in z$, where y and z are variable symbols (possibly equal to x), then every occurrence of x in F is free, and no occurrence is bound.
2. If F is a formula of one of the forms $\neg G$, $(G \wedge H)$, $(G \vee H)$, $(G \rightarrow H)$ or $(G \leftrightarrow H)$, where G and H are formulas, then each occurrence of the symbol x is either an occurrence in the formula G or an occurrence in the formula H , and each free (respectively, bound) occurrence of x in G remains free (respectively, bound) in F , and similarly for each free (or bound) occurrence of x in H .
3. If F is a formula of one of the forms $\forall y G$ or $\exists y G$, where G is a formula and y is a variable symbol (possibly equal to x), then if y is different than x then each free (or bound) occurrence of x in G remains free (or bound) in the formula F , and if y is equal to x then every free occurrence of x in G becomes bound in the formula F , and every bound occurrence of x in G remains bound in the formula F .

1.5 Definition: When a quantifier symbol occurs in a given formula F , and is followed by the variable symbol x and then by the formula G , any free occurrence of x in G will become bound in the given formula F (by an application of part 3 of the above definition), and we shall say that that occurrence of x is **bound by** (that occurrence of) the quantifier symbol, or that (that occurrence of) the quantifier symbol **binds** that occurrence of x .

1.6 Definition: A **free variable** in a formula F is any variable symbol that has at least one free occurrence in F . A formula F with no free variables is called a **statement**. When the free variables in F all lie in the set $\{x_1, x_2, \dots, x_n\}$, we shall write F as $F(x_1, \dots, x_n)$ and we shall say that F is a **statement about** the variables x_1, x_2, \dots, x_n .

1.7 Example: In the following formula, determine which occurrences of the variable symbols are free and which are bound, and for each bound occurrence, indicate which quantifier binds it.

$$\forall x \exists y (\forall z (x \in y \rightarrow \exists y y = z) \wedge \forall x (\exists z z = u \vee z \in x))$$

Solution: We indicate the free and bound occurrences and their binding quantifiers by placing integral labels under the relevant symbols: the free variables are given the label 0, each quantifier is given its own non-zero label, and each bound variable is given the same label as its binding quantifier:

$$\begin{array}{cccccccccccccc} \forall & x & \exists & y & (\forall & z & (x & \in & y & \rightarrow & \exists & y & y & = & z) & \wedge & \forall & x & (\exists & z & z & = & u & \vee & z & \in & x)) \\ 1 & 2 & 3 & 1 & 2 & 4 & 4 & 3 & 5 & 6 & 6 & 0 & 0 & 0 & 5 \end{array}$$

We remark that the free variables in this formula are z and u , so we say that it is a statement about z and u .

1.8 Example: Express that statement $x = \{y, \{z\}\}$ as a formal symbolic formula.

Solution: We can express the given statement in each of the following ways.

$$\begin{aligned} x &= \{y, \{z\}\} \\ \forall u &(u \in x \leftrightarrow u \in \{y, \{z\}\}) \\ \forall u &(u \in x \leftrightarrow (u = y \vee u = \{z\})) \\ \forall u &(u \in x \leftrightarrow (u = y \vee \forall v (v \in u \leftrightarrow v = z))) \end{aligned}$$

The last expression is a formula.

1.9 Definition: When $F(x)$ is a statement about x we sometimes write $F(y)$ as a short form for the formula $\forall x (x = y \rightarrow F(x))$, and we sometimes write

$$\exists!y F(y)$$

which we read as “there exists a unique y such that $F(y)$ ”, as a short form for the formula

$$\exists y (F(y) \wedge \forall z (F(z) \rightarrow z = y))$$

which is short, in turn, for the formula

$$\exists y \left(\forall x (x = y \rightarrow F(x)) \wedge \forall z \left(\forall x (x = z \rightarrow F(x)) \rightarrow z = y \right) \right).$$

The ZFC Axioms of Set Theory

1.10 Remark: Every mathematical **set** can be constructed using specific rules, which are known as the **ZFC axioms** of set theory, or the Zermelo-Fraenkel axioms of set theory, with the axiom of choice. We begin by listing the ZFC axioms, stating them informally.

Empty Set Axiom: There exists a set \emptyset with no elements.

Extension Axiom: Two sets are equal if and only if they have the same elements.

Separation Axiom: If u is a set and $F(x)$ is a statement about x , $\{x \in u \mid F(x)\}$ is a set.

Pair Axiom: If u and v are sets then $\{u, v\}$ is a set.

Union Axiom: If u is a set then $\bigcup u = \bigcup_{v \in u} v$ is a set.

Power Set Axiom: If u is a set then $\mathcal{P}(u) = \{v \mid v \subseteq u\}$ is a set.

Axiom of Infinity: If we define the natural numbers to be the sets $0 = \emptyset$, $1 = \{0\}$, $2 = \{0, 1\}$, $3 = \{0, 1, 2\}$ and so on, then $\mathbf{N} = \{0, 1, 2, 3, \dots\}$ is a set.

Replacement Axiom: If u is a set and $F(x, y)$ is a statement about x and y with the property that $\forall x \exists ! y F(x, y)$ then $\{y \mid \exists x \in u F(x, y)\}$ is a set.

Axiom of Choice: Given a set u of non-empty pairwise disjoint sets, there exists a set which contains exactly one element from each of the sets in u .

We now proceed to state each of the ZFC axioms formally (as a symbolic formula) and give some indication as to how these axioms can be used as a rigorous framework for essentially all of mathematics.

1.11 Definition: The **Empty Set Axiom** is the formula

$$\exists u \forall x \neg x \in u.$$

1.12 Definition: The **Extension Axiom** is the formula

$$\forall u \forall v (u = v \leftrightarrow \forall x (x \in u \leftrightarrow x \in v)).$$

1.13 Theorem: The empty set is unique.

Proof: Suppose that u and v are both empty. Let x be arbitrary. Since u is empty, we have $\neg x \in u$ and hence $x \in u \rightarrow x \in v$. Similarly, since v is empty, we have $\neg x \in v$ and hence $x \in v \rightarrow x \in u$. Since $x \in u \rightarrow x \in v$ and $x \in v \rightarrow x \in u$, we have $x \in u \leftrightarrow x \in v$. Since x was arbitrary, we have $\forall x (x \in u \leftrightarrow x \in v)$. By the Axiom of Extension, $u = v$.

1.14 Definition: We denote the unique empty set by \emptyset .

1.15 Remark: In a formal and rigorous treatment of the foundations of mathematics, we would need to decide at this point how to interpret the use of the symbol \emptyset . One approach is to add the symbol \emptyset to our list of symbols, modify our definition of a formula to allow the use of the new symbol \emptyset , and add the axiom $\forall x \neg x \in \emptyset$ to our list of axioms. Another option is to interpret the use of the symbol as a shorthand notation for an expression which can be expressed formally using the existing symbols, so that for example the expression $u = \emptyset$ would be shorthand for the formula $\forall x \neg x \in u$.

1.16 Definition: Given sets u and v , we say that u is a **subset** of v , and we write $u \subseteq v$, when every element of u also lies in v , that is when $\forall x (x \in u \rightarrow x \in v)$.

1.17 Definition: For any statement $F(x)$ about x , the following formula is an axiom.

$$\forall u \exists v \forall x (x \in v \leftrightarrow (x \in u \wedge F(x)))$$

More generally, for any statement $F(x, u_1, u_2, \dots, u_n)$ about x, u_1, u_2, \dots, u_n , where $n \geq 0$, the following formula is an axiom.

$$\forall u \forall u_1 \dots \forall u_n \exists v \forall x (x \in v \leftrightarrow (x \in u \wedge F(x, u_1, \dots, u_n)))$$

Any axiom of this form is called an **Axiom of Separation**.

1.18 Notation: Given sets u, u_1, \dots, u_n and given a formula $F(x, u_1, \dots, u_n)$ about x, u_1, \dots, u_n , by the appropriate Axiom of Separation, there exists a set v with the property that $\forall x (x \in v \leftrightarrow (x \in u \wedge F(x, u_1, \dots, u_n)))$, and by the Extension Axiom, this set v is unique, and we denote it by

$$\{x \in u \mid F(x, u_1, \dots, u_n)\}.$$

1.19 Note: It is important to realize that a Separation Axiom only allows us to construct a subset of a given set u , so for example we cannot use a Separation Axiom to show that the collection $S = \{x \mid \neg x \in x\}$, which is used to formulate Russel's paradox, is a set.

1.20 Definition: The **Pair Axiom** is the formula

$$\forall u \forall v \exists w \forall x (x \in w \leftrightarrow (x = u \vee x = v)).$$

1.21 Notation: Given sets u and v , by the Pair Axiom there exists a set w with the property that $\forall x (x \in w \leftrightarrow (x = u \vee x = v))$, and by the Extension Axiom, this set w is unique, and we denote it by

$$\{u, v\}$$

1.22 Example: With this axiom, we can construct some non-empty sets. For example, taking $u = v = \emptyset$ gives the set $\{\emptyset, \emptyset\} = \{\emptyset\}$ (note that $\{\emptyset\} \neq \emptyset$ by the Extension Axiom, since $\emptyset \in \{\emptyset\}$ but $\emptyset \notin \emptyset$). Then taking $u = \emptyset$ and $v = \{\emptyset\}$ gives the set $\{\emptyset, \{\emptyset\}\}$.

1.23 Definition: The **Union Axiom** is the formula

$$\forall u \exists w \forall x (x \in w \leftrightarrow \exists v (v \in u \wedge x \in v)).$$

1.24 Definition: Given a set u , by the Union Axiom there exists a set w with the property that $\forall x (x \in w \leftrightarrow \exists v (v \in u \wedge x \in v))$, and by the Extension Axiom this set w is unique. We call the set w the **union** of the elements in u , and we denote it by

$$\bigcup u = \bigcup_{v \in u} v.$$

Given two sets u and v , we define the **union** of u and v to be the set

$$u \cup v = \bigcup \{u, v\}.$$

Given three sets u, v and w , note that $\{z\} = \{z, z\}$ is a set and so $\{x, y, z\} = \{x, y\} \cup \{z\}$ is also a set. More generally, if u_1, u_2, \dots, u_n are sets then $\{u_1, u_2, \dots, u_n\}$ is a set and we define the **union** of the sets u_1, \dots, u_n to be

$$u_1 \cup u_2 \cup \dots \cup u_n = \bigcup_{k=1}^n u_k = \bigcup \{u_1, u_2, \dots, u_n\}.$$

1.25 Definition: Given a set u , we define the **intersection** of the elements in u to be the set

$$\bigcap u = \left\{ x \in \bigcup u \mid \forall v (v \in u \rightarrow x \in v) \right\}$$

Given two sets u and v , we define the **intersection** of u and v to be the set

$$u \cap v = \bigcap \{u, v\},$$

and more generally, given sets u_1, u_2, \dots, u_n , we define the **intersection** of u_1, u_2, \dots, u_n to be the set

$$u_1 \cap u_2 \cap \dots \cap u_n = \bigcap_{k=1}^n u_k = \bigcap \{u_1, u_2, \dots, u_n\}.$$

1.26 Definition: The **Power Set Axiom** is the formula

$$\forall u \exists w \forall v (v \in w \leftrightarrow v \subseteq u).$$

1.27 Definition: Given a set u , the set w with the property that $\forall v (v \in w \leftrightarrow v \subseteq u)$ (which exists by the Power Set Axiom and is unique by the Extension Axiom) is called the **power set** of u and is denoted by $\mathcal{P}(u)$, so we have

$$\mathcal{P}(u) = \{v \mid v \subseteq u\}.$$

1.28 Example: Find the power set of the set $\{\emptyset, \{\emptyset\}\}$.

Solution: We have

$$\mathcal{P}(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}.$$

1.29 Definition: Given two sets x and y , we define the **ordered pair** (x, y) to be the set

$$(x, y) = \{\{x\}, \{x, y\}\}.$$

Given two sets u and v , note that if $x \in u$ and $y \in v$ then we have $\{x\} \in \mathcal{P}(u \cup v)$ and $\{x, y\} \in \mathcal{P}(u \cup v)$ and so $(x, y) = \{\{x\}, \{x, y\}\} \in \mathcal{P}(\mathcal{P}(u \cup v))$. We define the **product** $u \times v$ to be the set

$$u \times v = \{(x, y) \mid x \in u \wedge y \in v\},$$

that is

$$u \times v = \{z \in \mathcal{P}(\mathcal{P}(u \cup v)) \mid \exists x \exists y ((x \in u \wedge y \in v) \wedge z = (x, y))\}.$$

1.30 Exercise: Find $\bigcup (\{\emptyset\} \times \{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\})$.

1.31 Definition: We define

$$0 = \emptyset, 1 = \{0\} = 0 \cup \{0\}, 2 = \{0, 1\} = 1 \cup \{1\}, 3 = \{0, 1, 2\} = 2 \cup \{2\},$$

and so on. For a set x , we define the **successor** of x to be the set

$$x + 1 = x \cup \{x\}.$$

A set u is called **inductive** when it has the property that

$$(0 \in u \wedge \forall x (x \in u \rightarrow x + 1 \in u)).$$

1.32 Definition: The **Axiom of Infinity** is the formula

$$\exists u (0 \in u \wedge \forall x (x \in u \rightarrow x + 1 \in u)),$$

so the Axiom of Infinity states that there exists an inductive set.

1.33 Theorem: There exists a unique set w of the form

$$w = \{x \mid x \in v \text{ for every inductive set } v\}.$$

Moreover, this set w is an inductive set.

Proof: By the axiom of infinity, there exists an inductive set, say u . Let w be the set

$$\begin{aligned} w &= \{x \in u \mid x \in v \text{ for every inductive set } v\} \\ &= \{x \in u \mid \forall v ((0 \in v \wedge \forall y (y \in v \rightarrow y + 1 \in v)) \rightarrow x \in v)\}. \end{aligned}$$

We claim that this set w does not depend on the choice of u . To prove this, let u_1 and u_2 be two inductive sets and let

$$\begin{aligned} w_1 &= \{x \in u_1 \mid x \in v \text{ for every inductive set } v\} \\ w_2 &= \{x \in u_2 \mid x \in v \text{ for every inductive set } v\}. \end{aligned}$$

Then for any set x we have

$$\begin{aligned} x \in w_1 &\iff x \in u_1 \text{ and } x \in v \text{ for every inductive set } v \\ &\iff x \in v \text{ for every inductive set } v \text{ (since } u_1 \text{ is inductive)} \\ &\iff x \in u_2 \text{ and } x \in v \text{ for every inductive set } v \text{ (since } u_2 \text{ is inductive)} \\ &\iff x \in w_2. \end{aligned}$$

Thus $w_1 = w_2$, showing that w is unique. We leave it as an exercise to show that w is inductive.

1.34 Definition: The unique set w in the above theorem is called the set of **natural numbers**, and we denote it by \mathbf{N} . We write

$$\begin{aligned} \mathbf{N} &= \{x \mid x \in v \text{ for every inductive set } v\} \\ &= \{0, 1, 2, 3, \dots\}. \end{aligned}$$

For $x, y \in \mathbf{N}$, we write $x < y$ when $x \in y$ and we write $x \leq y$ when $x < y$ or $x = y$.

1.35 Notation: For a formula F , we write $\forall x \in u F$ as a shorthand notation for the formula $\forall x (x \in u \rightarrow F)$. Similarly, we write $\exists x \in u F$ as a shorthand notation for $\exists x (x \in u \wedge F)$.

1.36 Theorem: (Principle of Induction) Let $F(x)$ be a statement about x . Suppose that

- (1) $F(0)$, and
- (2) $\forall x \in \mathbf{N} (F(x) \rightarrow F(x + 1))$.

Then $\forall x \in \mathbf{N} F(x)$.

Proof: Let $u = \{x \in \mathbf{N} \mid F(x)\}$. By (1) we have $0 \in u$. Let $x \in u$. Then $x \in \mathbf{N}$ and $F(x)$. Since $x \in \mathbf{N}$ we have $x + 1 \in \mathbf{N}$ (since \mathbf{N} is inductive). Since $x \in \mathbf{N}$ and $F(x)$ we have $F(x + 1)$ by (2). Since $x + 1 \in \mathbf{N}$ and $F(x + 1)$, we have $x + 1 \in u$ (by the definition of u). We have shown that $0 \in u$ and that $\forall x (x \in u \rightarrow x + 1 \in u)$, so u is inductive. Since u is inductive, we have $\mathbf{N} \subseteq u$ (by the definition of \mathbf{N}). Thus $x \in \mathbf{N} \implies x \in u \implies F(x)$.

1.37 Remark: In the above theorem, the expression $F(0)$ is short for $\forall x (x = 0 \rightarrow F(x))$ which in turn is short for $\forall x (\forall y \neg y \in x \rightarrow F(x))$. Similarly, $F(x + 1)$ is short for the formula $\forall y (y = x + 1 \rightarrow F(y))$, where $F(y)$ is short for $\forall x (x = y \rightarrow F(x))$.

1.38 Definition: Given a statement $F(x, y)$ about x and y , the following formula is an axiom:

$$\forall u \left(\forall x \exists! y F(x, y) \rightarrow \exists w \forall y (y \in w \leftrightarrow \exists x \in u F(x, y)) \right),$$

where $\exists! y F(x, y)$ is short for $\exists y (F(x, y) \wedge \forall z (F(x, z) \rightarrow z = y))$ with $F(x, z)$ short for the formula $\forall y (y = z \rightarrow F(x, y))$. More generally, given a statement $F(x, y, u_1, \dots, u_n)$ about x, y, u_1, \dots, u_n with $n \geq 0$, the following formula is an axiom:

$$\forall u \forall u_1 \dots \forall u_n \left(\forall x \exists! y F(x, y, u_1, \dots, u_n) \rightarrow \exists w \forall y (y \in w \leftrightarrow \exists x \in u F(x, y, u_1, \dots, u_n)) \right).$$

An axiom of this form is called a **Replacement Axiom**.

1.39 Notation: Given sets u, u_1, \dots, u_n and given a statement $F(x, y, u_1, \dots, u_n)$ about x, y, u_1, \dots, u_n with the property that $\forall x \exists! y F(x, y, u_1, \dots, u_n)$, for each set x we let $y = f(x)$ denote the unique set for which $F(x, y, u_1, \dots, u_n)$ holds, and then we denote the unique set w , whose existence is stipulated by the above Replacement Axiom, by

$$\{f(x) \mid x \in u\}.$$

1.40 Example: If u is a set then the collection

$$\{\mathcal{P}(x) \mid x \in u\}$$

is also a set, by the Replacement Axiom taking $F(x, y)$ to be the formula $y = \mathcal{P}(x)$.

1.41 Definition: The **Axiom of Choice** is the formula given by

$$\forall u \left((\neg \phi \in u \wedge \forall x \in u \forall y \in u (\neg x = y \rightarrow x \cap y = \emptyset)) \rightarrow \exists w \forall v \in u \exists! x \in v x \in w \right)$$

1.42 Remark: We have now stated each of the ZFC axioms formally. Up until now, we have used lower-case letters to denote all sets (and all elements of sets, which are also sets). From now on, we shall often use upper-case letters to denote sets, as is more customary.

1.43 Definition: A **binary relation** R on a set X is a subset $R \subseteq X \times X$. More generally, a **binary relation** is any set R whose elements are ordered pairs. For a binary relation R , we usually write xRy instead of $(x, y) \in R$.

1.44 Definition: Let R and S be binary relations. The **domain** of R is

$$\text{Domain}(R) = \{x \mid \exists y \ xRy\}$$

and the **range** of R is

$$\text{Range}(R) = \{x \mid \exists y \ xRy\}.$$

For any set A , the **image** of A under R is

$$R(A) = \{y \mid \exists x \in A \ xRy\}$$

and the **inverse image** of A under R is

$$R^{-1}(A) = \{x \mid \exists y \in A \ xRy\}.$$

The **inverse** of R is

$$R^{-1} = \{(y, x) \mid (x, y) \in R\}$$

and the composite S **composed with** R is

$$S \circ R = \{(x, z) \mid \exists y \ xRy \wedge ySz\}.$$

1.45 Theorem: Let A be a set and let R and S be binary relations. Then

- (1) $\text{Domain}(R)$, $\text{Range}(R)$, $R(A)$ and $R^{-1}(A)$ are sets, and
- (2) R^{-1} and $S \circ R$ are binary relations.

Proof: The proof is left as an exercise.

1.46 Definition: An **equivalence relation** on a set X is a binary relation R on X such that

- (1) R is **reflexive**, that is $\forall x \in X \ xRx$,
- (2) R is **symmetric**, that is $\forall x, y \in X \ (xRy \rightarrow yRx)$, and
- (3) R is **transitive**, that is $\forall x, y, z \in X \ ((xRy \wedge yRz) \rightarrow xRz)$.

1.47 Definition: Let R be an equivalence relation on the set X . For $a \in X$, the **equivalence class** of a modulo R is the set

$$[a]_R = \{x \in X \mid xRa\}.$$

1.48 Definition: A **partition** of a set X is a set S of non-empty pairwise disjoint sets whose union is X , that is a set S such that

- (1) $\forall X, Y \in S \ (X \neq Y \rightarrow X \cap Y = \emptyset)$, and
- (2) $\bigcup S = X$.

1.49 Theorem: Given a set X , we have the following correspondence between equivalence relations on X and partitions of X .

(1) Given an equivalence relation R on X , the set of all equivalence classes

$$S_R = \{[a]_R \mid a \in X\}$$

is a partition of X .

(2) Given a partition S of X , the relation R_S on X defined by

$$R_S = \{(x, y) \in X \times X \mid \exists A \in S (x \in A \wedge y \in A)\}$$

is an equivalence relation on X .

(3) Given an equivalence relation R on X we have $R_{S_R} = R$, and given a partition S of X we have $S_{R_S} = S$.

Proof: The proof is left as an exercise.

1.50 Notation: Given an equivalence relation R on X , the set of all equivalence classes, which we denoted by S_R in the above theorem, is usually denoted by X/R , so

$$X/R = \{[a]_R \mid a \in X\}.$$

1.51 Definition: Let R be an equivalence relation. A **set of representatives** for R is a subset of X which contains exactly one element from each equivalence class in X/R .

1.52 Remark: Notice that the Axiom of Choice is equivalent to the statement that every equivalence relation has a set of representatives.

1.53 Definition: Given sets X and Y , a **function** from X to Y is a binary relation $f \subseteq X \times Y$ with the property that

$$\forall x \in X \ \exists! y \in Y (x, y) \in f.$$

More generally, a **function** is a binary relation with the property that

$$\forall x \in \text{Domain}(f) \ \exists! y (x, y) \in f.$$

For a function f , we usually write $y = f(x)$ instead of xfy . It is customary to use the notation $f : X \rightarrow Y$ when $X = \text{Domain}(f)$ and Y is any set with $\text{Range}(f) \subseteq Y$.

1.54 Definition: Let $f : X \rightarrow Y$. The function f is called **one-to-one** (or **injective**) when

$$\forall y \in Y \ \exists \text{ at most one } x \in X \ y = f(x)$$

and f is called **onto** (or **surjective**) when

$$\forall y \in Y \ \exists \text{ at least one } x \in X \ y = f(x).$$

1.55 Definition: Let $f : X \rightarrow Y$. Let I_X and I_Y denote the identity functions on X and Y respectively (that is $I_X(x) = x$ for all $x \in X$ and $I_Y(y) = y$ for all $y \in Y$). A **left inverse** of f is a function $g : Y \rightarrow X$ such that $g \circ f = I_X$. A **right inverse** of f is a function $H : Y \rightarrow X$ such that $f \circ H = I_Y$. Note that if f has a left inverse g and a right inverse H , then we have $g = g \circ I_Y = g \circ f \circ H = I_X \circ H = H$. In this case we say that g is the (unique two-sided) **inverse** of f .

1.56 Theorem: Let $f : X \rightarrow Y$. Then

- (1) f is one-to-one if and only if f has a left inverse.
- (2) f is onto if and only if f has a right inverse.
- (3) f is one-to-one and onto if and only if f has a (two-sided) inverse.

Proof: The proof is left as an exercise. We remark that the Axiom of Choice is needed.

1.57 Definition: A function $f : X \rightarrow Y$ is called **invertible** (or **bijective**) when it is one-to-one and onto, or equivalently, when it has a (unique two-sided) inverse.

1.58 Remark: The Axiom of Choice is equivalent to the statement that for every set S , there exists a function $f : S \rightarrow \bigcup S$ with the property that $\forall X \in S (X \neq \emptyset \rightarrow f(X) \in X)$. Such a function f is called a **choice function** for the set S .

1.59 Theorem: (The Recursion Theorem)

- (1) Let A be a set, let $a \in A$, and let $g : A \times \mathbf{N} \rightarrow A$. Then there exists a unique function $f : \mathbf{N} \rightarrow A$ such that

$$f(0) = a \text{ and } f(n+1) = g(f(n), n) \text{ for all } n \in \mathbf{N}.$$

- (2) Let A and B be sets, let $g : A \rightarrow B$, and let $h : A \times B \times \mathbf{N} \rightarrow B$. Then there exists a unique function $f : A \times \mathbf{N} \rightarrow B$ such that for all $a \in A$ we have

$$f(a, 0) = g(a) \text{ and } f(a, n+1) = h(a, f(a, n), n) \text{ for all } n \in \mathbf{N}.$$

Proof: To prove part (1), note first that for each $n \in \mathbf{N}$ we can construct a (unique) function $f_n : \{0, 1, \dots, n\} \rightarrow A$ such that $f_n(0) = a$ and $f_n(k+1) = g(f_n(k), k)$ for all k with $0 \leq k < n$ (that the functions f_n exist and are unique can be proven by induction). Notice that since $\{0, 1, \dots, n\} = n+1$, we have $f_n : (n+1) \rightarrow A$, so $f_n \subseteq (n+1) \times A \subseteq \mathbf{N} \times A$, and so all of the functions f_n are subsets of $\mathbf{N} \times A$. We can combine all these functions into a single function $f : \mathbf{N} \rightarrow A$ as follows. First we let

$$F = \left\{ f \subseteq \mathbf{N} \times A \mid \exists n \in \mathbf{N} \left(f : (n+1) \rightarrow A, f(0) = a, \forall k \in (n+1) f(k+1) = g(f(k), k) \right) \right\},$$

and then we let

$$f = \bigcup F.$$

We leave it as an exercise to prove that indeed f is a function which satisfies the conditions of the theorem.

We can prove part (2) in a similar manner. First we let

$$F = \left\{ f \subseteq A \times \mathbf{N} \times B \mid \exists n \in \mathbf{N} \left(f : A \times (n+1) \rightarrow B \text{ and} \right. \right. \\ \left. \left. \forall a \in A \left(f(a, 0) = g(a) \wedge \forall k \in (n+1) f(a, k+1) = h(a, f(a, k), k) \right) \right) \right\},$$

then we let $f = \bigcup F$.

The Construction of the Integers, Rational, Real and Complex Numbers

1.60 Definition: By part (2) of the Recursion Theorem, there is a unique function $s : \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ such that for all $a, b \in \mathbf{N}$ we have

$$s(a, 0) = a, \quad s(a, b + 1) = s(a, b) + 1.$$

We call $s(a, b)$ the **sum** of a and b in \mathbf{N} , and we write it as

$$a + b = s(a, b).$$

Also, there is a unique function $p : \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ such that for all $a, b \in \mathbf{N}$ we have

$$p(a, 0) = 0, \quad p(a, b + 1) = p(a, b) + a.$$

We call $p(a, b)$ the **product** of a and b in \mathbf{N} , and we write it as

$$a \cdot b = p(a, b).$$

1.61 Remark: It can be shown (using induction) that the sum and product satisfy all the usual properties in \mathbf{N} .

1.62 Definition: We define the set of **integers** to be the set

$$\mathbf{Z} = (\mathbf{N} \times \mathbf{N})/R$$

where R is the equivalence relation given by

$$(a, b)R(c, d) \iff a + d = b + c.$$

For $[(a, b)]$ and $[(c, d)]$ in \mathbf{Z} , we define

$$\begin{aligned} [(a, b)] \leq [(c, d)] &\iff b + c \leq a + d \\ [(a, b)] + [(c, d)] &= [(a + c, b + d)] \\ [(a, b)] \cdot [(c, d)] &= [(ac + bd, ad + bc)]. \end{aligned}$$

For $n \in \mathbf{N}$, we write $n = [(n, 0)]$ and $-n = [(0, n)]$, so that every element of \mathbf{Z} can be written as $\pm n$ for some $n \in \mathbf{N}$, and we can identify \mathbf{N} with a subset of \mathbf{Z} .

1.63 Remark: It can be shown that the ordering and the sum and product defined above are well-defined and satisfy the usual properties in \mathbf{Z} .

1.64 Definition: We define the set of **rational numbers** to be the set

$$\mathbf{Q} = (\mathbf{N} \times \mathbf{P})/R$$

where $\mathbf{P} = \{x \in \mathbf{N} \mid x \neq 0\}$ and R is the equivalence relation given by

$$(a, b)R(c, d) \iff ad = bc.$$

For $[(a, b)]$ and $[(c, d)]$ in \mathbf{Q} , we define

$$\begin{aligned} [(a, b)] \leq [(c, d)] &\iff a \cdot d \leq b \cdot c \\ [(a, b)] + [(c, d)] &= [(a \cdot d + b \cdot c, b \cdot d)] \\ [(a, b)] \cdot [(c, d)] &= [(a \cdot c, b \cdot d)]. \end{aligned}$$

For $a \in \mathbf{N}$ and $b \in \mathbf{P}$, it is customary to write $\frac{a}{b} = [(a, b)]$. Also for $a \in \mathbf{Z}$ we write $a = [(a, 1)]$, and we identify \mathbf{Z} with a subset of \mathbf{Q} .

1.65 Remark: It can be shown that the above ordering, sum and product are well-defined and satisfy the usual rules in \mathbf{Q} .

1.66 Definition: We define the set of **real numbers** to be the set

$$\mathbf{R} = \{x \subseteq \mathbf{Q} \mid x \neq \emptyset, x \neq \mathbf{Q}, \forall a \in x \ \forall b \in \mathbf{Q} \ (b \leq a \rightarrow b \in x), \ \forall a \in x \ \exists b \in x \ a < b\}.$$

For $x, y \in \mathbf{R}$, we define

$$\begin{aligned} x \leq y &\iff x \subseteq y \\ x + y &= \{a + b \mid a, b \in \mathbf{Q}, a \in x, b \in y\}. \end{aligned}$$

For $0 \leq x, y \in \mathbf{R}$ we define

$$x \cdot y = \{a \cdot b \mid 0 \leq a, b \in \mathbf{Q}, a \in x, b \in y\} \cup \{c \in \mathbf{Q} \mid c < 0\},$$

and we leave, as an exercise, the definition of $x \cdot y$ in the case that $x < 0$ or $y < 0$.

1.67 Remark: It can be shown that the above ordering, sum and product are well-defined and satisfy the usual rules in \mathbf{R} .

1.68 Definition: We define the set of **complex numbers** to be the set

$$\mathbf{C} = \mathbf{R} \times \mathbf{R}.$$

We define addition and multiplication in \mathbf{C} by

$$\begin{aligned} (a, b) + (c, d) &= (a + c, b + d) \\ (a, b) \cdot (c, d) &= (ac - bd, ad + bc). \end{aligned}$$

We write $i = (0, 1)$. For $x \in \mathbf{R}$ we write $x = (x, 0)$, and we identify \mathbf{R} with a subset of \mathbf{C} .

1.69 Remark: It can be shown that the above sum and product are well-defined and satisfy the usual rules in \mathbf{C} .