MATH 146 Linear Algebra 1, Lecture Notes by Stephen New
Chapter 8. Eigenvalues, Eigenvectors and Diagonalization

8.1 Definition: For a square matrix D € M, (R) with entries in a ring R, we say that
D is a diagonal matrix when Dy ; = 0 whenever k # [. For A\i, Aa, -+, A, € R, we write
D = diag(A1, A2, -+, A,) for the diagonal matrix D with Dy, = Ay for all indices k.

8.2 Definition: Let L € End(U) where Uis a finite dimensional vector space over a field F.
We say that that L is diagonalizable when there exists an ordered basis A for U such
that [L] 4 is diagonal.

8.3 Note: Let L € End(U) where U is a finite dimensional vector space over a field F.
When A = {uy,us,---,u,} is an ordered basis for U and A1, Aa,---, A\, € F, we have

[L]_A = diag(/\l, )\2, cee, )\n) < [L(uk)}A:)\kek for all £k <— L(uk) :)\kuk for all k&

Thus L is diagonalizable if and only if there exists an ordered basis A = {uy,ug, -, u,}
for U and there exist A1, Aa, -+, A, € F such that L(ug) = Apuy, for all k.

8.4 Definition: Let L € End(U) where U is a vector space over a field F'. For A € F, we
say that X is an eigenvalue (or a characteristic value) of L when there exists a nonzero
vector 0 # u € F™ such that L(u) = Au. Such a vector 0 # u € U is called an eigenvector
(or characteristic vector) of L for . The spectrum of L is the set

Spec(L) = {\ € F|\ is an eigenvalue of L}.
For A € F, the eigenspace of L for )\ is the subspace
Ex={uecU|L(u)=XMu}={uecU|(L—-XM)u=0} =Ker(L—X)CU.
Note that E) consists of the eigenvectors for A together with the zero vector.

8.5 Note: Let L € End(U) where U is a finite dimensional vector space over a field F.
For A € I

A is an eigenvalue of L <= there exists 0 # u € Ker(L — \I)
<= (L — AI) is not invertible
= det(L — M) =0
<= M\is aroot of f(x)=det(L —zI).
Note that when A is any ordered basis for U, we have
f(x) = det(L — aI) = det ([L — xI}A) = det ([L]a — zI) € P,(F).

8.6 Definition: Let L € End(U) where U is an n-dimensional vector space over a field F.
The characteristic polynomial of L is the polynomial

fo(z) =det(L —xI) € P,(F).
Note that Spec(L) is the set of roots of f1(x).



8.7 Note: Let L € End(U) where U is an n-dimensional vector space over a field F'. Recall
that L is diagonalizable if and only if there exists an ordered basis A = {uy,us, -, u,} for
U such that each uy is an eigenvector for some eigenvalue Ax. The eigenvalues of L are the
roots of fr(x), so there are at most n possible distinct eigenvalues. For each eigenvalue,
the largest number of linearly independent eigenvectors for A is equal to the dimension
of F\. We can try to diagonalize L be finding all the eigenvalues A for L, then finding
a basis for each eigenspace E), then selecting an ordered basis A from the union of the
bases of the eigenspaces. In particular, note that if Y>> dim(F)) < n then L cannot
be diagonalizable. A€Spec(L)

8.8 Definition: Let F' be a field and let A € M, (F'). By identifying A with the linear
map L = Ly € End(F™) given by L(xz) = Az, all of the above definitions and remarks
may be applied to the matrix A. The matrix A is diagonalizable when there exists
an invertible matrix P and a diagonal matrix D such that A = PDP~! (or equivalently
P71AP = D). An eigenvalue for A is an element A € F for which there exists 0 # x € F"
such that Ax = Az, and then such a vector x is called an eigenvector of A for \. The
set of eigenvalues of A, denoted by Spec(A), is called the spectrum of A. For A € F, the
eigenspace for A is the vector space Ey = Null(A—AI). The characteristic polynomial
of A is the polynomial f4(x) = det(A —zI) € P,(F),

3 —1

8.9 Example: Let A = (4 1

) € Ms(F) where F' = R or C. The characteristic
polynomial of A is

3—x —1

A 1—2 =z -3)(z+1)+4=0-22+1=(x—1)?

fa(z) =det(A —zl) = ’

so the only eigenvalue of A is A = 1. When A = 1 we have

(A= M) =(A—1T) = (Z :;) ~ ((2) _01)

so the eigenspace E; = Null(A — I) has basis {u} where u = (1,2)7. Since

> dim(E)) =dim(E;) =1< 2,
A€ESpec(A)

we see that A is not diagonalizable.
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8.10 Example: Let A = <2 1

) € My(F) where F' = R or C. The characteristic
polynomial of A is

e e R

For x € C, we have fa(z) =0 <= =z = &—V;_ZO =1+ 2i. When FF = R, A has no
eigenvalues (in R) and so A is not diagonalizable. When F' = C, the eigenvalues of A
are Ay = 1+ 2¢ and Ao = 1 — 2i. As an exercise, show that when A = \; the eigenspace
E\, has basis {u;} where u; = (i,1)7, and when A\ = )y the eigenspace E), has basis
uy = (—1i,1)T, then verify that the matrix P = (uy,us) € Ms(C) is invertible and that
P~1A P = diag(\1, \2) thus showing that A is diagonalizable.



8.11 Theorem: Let L € End(U) where U is a vector space over a field F. Let
A, A2, -, A\¢ € F be distinct eigenvalues of L. For each index k, let 0 # uy € U be
an eigenvector of L for \i. Then {uy,us,---,us} is linearly independent.

Proof: Since u; # 0 the set {u;} is linearly independent. Suppose, inductively, that the
¢

set {uy,ug, -+, up—1} is linearly independent. Suppose that > t;u; = 0 with t; € F. Note

i=1
that
¢ ¢ ¢ -1
0= (L — )\(I)( Z tiui) = Z tZ(L(uZ) — )\gul) = Z ()\ — )\e) Z tz()\z - )\g)uz
i=1 i=1 i=1 =1
and so t; = 0 for 1 < ¢ < ¢ since {uy,ug,---,us—1} is linearly independent. Since t; = 0

for 1 <i<{¢—1and ) tju; =0, we also have t, = 0. Thus {uy,us, -, up} is linearly
i=1
independent.

8.12 Corollary: Let L € End(U) where U is a vector space over a field F. Let
A1, Ao, -+, A\p be distinct eigenvalues of L. For each index k, let Ay be a linearly inde-

¢
pendent set of eigenvectors for \,. Then |J Ay is linearly independent.
k=1

L myg
Proof: Suppose that > > ¢ ;ur; = 0 where each t;; € F and for each k, the vectors uy ;
k=1i=1
V4 mi
are distinct vectors in Ay. Then we have > up = 0 where ux = Y ¢y ux; € Ex,. From
i=1 i=1
the above theorem, it follows that u; = 0 for all k, because if we had u; # 0 for some values
of k, Say the values kq, ko, -, ky, then {ug,,up,, -, ur, } would be linearly independent
but Z ug, = 0, which is impossible. Since for each index k we have 0 = uy, = Z iUk, i
=1 =1
it follows that each t; ; = 0 because Ay, is linearly independent.
8.13 Corollary: Let L € End(U) where U is a finite dimensional vector space over a field F.
Then
L is diagonalizable if and only if >  dim(E)) = dimU.
AESpec(L)
In this case, if Spec(L) = {A1, A2, -+, ¢} and, for each k, Ay = {ug1,uk2, -, Uk,m, } IS
an ordered basis for E, , and then

A - U A/C - {ul,lvul,Qa UL mg, U2,1, U2, 0 s U2 mg st Ul 1, Up,2, ¢ "7u€,mz}
k=1

is an ordered basis for U such that [L] 4 is diagonal.



8.14 Definition: Let F' be a field. For f € F|z] and a € F, the multiplicity of a as a
root of f, denoted by mult(a, f(x)), is the smallest m € N such that (z — a)™ is a factor
of f(x). Note that a is a root of f if and only if mult(a, f) > 0. For a non-constant
polynomial f € F[z], we say that f splits (over F') when f factors into a product of linear

factors in F'[z], that is when f is of the form f(x) =c¢ [] (x — a;) for some a; € F.

i=1
8.15 Theorem: Let L€ End(U) where U is a finite dimensional vector space over a field F.
Let X € Spec(L) and let my = mult(X, fz(x)). Then

1 S dlm(E,\) S my.

Proof: Since A is an eigenvalue of L we have E) # {0} so dim(Ey) > 1. Let m = dim(E))

and let A = (uy,u9,- -, uy,) be an ordered basis for Fy. Extend A to an ordered basis
B=(uy, ,tpm, -, uy,) for U. Since L(u;) = Au; for 1 <i < m, the matrix [L]g is of the
form

MOA

where I € M,,,(F'). The characteristic polynomial of L is

AN—x)I A

O R B S e

Thus (z — A\)™ is a factor of fr(z) and so my = mult(}, fr(z)) > m.

8.16 Corollary: Let L € End(U) where U is a finite dimensional vector space over a field F.
Then L is diagonalizable if and only if f1(x) splits and dim(E)) = mult(), f1(z)) for every
A € Spec(L).

Proof: Suppose that L is diagonalizable. Choose an ordered basis A so that [L]4 is

diagonal, say [L|4 = D = diag(A1,---,\,). Note that fr(z) = fp(x) = [[ (A — 2),
k=1

and so fr(x) splits. For each A € Spec(L), let my = mult(A, fr(z)). Then, by the above

theorem together with Corollary 8.13, we have

n=dimU)= > dim(Ey) < > my=deg(fr)=n
A€Spec(L) A€Spec(L)
which implies that dim(E)) = my for all \. Conversely, if f1, splits and dim(Ey) = m for
all A then
Y, dim(Ey)= >, my=deg(fr) =n=dim(U)
A€Spec(L) AESpec(L)
and so L is diagonalizable.

8.17 Corollary: Let A € M, (F) where F is a field. Then A is diagonalizable if and only
if fa(x) splits and dim(Ey) = mult(\, fa(z)) for all A € Spec(A).



8.18 Note: To summarize the above results, given a matrix A € M, (F'), where F' is a
field, we can determine whether A is diagonalizable as follows. We find the characteristicc
polynomial fa(z) = det(A — zI). We factor fa(z) to find the eigenvalues of A and the
multiplicity of each eigenvalue. If f4(x) does not split then A is not diagonalizable. If f4(z)
does split, then for each eigenvalue A with multiplicity my > 2, we calculate dim(FE)). If
we find one eigenvalue A for which dim(FE)) < m) then A is not diagonalizable. Otherwise
A is diagonalizable. In particular we remark that if fa(z) splits and has n distinct roots
(so the eigenvalues all have multiplicity 1) then A is diagonalizable.

¢
In the case that A is diagonalizable and fa(x) = (=1)" [] (x — Ag)™*, if we find an

ordered basis A = {ug1, Uky, -, uk,mk} for each eigenspace, then we have P~!AP = D
with
P = (u1,1, UL,2, 5 ULmy, U2,1, U225 "~ *y U2 my, - "t U1, Up2, " 7Ue,mg)

D:diag()\la)\la"'7)\17)‘27>‘27"'7)‘27"'7)‘57/\57"'7)‘8)

where each A\ is repeated my times.

3 1 1
8.19 Example: Let A= | 2 4 2| € M3(Q). Determine whether A is diagonalizable
-1 -1 1

and, if so, find an invertible matrix P and a diagonal matrix D such that P~'AP = D.

Solution: The characteristic polynomial of A is

3—x 1 1
fal@)=|A—-zl|=| 2 44—z 2
-1 -1 1-x

= (-3 (z—4)(r—1)-2-2-2@x—3)+2(x—1) — (z —4)
= —(2® — 822+ 192 — 12) —z + 4 = —(2® — 82> + 20z — 16)
= —(z—-2)(2* 62 +8) = —(z—2)*(z — 4)

so the eigenvalues are A\; = 2 and Ay = 4 of multiplicities m; = 2 and my = 1. When
A = A1 = 2 we have

1 1 1 1 1 1
A-XN=A-2I=|2 2 2 |~[0 0 O
-1 -1 -1 0 0 O

so the eigenspace Es has basis {u1,us} with u; = (=1,0,1)T and uy = (—1,1,0)7. When
A = Xy = 4 we have

-1 1 1 1 -1 -1 1 0 1
A-XN=A-4=|2 0 2 |~|0 2 4 |~[0 1 2
-1 -1 -3 0 2 4 0 0 O
so the eigenspace F, has basis {uz} where uz = (—=1,—2,1)T. Thus we have P7'AP = D

where

-1 -1 -1 2 0 0
P = (Ul,UQ,Ug) - 0 1 -2 and D = diag()\l,)\l,)\2) = 0 2 0
1 0 1 0 0 4



8.20 Definition: For a square matrix T' € M,,(R) with entries in a ring R, we say that
T is upper triangular when 7} ; = 0 whenever k£ > [.

8.21 Definition: Let L € End(U) where U is a finite dimensional vector space over a
field F'. We say that L is (upper) triangularizable when there exists an ordered basis A
for U such that [L] 4 is upper triangular.

8.22 Definition: For a square matrix A € M, (F), where F' is a field, we say that A is
(upper) triangularizable when there exists an invertible matrix P € GL,(F') such that
P~!AP is upper triangular.

8.23 Theorem: (Schur’s Theorem) Let F' be a field.

(1) Let L € End(U) where U is a finite dimensional vector space over F. Then L is
triangularizable if and only if f1(x) splits, and
(2) Let A € M, (F). Then A is triangularizable if and only if f4(x) splits.

Proof: We shall prove Part (2), and we leave it as an exercise to show that Part (1) holds
if and only if Part (2) holds. Suppose first that A is triangularizable. Choose an invertible
matrix P and an upper triangular matrix T' with P"'AP = T. Then

fa(z) = fr(x) =

k

(T, — )
=1

and so fa(z) splits.

Conversely, suppose that fa(z) splits. Choose a root A\; of f4(x) and note that A; is
an eigenvalue of A. Choose an eigenvector u; for A1, so we have Au; = Ajuy. Since u; # 0
the set {u} is linearly independent. Extend the set {u;} to a basis A = {uy,ug, -, u,}
for F™. Let Q = (u1,ug,- -+, u,) € M, (F), and note that @ is invertible because A is a
basis for F™. Since Q~'Q = I, the first column of Q~'Q is equal to e;, so we have

Q'AQ = Q 'A(uy, ug, -+, un) = Q7 (Auy, Aug, - - -, Auy,)
=Q "(Mur, Aug, - up)) = (MQ M ur, QM A(ug, -+ up))

T
= (Me1, @ Aug, -+, u,)) = ()(\)1 :zj:B)

with x € F*"! and B € M,,_1(F).. Note that fa(z) = (z — \)fp(z) and so fp(x)
splits. We suppose, inductively, that B is triangularizable. Choose R € GL,,_1(F') so that

R7'BR = S with S upper-triangular. Let P = Q ((1) ]O%) € M, (F). Then P is invertible

with P~1 = ((1) R0_1> O~ and

1 (1 0 _1 1 0y (1 0 Aol 1 0
prar= (g gh)ee(y g)=(o 2 ) (5 %) (0 &)
. 1 0 )\1 acTR - )\1 ZL‘TR . )\1 ITR
~\0 R! 0 BR) \0 R'BR) \0 S

which is upper triangular.



