
MATH 146 Linear Algebra 1, Lecture Notes by Stephen New

Chapter 8. Eigenvalues, Eigenvectors and Diagonalization

8.1 Definition: For a square matrix D ∈ Mn(R) with entries in a ring R, we say that
D is a diagonal matrix when Dk,l = 0 whenever k 6= l. For λ1, λ2, · · · , λn ∈ R, we write
D = diag(λ1, λ2, · · · , λn) for the diagonal matrix D with Dk,k = λk for all indices k.

8.2 Definition: Let L∈End(U) where U is a finite dimensional vector space over a field F .
We say that that L is diagonalizable when there exists an ordered basis A for U such
that [L]A is diagonal.

8.3 Note: Let L ∈ End(U) where U is a finite dimensional vector space over a field F .
When A = {u1, u2, · · · , un} is an ordered basis for U and λ1, λ2, · · · , λn ∈ F , we have

[L]A = diag(λ1, λ2, · · · , λn) ⇐⇒
[
L(uk)

]
A=λkek for all k ⇐⇒ L(uk)=λkuk for all k

Thus L is diagonalizable if and only if there exists an ordered basis A = {u1, u2, · · · , un}
for U and there exist λ1, λ2, · · · , λn ∈ F such that L(uk) = λkuk for all k.

8.4 Definition: Let L ∈ End(U) where U is a vector space over a field F . For λ ∈ F , we
say that λ is an eigenvalue (or a characteristic value) of L when there exists a nonzero
vector 0 6= u ∈ Fn such that L(u) = λu. Such a vector 0 6= u ∈ U is called an eigenvector
(or characteristic vector) of L for λ. The spectrum of L is the set

Spec(L) =
{
λ ∈ F

∣∣λ is an eigenvalue of L
}
.

For λ ∈ F , the eigenspace of L for λ is the subspace

Eλ =
{
u ∈ U

∣∣L(u) = λu
}

=
{
u ∈ U

∣∣(L− λI)u = 0
}

= Ker(L− λI) ⊆ U.

Note that Eλ consists of the eigenvectors for λ together with the zero vector.

8.5 Note: Let L ∈ End(U) where U is a finite dimensional vector space over a field F .
For λ ∈ F

λ is an eigenvalue of L ⇐⇒ there exists 0 6= u ∈ Ker(L− λI)

⇐⇒ (L− λI) is not invertible

⇐⇒ det(L− λI) = 0

⇐⇒ λ is a root of f(x) = det(L− xI).

Note that when A is any ordered basis for U , we have

f(x) = det(L− xI) = det
([
L− xI

]
A

)
= det

(
[L]A − xI

)
∈ Pn(F ).

8.6 Definition: Let L ∈ End(U) where U is an n-dimensional vector space over a field F .
The characteristic polynomial of L is the polynomial

fL(x) = det(L− xI) ∈ Pn(F ).

Note that Spec(L) is the set of roots of fL(x).
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8.7 Note: Let L ∈ End(U) where U is an n-dimensional vector space over a field F . Recall
that L is diagonalizable if and only if there exists an ordered basis A = {u1, u2, · · · , un} for
U such that each uk is an eigenvector for some eigenvalue λk. The eigenvalues of L are the
roots of fL(x), so there are at most n possible distinct eigenvalues. For each eigenvalue,
the largest number of linearly independent eigenvectors for λ is equal to the dimension
of Eλ. We can try to diagonalize L be finding all the eigenvalues λ for L, then finding
a basis for each eigenspace Eλ, then selecting an ordered basis A from the union of the
bases of the eigenspaces. In particular, note that if

∑
λ∈Spec(L)

dim(Eλ) < n then L cannot
be diagonalizable.

8.8 Definition: Let F be a field and let A ∈ Mn(F ). By identifying A with the linear
map L = LA ∈ End(Fn) given by L(x) = Ax, all of the above definitions and remarks
may be applied to the matrix A. The matrix A is diagonalizable when there exists
an invertible matrix P and a diagonal matrix D such that A = PDP−1 (or equivalently
P−1AP = D). An eigenvalue for A is an element λ ∈ F for which there exists 0 6= x ∈ Fn
such that Ax = λx, and then such a vector x is called an eigenvector of A for λ. The
set of eigenvalues of A, denoted by Spec(A), is called the spectrum of A. For λ ∈ F , the
eigenspace for λ is the vector space Eλ = Null(A−λI). The characteristic polynomial
of A is the polynomial fA(x) = det(A− xI) ∈ Pn(F ),

8.9 Example: Let A =

(
3 −1
4 −1

)
∈ M2(F ) where F = R or C. The characteristic

polynomial of A is

fA(x) = det(A− xI) =

∣∣∣∣ 3− x −1
4 −1− x

∣∣∣∣ = (x− 3)(x+ 1) + 4 = x2 − 2x+ 1 = (x− 1)2

so the only eigenvalue of A is λ = 1. When λ = 1 we have

(A− λI) = (A− I) =

(
2 −1
4 −2

)
∼
(

2 −1
0 0

)
so the eigenspace E1 = Null(A− I) has basis {u} where u = (1, 2)T . Since∑

λ∈Spec(A)

dim(Eλ) = dim(E1) = 1 < 2,

we see that A is not diagonalizable.

8.10 Example: Let A =

(
1 −2
2 1

)
∈ M2(F ) where F = R or C. The characteristic

polynomial of A is

fA(x) =

∣∣∣∣ 1− x −2
2 1− x

∣∣∣∣ = (x− 1)2 + 4 = x2 − 2x+ 5.

For x ∈ C, we have fA(x) = 0 ⇐⇒ x = 2±
√
4−20
2 = 1 ± 2i. When F = R, A has no

eigenvalues (in R) and so A is not diagonalizable. When F = C, the eigenvalues of A
are λ1 = 1 + 2i and λ2 = 1 − 2i. As an exercise, show that when λ = λ1 the eigenspace
Eλ1

has basis {u1} where u1 = (i, 1)T , and when λ = λ2 the eigenspace Eλ2
has basis

u2 = (−i, 1)T , then verify that the matrix P = (u1, u2) ∈ M2(C) is invertible and that
P−1AP = diag(λ1, λ2) thus showing that A is diagonalizable.
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8.11 Theorem: Let L ∈ End(U) where U is a vector space over a field F . Let
λ1, λ2, · · · , λ` ∈ F be distinct eigenvalues of L. For each index k, let 0 6= uk ∈ U be
an eigenvector of L for λk. Then {u1, u2, · · · , u`} is linearly independent.

Proof: Since u1 6= 0 the set {u1} is linearly independent. Suppose, inductively, that the

set {u1, u2, · · · , u`−1} is linearly independent. Suppose that
∑̀
i=1

tiui = 0 with ti ∈ F . Note

that

0 = (L− λ`I)
( ∑̀
i=1

tiui
)

=
∑̀
i=1

ti(L(ui)− λ`ui) =
∑̀
i=1

ti(λi − λ`)ui =
`−1∑
i=1

ti(λi − λ`)ui

and so ti = 0 for 1 ≤ i < ` since {u1, u2, · · · , u`−1} is linearly independent. Since ti = 0

for 1 ≤ i ≤ ` − 1 and
∑̀
i=1

tiui = 0, we also have t` = 0. Thus {u1, u2, · · · , u`} is linearly

independent.

8.12 Corollary: Let L ∈ End(U) where U is a vector space over a field F . Let
λ1, λ2, · · · , λ` be distinct eigenvalues of L. For each index k, let Ak be a linearly inde-

pendent set of eigenvectors for λk. Then
⋃̀
k=1

Ak is linearly independent.

Proof: Suppose that
∑̀
k=1

mk∑
i=1

tk,iuk,i = 0 where each tk,i ∈ F and for each k, the vectors uk,i

are distinct vectors in Ak. Then we have
∑̀
i=1

uk = 0 where uk =
mk∑
i=1

tk,iuk,i ∈ Eλk
. From

the above theorem, it follows that uk = 0 for all k, because if we had uk 6= 0 for some values
of k, say the values k1, k2, · · · , kr, then {uk1 , uk2 , · · · , ukr} would be linearly independent

but
r∑
i=1

ukr = 0, which is impossible. Since for each index k we have 0 = uk =
mk∑
i=1

tk,iuk,i

it follows that each tk,i = 0 because Ak is linearly independent.

8.13 Corollary: Let L∈End(U) where U is a finite dimensional vector space over a field F .
Then

L is diagonalizable if and only if
∑

λ∈Spec(L)
dim(Eλ) = dimU.

In this case, if Spec(L) = {λ1, λ2, · · · , λ`} and, for each k, Ak = {uk,1, uk,2, · · · , uk,mk
} is

an ordered basis for Eλk
, and then

A =
⋃̀
k=1

Ak =
{
u1,1, u1,2, · · · , u1,m1 , u2,1, u2,2, · · · , u2,m2 , · · · , u`,1, u`,2, · · · , u`,m`

}
is an ordered basis for U such that [L]A is diagonal.
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8.14 Definition: Let F be a field. For f ∈ F [x] and a ∈ F , the multiplicity of a as a
root of f , denoted by mult(a, f(x)), is the smallest m ∈ N such that (x− a)m is a factor
of f(x). Note that a is a root of f if and only if mult(a, f) > 0. For a non-constant
polynomial f ∈ F [x], we say that f splits (over F ) when f factors into a product of linear

factors in F [x], that is when f is of the form f(x) = c
n∏
i=1

(x− ai) for some ai ∈ F .

8.15 Theorem: Let L∈End(U) where U is a finite dimensional vector space over a field F .
Let λ ∈ Spec(L) and let mλ = mult

(
λ, fL(x)

)
. Then

1 ≤ dim(Eλ) ≤ mλ.

Proof: Since λ is an eigenvalue of L we have Eλ 6= {0} so dim(Eλ) ≥ 1. Let m = dim(Eλ)
and let A = (u1, u2, · · · , um) be an ordered basis for Eλ. Extend A to an ordered basis
B = (u1, · · · , um, · · · , un) for U . Since L(ui) = λui for 1 ≤ i ≤ m, the matrix [L]B is of the
form

[L]B =

(
λI A
0 B

)
∈Mn(F )

where I ∈Mm(F ). The characteristic polynomial of L is

fL(x) =

∣∣∣∣ (λ− x)I A
0 B − xI

∣∣∣∣ = (λ− x)mfB(x).

Thus (x− λ)m is a factor of fL(x) and so mλ = mult
(
λ, fL(x)

)
≥ m.

8.16 Corollary: Let L∈End(U) where U is a finite dimensional vector space over a field F .
Then L is diagonalizable if and only if fL(x) splits and dim(Eλ) = mult(λ, fL(x)

)
for every

λ ∈ Spec(L).

Proof: Suppose that L is diagonalizable. Choose an ordered basis A so that [L]A is

diagonal, say [L]A = D = diag(λ1, · · · , λn). Note that fL(x) = fD(x) =
n∏
k=1

(λk − x),

and so fL(x) splits. For each λ ∈ Spec(L), let mλ = mult(λ, fL(x)). Then, by the above
theorem together with Corollary 8.13, we have

n = dim(U) =
∑

λ∈Spec(L)
dim(Eλ) ≤

∑
λ∈Spec(L)

mλ = deg(fL) = n

which implies that dim(Eλ) = mλ for all λ. Conversely, if fL splits and dim(Eλ) = mλ for
all λ then ∑

λ∈Spec(L)
dim(Eλ) =

∑
λ∈Spec(L)

mλ = deg(fL) = n = dim(U)

and so L is diagonalizable.

8.17 Corollary: Let A ∈Mn(F ) where F is a field. Then A is diagonalizable if and only
if fA(x) splits and dim(Eλ) = mult(λ, fA(x)) for all λ ∈ Spec(A).
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8.18 Note: To summarize the above results, given a matrix A ∈ Mn(F ), where F is a
field, we can determine whether A is diagonalizable as follows. We find the characteristicc
polynomial fA(x) = det(A − xI). We factor fA(x) to find the eigenvalues of A and the
multiplicity of each eigenvalue. If fA(x) does not split then A is not diagonalizable. If fA(x)
does split, then for each eigenvalue λ with multiplicity mλ ≥ 2, we calculate dim(Eλ). If
we find one eigenvalue λ for which dim(Eλ) < mλ then A is not diagonalizable. Otherwise
A is diagonalizable. In particular we remark that if fA(x) splits and has n distinct roots
(so the eigenvalues all have multiplicity 1) then A is diagonalizable.

In the case that A is diagonalizable and fA(x) = (−1)n
∏̀
k=1

(x − λk)mk , if we find an

ordered basis Ak = {uk,1, uk2 , · · · , uk,mk

}
for each eigenspace, then we have P−1AP = D

with
P =

(
u1,1, u1,2, · · · , u1,m1

, u2,1, u2,2, · · · , u2,m2
, · · · , u`,1, u`,2, · · · , u`,m`

)
D = diag(λ1, λ1, · · · , λ1, λ2, λ2, · · · , λ2, · · · , λ`, λ`, · · · , λ`

)
where each λk is repeated mk times.

8.19 Example: Let A =

 3 1 1
2 4 2
−1 −1 1

 ∈M3(Q). Determine whether A is diagonalizable

and, if so, find an invertible matrix P and a diagonal matrix D such that P−1AP = D.

Solution: The characteristic polynomial of A is

fA(x) =
∣∣A− xI∣∣ =

∣∣∣∣∣∣
3− x 1 1

2 4− x 2
−1 −1 1− x

∣∣∣∣∣∣
= −(x− 3)(x− 4)(x− 1)− 2− 2− 2(x− 3) + 2(x− 1)− (x− 4)

= −(x3 − 8x2 + 19x− 12)− x+ 4 = −(x3 − 8x2 + 20x− 16)

= −(x− 2)(x2 − 6x+ 8) = −(x− 2)2(x− 4)

so the eigenvalues are λ1 = 2 and λ2 = 4 of multiplicities m1 = 2 and m2 = 1. When
λ = λ1 = 2 we have

A− λI = A− 2I =

 1 1 1
2 2 2
−1 −1 −1

 ∼
 1 1 1

0 0 0
0 0 0


so the eigenspace E2 has basis {u1, u2} with u1 = (−1, 0, 1)T and u2 = (−1, 1, 0)T . When
λ = λ2 = 4 we have

A− λI = A− 4I =

−1 1 1
2 0 2
−1 −1 −3

 ∼
 1 −1 −1

0 2 4
0 2 4

 ∼
 1 0 1

0 1 2
0 0 0


so the eigenspace E4 has basis {u3} where u3 = (−1,−2, 1)T . Thus we have P−1AP = D
where

P =
(
u1, u2, u3

)
=

−1 −1 −1
0 1 −2
1 0 1

 and D = diag
(
λ1, λ1, λ2

)
=

 2 0 0
0 2 0
0 0 4

 .
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8.20 Definition: For a square matrix T ∈ Mn(R) with entries in a ring R, we say that
T is upper triangular when Tk,l = 0 whenever k > l.

8.21 Definition: Let L ∈ End(U) where U is a finite dimensional vector space over a
field F . We say that L is (upper) triangularizable when there exists an ordered basis A
for U such that [L]A is upper triangular.

8.22 Definition: For a square matrix A ∈ Mn(F ), where F is a field, we say that A is
(upper) triangularizable when there exists an invertible matrix P ∈ GLn(F ) such that
P−1AP is upper triangular.

8.23 Theorem: (Schur’s Theorem) Let F be a field.

(1) Let L ∈ End(U) where U is a finite dimensional vector space over F . Then L is
triangularizable if and only if fL(x) splits, and
(2) Let A ∈Mn(F ). Then A is triangularizable if and only if fA(x) splits.

Proof: We shall prove Part (2), and we leave it as an exercise to show that Part (1) holds
if and only if Part (2) holds. Suppose first that A is triangularizable. Choose an invertible
matrix P and an upper triangular matrix T with P−1AP = T . Then

fA(x) = fT (x) =
n∏
k=1

(Tk,k − x)

and so fA(x) splits.
Conversely, suppose that fA(x) splits. Choose a root λ1 of fA(x) and note that λ1 is

an eigenvalue of A. Choose an eigenvector u1 for λ1, so we have Au1 = λ1u1. Since u1 6= 0
the set {u1} is linearly independent. Extend the set {u1} to a basis A = {u1, u2, · · · , un}
for Fn. Let Q = (u1, u2, · · · , un) ∈ Mn(F ), and note that Q is invertible because A is a
basis for Fn. Since Q−1Q = I, the first column of Q−1Q is equal to e1, so we have

Q−1AQ = Q−1A(u1, u2, · · · , un) = Q−1(Au1, Au2, · · · , Aun)

= Q−1
(
λ1u1, A(u2, · · · , un)

)
=
(
λ1Q

−1u1, Q
−1A(u2, · · · , un)

)
=
(
λ1e1, Q

−1A(u2, · · · , un)
)

=

(
λ1 xT

0 B

)
with x ∈ Fn−1 and B ∈ Mn−1(F ).. Note that fA(x) = (x − λ1)fB(x) and so fB(x)
splits. We suppose, inductively, that B is triangularizable. Choose R ∈ GLn−1(F ) so that

R−1BR = S with S upper-triangular. Let P = Q

(
1 0
0 R

)
∈Mn(F ). Then P is invertible

with P−1 =

(
1 0
0 R−1

)
Q−1 and

P−1AP =

(
1 0
0 R−1

)
Q−1AQ

(
1 0
0 R

)
=

(
1 0
0 R−1

)(
λ1 xT

0 B

)(
1 0
0 R

)
=

(
1 0
0 R−1

)(
λ1 xTR
0 BR

)
=

(
λ1 xTR
0 R−1BR

)
=

(
λ1 xTR
0 S

)
which is upper triangular.
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