

Chapter 7. Module Homomorphisms and Linear Maps

7.1 Definition: Let R be a ring and let U and V be R -modules. An (R -module) **homomorphism** from U to V is a map $L : U \rightarrow V$ such that

$$L(x + y) = L(x) + L(y) \quad \text{and} \quad L(tx) = t L(x)$$

for all $x, y \in U$ and all $t \in R$. A bijective homomorphism from U to V is called an **isomorphism** from U to V , a homomorphism from U to U is called an **endomorphism** of U , and an isomorphism from U to U is called an **automorphism** of U . We say that U is **isomorphic** to V , and we write $U \cong V$, when there exists an isomorphism $L : U \rightarrow V$. We use the following notation

$$\begin{aligned} \text{Hom}(U, V) &= \text{Hom}_R(U, V) = \{L : U \rightarrow V \mid L \text{ is a homomorphism}\}, \\ \text{Iso}(U, V) &= \text{Iso}_R(U, V) = \{L : U \rightarrow V \mid L \text{ is an isomorphism}\}, \\ \text{End}(U) &= \text{End}_R(U) = \{L : U \rightarrow U \mid L \text{ is an endomorphism}\}, \\ \text{Aut}(U) &= \text{Aut}_R(U) = \{L : U \rightarrow U \mid L \text{ is an automorphism}\}. \end{aligned}$$

For $L, M \in \text{Hom}(U, V)$ and $t \in R$ we define $L + M$ and tM by

$$(L + M)(x) = L(x) + M(x) \quad \text{and} \quad (tL)(x) = t L(x).$$

Using these operations, if R is commutative then the set $\text{Hom}(U, V)$ is an R -module. For $L \in \text{Hom}(U, V)$, the **image** (or **range**) of L and the **kernel** (or **null set**) of L are the sets

$$\begin{aligned} \text{Image}(L) &= \text{Range}(L) = L(U) = \{L(x) \mid x \in U\} \quad \text{and} \\ \text{Ker}(L) &= \text{Null}(L) = L^{-1}(0) = \{x \in U \mid L(x) = 0\}. \end{aligned}$$

When F is a field and U and V are vector spaces over F , an F -module homomorphism from U to V is also called a **linear map** from U to V .

7.2 Note: For an R -module homomorphism $L : U \rightarrow V$ and for $x \in U$ we have $L(0) = 0$ and $L(-x) = -L(x)$, and for $t_i \in R$ and $x_i \in U$ we have $L\left(\sum_{i=1}^n t_i x_i\right) = \sum_{i=1}^n t_i L(x_i)$.

7.3 Definition: When G and H are groups, a map $L : G \rightarrow H$ is called a **group homomorphism** when $L(xy) = L(x)L(y)$ for all $x, y \in G$. A **group isomorphism** is a bijective group homomorphism. When R and S are rings, a map $L : R \rightarrow S$ is called a **ring homomorphism** when $L(x + y) = L(x) + L(y)$ and $L(xy) = L(x)L(y)$ for all $x, y \in R$. A **ring isomorphism** is a bijective ring homomorphism. When R is a ring and U and V are R -algebras, a map $L : U \rightarrow V$ is called an **R -algebra homomorphism** when $L(x + y) = L(x) + L(y)$, $L(xy) = L(x)L(y)$ and $L(tx) = t L(x)$ for all $x, y \in U$ and all $t \in R$. An **R -algebra isomorphism** is a bijective R -algebra homomorphism.

7.4 Theorem: Let R be a ring and let U, V and W be R -modules.

- (1) If $L:U \rightarrow V$ and $M:V \rightarrow W$ are homomorphisms then so is the composite $ML:U \rightarrow W$.
- (2) If $L:U \rightarrow V$ is an isomorphism, then so is the inverse $L^{-1}:V \rightarrow U$.

Proof: Suppose that $L:U \rightarrow V$ and $M:V \rightarrow W$ are R -module homomorphisms. Then for all $x, y \in U$ and all $t \in R$ we have

$$\begin{aligned} M(L(x+y)) &= M(L(x) + L(y)) = M(L(x)) + M(L(y)) \text{ and} \\ M(L(tx)) &= M(tL(x)) = tM(L(x)). \end{aligned}$$

Suppose that $L:U \rightarrow V$ is an isomorphism. Then given $u, v \in V$ and $t \in R$, if we let $x = L^{-1}(u)$ and $y = L^{-1}(v)$ then we have

$$\begin{aligned} L^{-1}(u+v) &= L^{-1}(L(x) + L(y)) = L^{-1}(L(x+y)) = x+y = L^{-1}(u) + L^{-1}(v) \text{ and} \\ L^{-1}(tu) &= L^{-1}(tL(x)) = L^{-1}(L(tx)) = tx = tL^{-1}(u). \end{aligned}$$

7.5 Corollary: Let R be a ring. Then isomorphism is an equivalence relation on the class of all R -modules. This means that for all R -modules U, V and W we have

- (1) $U \cong U$,
- (2) if $U \cong V$ then $V \cong U$, and
- (3) if $U \cong V$ and $V \cong W$ then $U \cong W$.

7.6 Corollary: When R is a commutative ring and U is an R -module, $\text{End}(U)$ is a ring under addition and composition, hence also an R -algebra, and $\text{Aut}(U)$ is a group under composition.

7.7 Theorem: Let $L:U \rightarrow V$ be an R -algebra homomorphism.

- (1) If U_0 is a submodule of U then $L(U_0)$ is a submodule of V . In particular, the image of L is a submodule of V .
- (2) If V_0 is a submodule of V then $L^{-1}(V_0)$ is a submodule of U . In particular, the kernel of L is a submodule of U .

Proof: To prove Part (1), let U_0 be a submodule of U . Let $u, v \in L(U_0)$ and let $t \in R$. Choose $x, y \in U_0$ with $L(x) = u$ and $L(y) = v$. Since $x+y \in U_0$ and $L(x+y) = L(x) + L(y) = u+v$, it follows that $u+v \in L(U_0)$. Since $tx \in U_0$ and $L(tx) = tL(x) = tu$, it follows that $tu \in L(U_0)$. Thus $L(U_0)$ is closed under the module operations and so it is a submodule of V .

To prove Part (2), let V_0 be a submodule of V . Let $x, y \in L^{-1}(V_0)$ and let $t \in R$. Let $u = L(x) \in V_0$ and $v = L(y) \in V_0$. Since $L(x+y) = L(x) + L(y) = u+v \in V_0$ it follows that $x+y \in L^{-1}(V_0)$. Since $L(tx) = tL(x) = Lu \in V_0$ it follows that $tx \in L^{-1}(V_0)$. Thus $L^{-1}(V_0)$ is closed under the module operations and so it is a sub algebra of U .

7.8 Theorem: Let $L:U \rightarrow V$ be an R -module homomorphism. Then

- (1) L is surjective if and only if $\text{Range}(L) = V$, and
- (2) L is injective if and only if $\text{Ker}(L) = \{0\}$.

Proof: Part (1) is simply a restatement of the definition of subjectivity and does not require proof. To Prove Part (2), we begin by remarking that since $L(0) = 0$ we have $\{0\} \subseteq \text{Ker}(L)$. Suppose L is injective. Then $x \in \text{Ker}(L) \implies L(x) = 0 \implies L(x) = L(0) \implies x = 0$ and so $\text{Ker}(L) = \{0\}$. Suppose, conversely, that $\text{Ker}(L) = \{0\}$. Then $L(X) = L(y) \implies L(x) - L(y) = 0 \implies L(x-y) = 0 \implies x-y \in \text{Ker}(L) = \{0\} \implies x-y = 0 \implies x = y$ and so L is injective.

7.9 Example: The maps

$$L : P_n(R) \rightarrow R^{n+1} \text{ given by } L\left(\sum_{i=0}^n a_i x^i\right) = (a_0, a_1, \dots, a_n)$$

$$L : R[x] \rightarrow R^\infty \text{ given by } L\left(\sum_{i=0}^n a_i x^i\right) = (a_0, a_1, \dots, a_n, 0, 0, \dots)$$

$$L : R[[x]] \rightarrow R^\omega \text{ given by } L\left(\sum_{i=0}^\infty a_i x^i\right) = (a_0, a_1, a_2, \dots)$$

are all R -algebra isomorphisms, so we have $P_n(R) \cong R^{n+1}$, $R[x] \cong R^\infty$ and $R[[x]] \cong R^\omega$.

7.10 Example: The map $L : M_{m \times n}(R) \rightarrow R^{m \cdot n}$ given by

$$L \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} = (a_{1,1}, a_{1,2}, \dots, a_{1,n}, a_{2,1}, \dots, a_{2,n}, \dots, a_{m,1}, \dots, a_{m,n})$$

is an R -module isomorphism, so we have $M_{m \times n}(R) \cong R^{m \cdot n}$.

7.11 Example: Let A and B be sets with $|A| = |B|$, and let $g : A \rightarrow B$ be a bijection. Then the map $L : R^A \rightarrow R^B$ given by $L(f)(b) = f(g^{-1}(b))$, that is by $L(f) = fg^{-1}$, is an R -module isomorphism, and so we have $R^A \cong R^B$. In particular, if $|A| = n$ then we have $R^A \cong R^{\{1,2,\dots,n\}} = R^n$, and if $|A| = \aleph_0$ then we have $R^A \cong R^{\{1,2,3,\dots\}} = R^\omega$.

7.12 Example: Let $\mathcal{A} = (u_1, u_2, \dots, u_n)$ be a finite ordered basis for a free R -module U . Then the map $\phi_{\mathcal{A}} : U \rightarrow R^n$ given by $\phi_{\mathcal{A}}(x) = [x]_{\mathcal{A}}$ is an R -module isomorphism, so we have $U \cong R^n$.

If $\mathcal{B} = (v_1, v_2, \dots, v_n)$ is a finite ordered basis for another free R -module V , then the map $\phi_{\mathcal{B}}^{-1} \phi_{\mathcal{A}} : U \rightarrow V$ is an R -module isomorphism, so we have $U \cong V$.

7.13 Example: Let R be a commutative ring. Let $\phi : \text{Hom}(R^n, R^m) \rightarrow M_{m \times n}(R)$ be the map given by $\phi(L) = [L] = (L(e_1), L(e_2), \dots, L(e_n)) \in M_{m \times n}(R)$. Recall that the inverse of ϕ is the map $\psi : M_{m \times n}(R) \rightarrow \text{Hom}(R^n, R^m)$ given by $\psi(A) = L_A$ where $L_A(a) = Ax$. Note that ψ preserves the R -module operations because

$$\begin{aligned} \phi(A + B) &= L_{A+B} = L_A + L_B = \psi(A) + \psi(B) \text{ and} \\ \psi(tA) &= L_{tA} = t L_A = t \psi(A). \end{aligned}$$

Thus ϕ and ψ are R -module isomorphisms and we have $\text{Hom}(R^n, R^m) \cong M_{m \times n}(R)$. In the case that $m = n$, we also have

$$\psi(AB) = L_{AB} = L_A L_B = \psi(A)\psi(B)$$

and so the maps ϕ and ψ are in fact R -algebra isomorphisms so we have $\text{End}(R^n) \cong M_n(R)$ as R -algebras. By restricting ϕ and ψ to the invertible elements, we also obtain a group isomorphism $\text{Aut}(R^n) \cong GL_n(R)$.

7.14 Theorem: Let R be a ring and let U and V be free R -modules. Then $U \cong V$ if and only if there exists a basis \mathcal{A} for U and a basis \mathcal{B} for V with $|\mathcal{A}| = |\mathcal{B}|$.

Proof: Suppose that $U \cong V$. Let \mathcal{A} be a basis for U and let $L : U \rightarrow V$ be an isomorphism. Let $\mathcal{B} = L(\mathcal{A}) = \{L(u) \mid u \in \mathcal{A}\}$. Since L is bijective we have $|\mathcal{A}| = |\mathcal{B}|$. Note that \mathcal{B} spans V because given $y \in V$ we can choose $x \in U$ with $L(x) = y$, then write $x = \sum_{i=1}^n t_i u_i$ with $t_i \in R$ and $u_i \in \mathcal{A}$, and then we have

$$y = L(x) = L\left(\sum_{i=1}^n t_i u_i\right) = \sum_{i=1}^n t_i L(u_i) \in \text{Span}(\mathcal{B}).$$

It remains to show that \mathcal{B} is linearly independent. Suppose that $\sum_{i=1}^n t_i v_i = 0$ where $t_i \in R$ and the v_i are distinct elements in \mathcal{B} . For each index i , choose $u_i \in \mathcal{A}$ with $L(u_i) = v_i$, and note that the elements u_i are distinct because L is bijective. We have

$$0 = \sum_{i=1}^n t_i v_i = \sum_{i=1}^n t_i L(u_i) = L\left(\sum_{i=1}^n t_i u_i\right).$$

Because L is injective, it follows that $\sum_{i=1}^n t_i u_i = 0$ and then, because \mathcal{A} is linearly independent, it follows that each $t_i = 0$. Thus \mathcal{B} is linearly independent, as required.

Conversely, suppose that \mathcal{A} is a basis for U and \mathcal{B} is a basis for V with $|\mathcal{A}| = |\mathcal{B}|$. Let $g : A \rightarrow B$ be a bijection. Define a map $L : U \rightarrow V$ as follows. Given $x \in U$, write $x = \sum_{i=1}^n t_i u_i$ where $t_i \in R$ and the u_i are distinct elements in \mathcal{A} , and then define

$L(x) = \sum_{i=1}^n t_i g(u_i)$. Note that L is an R -module homomorphism because for $r \in R$ and for

$x = \sum_{i=1}^n s_i u_i$ and $y = \sum_{i=1}^n t_i u_i$ (where we are using the same elements u_i in both sums with some of the coefficients equal to zero), we have

$$L(rx) = L\left(\sum_{i=1}^n (rs_i) u_i\right) = \sum_{i=1}^n rs_i g(u_i) = r \sum_{i=1}^n s_i g(u_i) = rL(x) \text{ , and}$$

$$L(x+y) = L\left(\sum_{i=1}^n (s_i + t_i) u_i\right) = \sum_{i=1}^n (s_i + t_i) g(u_i) = \sum_{i=1}^n s_i g(u_i) + \sum_{i=1}^n t_i g(u_i) = L(x) + L(y).$$

Also note that L is bijective with inverse $M : V \rightarrow U$ given by $M\left(\sum_{i=1}^n t_i v_i\right) = \sum_{i=1}^n t_i g^{-1}(v_i)$, where $t_i \in R$ and the v_i are distinct elements in \mathcal{B} .

7.15 Corollary: Let F be a field and let U and V be vector spaces over F . Then

$$U \cong V \iff \dim(U) = \dim(V).$$

7.16 Remark: When U and V are modules over a commutative ring R , we have

$$U \cong V \iff \text{rank}(U) = \text{rank}(V),$$

but we have not built up enough machinery to prove this result.

7.17 Theorem: Let R be a ring, let U be a free R -module, and let V be any R -module. Let \mathcal{A} be basis for U and, for each $u \in \mathcal{A}$, let $v_u \in V$. Then there exists a unique R -module homomorphism $L : U \rightarrow V$ with $L(u) = v_u$ for all $u \in \mathcal{A}$.

Proof: Note that if $L : U \rightarrow V$ is an R -module homomorphism with $L(u) = v_u$ for all $u \in U$, then for $t_i \in R$ and $u_i \in \mathcal{A}$ we have

$$L\left(\sum_{i=1}^n t_i u_i\right) = \sum_{i=1}^n t_i L(u_i) = \sum_{i=1}^n t_i v_{u_i}.$$

This shows that the map L is unique and must be given by the above formula.

To prove existence, we define $L : U \rightarrow V$ by $L\left(\sum_{i=1}^n t_i u_i\right) = \sum_{i=1}^n t_i v_{u_i}$ where $t_i \in R$ and $u_i \in \mathcal{A}$, and we note that L is an R -module homomorphism because for $x = \sum_{i=1}^n s_i u_i$ and $y = \sum_{i=1}^n t_i u_i$ (using the same elements u_i in both sums) and $r \in R$ we have

$$\begin{aligned} L(rx) &= L\left(\sum_{i=1}^n r s_i u_i\right) = \sum_{i=1}^n r s_i v_{u_i} = r \sum_{i=1}^n s_i v_{u_i} = r L(x), \text{ and} \\ L(x+y) &= L\left(\sum_{i=1}^n (s_i + t_i) u_i\right) = \sum_{i=1}^n (s_i + t_i) v_{u_i} = \sum_{i=1}^n s_i v_{u_i} + \sum_{i=1}^n t_i v_{u_i} = L(x) + L(y). \end{aligned}$$

7.18 Corollary: Let R be a commutative ring, let U be a free R -module with basis \mathcal{A} and let V be an R -module. Then the map $\phi : \text{Hom}(U, V) \rightarrow V^{\mathcal{A}}$, given by $\phi(L)(u) = L(u)$ for all $u \in \mathcal{A}$, is an R -module isomorphism, and so we have $\text{Hom}(U, V) \cong V^{\mathcal{A}}$.

Proof: The above theorem states that the map ϕ is bijective, and we note that ϕ is an R -module homomorphism because for $L, M \in \text{Hom}(U, V)$ and $t \in R$ we have

$$\begin{aligned} \phi(L+M)(u) &= (L+M)(u) = L(u) + M(u) = \phi(L)(u) + \phi(M)(u), \text{ and} \\ \phi(tL)(u) &= (tL)(u) = tL(u) = t\phi(L)(u) \end{aligned}$$

for all $u \in \mathcal{A}$ hence $\phi(L+M) = \phi(L) + \phi(M)$ and $\phi(tL) = t\phi(L)$.

7.19 Example: For a module U over a commutative ring R , the **dual module** of U is the R -module

$$U^* = \text{Hom}(U, R).$$

By the above corollary, when U is a free module with basis \mathcal{A} . we have $U^* \cong R^{\mathcal{A}}$, and if $|\mathcal{A}| = n$ then we have $U^* \cong R^n \cong U$. When U is a vector space over a field F , U^* is called the **dual vector space** of U .

7.20 Definition: Let R be a commutative ring and let U and V be free R -modules with finite bases. Let \mathcal{A} and \mathcal{B} be finite ordered bases for U and V respectively, with $|\mathcal{A}| = n$ and $|\mathcal{B}| = m$. For $L \in \text{Hom}(U, V)$, we define the **matrix** of L with respect to \mathcal{A} and \mathcal{B} to be the matrix

$$[L]_{\mathcal{B}}^{\mathcal{A}} = [\phi_{\mathcal{B}} L \phi_{\mathcal{A}}^{-1}] \in M_{m \times n}(R).$$

When $L \in \text{End}(U)$ we write $[L]_{\mathcal{A}}$ for the matrix $[L]_{\mathcal{A}}^{\mathcal{A}} \in M_n(R)$.

7.21 Theorem: Let R be a commutative ring. Let \mathcal{A} and \mathcal{B} be finite ordered bases for free R -modules U and V , respectively, with $|\mathcal{A}| = n$ and $|\mathcal{B}| = m$. Let $L \in \text{Hom}(U, V)$. Then

- (1) $[L]_{\mathcal{B}}^{\mathcal{A}}$ is the matrix such that $[L]_{\mathcal{B}}^{\mathcal{A}}[u]_{\mathcal{A}} = [L(u)]_{\mathcal{B}}$ for all $u \in U$, and
- (2) if $\mathcal{A} = (u_1, u_2, \dots, u_n)$ and $\mathcal{B} = (v_1, v_2, \dots, v_m)$ then

$$[L]_{\mathcal{B}}^{\mathcal{A}} = \left([L(u_1)]_{\mathcal{B}}, [L(u_2)]_{\mathcal{B}}, \dots, [L(u_n)]_{\mathcal{B}} \right) \in M_{m \times n}(R).$$

Proof: Part (1) holds because for $u \in U$ and $x = \phi_{\mathcal{A}}(u) = [u]_{\mathcal{A}}$ we have

$$[L]_{\mathcal{B}}^{\mathcal{A}}[u]_{\mathcal{A}} = [\phi_{\mathcal{B}}L\phi_{\mathcal{A}}^{-1}]\phi_{\mathcal{A}}(u) = (\phi_{\mathcal{B}}L\phi_{\mathcal{A}}^{-1})(\phi_{\mathcal{A}}(u))\phi_{\mathcal{B}}(L(u)) = [L(u)]_{\mathcal{B}}.$$

Part (2) follows from Part (1) because for each index k , the k^{th} column of $[L]_{\mathcal{B}}^{\mathcal{A}}$ is

$$[L]_{\mathcal{B}}^{\mathcal{A}}(e_k) = [L]_{\mathcal{B}}^{\mathcal{A}}[u_k]_{\mathcal{A}} = [L(u_k)]_{\mathcal{B}}.$$

7.22 Theorem: Let R be a commutative ring. Let \mathcal{A} , \mathcal{B} and \mathcal{C} be finite ordered bases for free R -modules U , V and W , respectively.

- (1) For $L, M \in \text{Hom}(U, V)$ and $t \in R$ we have $[L+M]_{\mathcal{B}}^{\mathcal{A}} = [L]_{\mathcal{B}}^{\mathcal{A}} + [M]_{\mathcal{B}}^{\mathcal{A}}$ and $[tL]_{\mathcal{B}}^{\mathcal{A}} = t[L]_{\mathcal{B}}^{\mathcal{A}}$.
- (2) For $L \in \text{Hom}(U, V)$ and $M \in \text{Hom}(V, W)$ we have $[ML]_{\mathcal{C}}^{\mathcal{A}} = [M]_{\mathcal{C}}^{\mathcal{B}}[L]_{\mathcal{B}}^{\mathcal{A}}$.

Proof: We prove Part (2), leaving the (similar) proof of Part (1) as an exercise. Let $L \in \text{Hom}(U, V)$ and $M \in \text{Hom}(V, W)$. Say $|\mathcal{A}| = n$, $|\mathcal{B}| = m$ and $|\mathcal{C}| = l$. Let $x \in R^n$. Choose $u \in U$ with $[u]_{\mathcal{A}} = \phi_{\mathcal{A}}(u) = x$. Then

$$[ML]_{\mathcal{C}}^{\mathcal{A}}x = [ML]_{\mathcal{C}}^{\mathcal{A}}[u]_{\mathcal{A}} = [M(L(u))]_{\mathcal{C}} = [M]_{\mathcal{C}}^{\mathcal{B}}[L(u)]_{\mathcal{B}} = [M]_{\mathcal{C}}^{\mathcal{B}}[L]_{\mathcal{B}}^{\mathcal{A}}[u]_{\mathcal{A}} = [M]_{\mathcal{C}}^{\mathcal{B}}[L]_{\mathcal{B}}^{\mathcal{A}}x.$$

Since $[ML]_{\mathcal{C}}^{\mathcal{A}}x = [M]_{\mathcal{C}}^{\mathcal{B}}[L]_{\mathcal{B}}^{\mathcal{A}}x$ for all $x \in R^n$ it follows that $[ML]_{\mathcal{C}}^{\mathcal{A}} = [M]_{\mathcal{C}}^{\mathcal{B}}[L]_{\mathcal{B}}^{\mathcal{A}}$.

7.23 Corollary: Let R be a commutative ring. Let \mathcal{A} and \mathcal{B} be finite ordered bases for free R -modules U and V . Then the map $\phi_{\mathcal{B}}^{\mathcal{A}} : \text{Hom}(U, V) \rightarrow M_{m \times n}(R)$ given by $\phi_{\mathcal{B}}^{\mathcal{A}}(L) = [L]_{\mathcal{B}}^{\mathcal{A}}$ is an R -module isomorphism, and the map $\phi_{\mathcal{A}} : \text{End}(U) \rightarrow M_n(R)$ given by $\phi_{\mathcal{A}}(L) = [L]_{\mathcal{A}}$ is an R -algebra isomorphism which restricts to a group isomorphism $\phi_{\mathcal{A}} : \text{Aut}(U) \rightarrow GL_n(R)$.

7.24 Corollary: (Change of Basis) Let R be a commutative ring. Let U and V be free R -modules. Let \mathcal{A} and \mathcal{C} be two ordered bases for U with $|\mathcal{A}| = |\mathcal{C}| = n$ and let \mathcal{B} and \mathcal{D} be two ordered bases for V with $|\mathcal{B}| = |\mathcal{D}| = m$. For $L \in \text{Hom}(U, V)$ and $u \in U$ we have

$$[u]_{\mathcal{C}} = [I_U]_{\mathcal{C}}^{\mathcal{A}}[u]_{\mathcal{A}} \quad \text{and} \quad [L]_{\mathcal{D}}^{\mathcal{C}} = [I_V]_{\mathcal{D}}^{\mathcal{B}}[L]_{\mathcal{B}}^{\mathcal{A}}[I_U]_{\mathcal{A}}^{\mathcal{C}}$$

where I_U and I_V are the identity maps on U and V .

Proof: By Part (1) of Theorem 7.21 we have $[u]_{\mathcal{C}} = [I_U(u)]_{\mathcal{C}} = [I_U]_{\mathcal{C}}^{\mathcal{A}}[u]_{\mathcal{A}}$ and by Part (2) of Theorem 7.22

$$[L]_{\mathcal{D}}^{\mathcal{C}} = [I_V L I_U]_{\mathcal{D}}^{\mathcal{C}} = [I_V]_{\mathcal{D}}^{\mathcal{B}}[L]_{\mathcal{B}}^{\mathcal{A}}[I_U]_{\mathcal{A}}^{\mathcal{C}}.$$

7.25 Definition: Let $\mathcal{A} = (u_1, u_2, \dots, u_n)$ and $\mathcal{B} = (v_1, v_2, \dots, v_n)$ be two finite ordered bases for a module U over a commutative ring R . The matrix

$$[I]_{\mathcal{B}}^{\mathcal{A}} = ([u_1]_{\mathcal{B}}, [u_2]_{\mathcal{B}}, \dots, [u_n]_{\mathcal{B}}) \in M_n(R)$$

is called the **change of basis matrix** from \mathcal{A} to \mathcal{B} . Note that $[I]_{\mathcal{B}}^{\mathcal{A}}$ is invertible with

$$\left([I]_{\mathcal{B}}^{\mathcal{A}} \right)^{-1} = [I]_{\mathcal{A}}^{\mathcal{B}}.$$

7.26 Note: Let \mathcal{A} and \mathcal{B} be two finite ordered bases, with $|\mathcal{A}| = |\mathcal{B}|$, for a free module U over a commutative ring R . For $L \in \text{End}(U)$, the Change of Basis Theorem gives

$$[L]_{\mathcal{B}} = [L]_{\mathcal{B}}^{\mathcal{B}} = [I]_{\mathcal{B}}^{\mathcal{A}} [L]_{\mathcal{A}}^{\mathcal{A}} [I]_{\mathcal{A}}^{\mathcal{B}}.$$

If we let $A = [L]_{\mathcal{A}}$ and $B = [L]_{\mathcal{B}}$ and $P = [I]_{\mathcal{B}}^{\mathcal{A}}$ then the formula becomes

$$B = PAP^{-1}.$$

7.27 Note: Given a finite ordered basis $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ for a free R -module U over a commutative ring R , and given an invertible matrix $P \in GL_n(R)$, if we choose $u_k \in U$ with $[u_k]_{\mathcal{B}} = Pe_k$, then $\mathcal{A} = \{u_1, u_2, \dots, u_n\}$ is an ordered basis for U such that $[I]_{\mathcal{B}}^{\mathcal{A}} = P$. Thus every invertible matrix $P \in GL_n(R)$ is equal to a change of basis matrix.

7.28 Definition: Let R be a commutative ring. For $A, B \in M_n(R)$, we say that A and B are **similar**, and we write $A \sim B$, when $B = PAP^{-1}$ for some $P \in GL_n(R)$.

7.29 Note: Let R be a commutative ring, and let $A, B \in M_n(R)$ with $A \sim B$. Choose $P \in GL_n(R)$ so that $B = PAP^{-1}$. Then we have

$$\det(B) = \det(PAP^{-1}) = \det(P) \det(A) \det(P)^{-1} = \det(A).$$

Thus similar matrices have the same determinant.

7.30 Definition: Let F be a field and let U be a finite dimensional vector space over F . For $L \in \text{End}(U)$, we define the **determinant** of L to be

$$\det(L) = \det([L]_{\mathcal{A}})$$

where \mathcal{A} is any ordered basis for U .