MATH 146 Linear Algebra 1, Lecture Notes by Stephen New
Chapter 7. Module Homomorphisms and Linear Maps

7.1 Definition: Let R be a ring and let U and V' be R-modules. An (R-module) homo-
morphism from U to V is a map L : U — V such that

L(zx+y)=L(z) + L(y) and L(tx)=tL(x)

for all z,y € U and all t € R. A bijective homomorphism from U to V is called an
isomorphism from U to V, a homomorphism from U to U is called an endomorphism
of U, and an isomorphism from U to U is called an automorphism of U. We say that U
is isomorphic to V, and we write U = V', when there exists an isomorphism L : U — V.
We use the following notation

Hom(U, V') = Hompg/(U,
Iso(U, V) = Isogr(U,
End(U) = Endr(U
Aut(U) = Autpg(
For L, M € Hom(U, V) and t € R we define L + M and tM by
(L+ M)(z) = L(xz) + M(z) and (tL)(x) =1t L(x).

{L U — V‘L is a homomorphism},
{L:U — V|L is an isomorphism},

{L U—-U ‘L is an endomorphism},
{L U—-U ‘L is an automorphism}.
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U) =

Using these operations, if R is commutative then the set Hom(U, V') is an R-module. For
L € Hom(U, V), the image (or range of L and the kernel (or null set) of L are the sets

Image(L) = Range(L) = L(U) = {L(z)|z € U} and
Ker(L) = Null(L) = L™'(0) = {z € U|L(z) = 0}.

When F' is a field and U and V' are vector spaces over F', an F-module homomorphism
from U to V is also called a linear map from U to V.

7.2 Note: For an R-module homomorphism L : U — V and for x € U we have L(0) =0
and L(—z) = —L(z), and for t; € R and z; € U we have L( ) tixi> = > t; L(z;).
i=1

i=1
7.3 Definition: When G and H are groups, a map L : G — H is called a group
homomorphism when L(zxy) = L(x)L(y) for al z,y € G. A group isomorphism is
a bijective group homomorphism. When R and S are rings, a map L : R — S is called
a ring homomorphism when L(z + y) = L(x) + L(y) and L(xy) = L(z)L(y) for all
x,y € R. A ring isomorphism is a bijective ring homomorphism. When R is a ring
and U and V are R-algebras, a map L : U — V is called an R-algebra homomorphism
when L(x +vy) = L(z) + L(y), L(xy) = L(z)L(y) and L(tz) =t L(x) for all z,y € U and
all t € R. An R-algebra isomorphism is a bijective R-algebra homomorphism.



7.4 Theorem: Let R be a ring and let U, V and W be R-modules.

(1)IfL:U — V and M :V — W are homomorphisms then so is the composite M L:U — W.
(2) If L : U — V is an isomorphism, then so is the inverse L= : V — U.

Proof: Suppose that L : U — V and M : V — W are R-module homomorphisms. Then
for all z,y € U and all t € R we have

M(L(z +y)) = M(L(z) + L(y)) = M(L(z)) + M(L(y)) and
M(L(tz)) = M(t L(z)) = t M(L(z)).

Suppose that L : U — V is an isomorphism. Then given u,v € V and t € R, if we let
r = L Y(u) and y = L !(v) then we have

LN u+v)=L""(L(z)+ L(y)) =L ' (L(z+y)) =z +y =L "(u) + L' (v) and
L™ tu) = L' (t L(z)) = L7 (L(tz)) =t = t L™ (u).

7.5 Corollary: Let R be a ring. Then isomorphism is an equivalence relation on the class
of all R-modules. This means that for all R-modules U, V and W we have

(1) U=,
(2) if UV then V = U, and
(3)if U=V and V=W then U = W.

7.6 Corollary: When R is a commutative ring and U is an R-module, End(U) is a ring
under addition and composition, hence also an R-algebra, and Aut(U) is a group under
composition.

7.7 Theorem: Let L : U — V be an R-algebra homomorphism.

(1) If Uy is a submodule of U then L(U) is a submodule of V. In particular, the image of
L is a submodule of V.

(2) If Vy is a submodule of V then L~(Vp) is a submodule of U. In particular, the kernel
of L is a submodule of U.

Proof: To prove Part (1), let Uy be a submodule of U. Let u,v € L(Up) and let t € R.
Choose z,y € Uy with L(z) = v and L(y) = v. Since z +y € Uy and L(x + y) =
L(x)+ L(y) = u+wv, it follows that u+v € L(Uy). Since tx € Uy and L(tx) =t L(x) = tu,
it follows that tu € L(Uy). Thus L(Uy) is closed under the module operations and so it is
a submodule of V.

To prove Part (2), let Vo be a submodule of V. Let x,y € L™1(Vp) and let t € R. Let
u= L(z) € Vy and v = L(y) € V. Since L(x +y) = L(z) + L(y) = u + v € V} it follows
that x +y € L™1(Vp). Since L(tx) =t L(z) = Lu € V; it follows that tx € L™!(Vp). Thus
L=1(V}) is closed under the module operations and so it is a sub algebra of U.

7.8 Theorem: Let L : U — V be an R-module homomorphism. Then

(1) L is surjective if and only if Range(L) =V, and

(2) L is injective if and only if Ker(L) = {0}.

Proof: Part (1) is simply a restatement of the definition of subjectivity and does not require
proof. To Prove Part (2), we begin by remarking that since L(0) = 0 we have {0} C Ker(L).
Suppose L is injective. Then z € Ker(L) = L(z) = 0 = L(z) = L(0) = = = 0 and
so Ker(L) = {0}. Suppose, conversely, that Ker(L) = {0}. Then L(X) = L(y) =
Lz)-L(y) =0=Lz—y)=0=z—yecKer(L) ={0} = 2r—-—y=0= 2=y and
so L is injective.



7.9 Example: The maps

n

L: P,(R) — R"! given by L( Y a;z%) = (ag, a1, -, an)

i=0
L : R[z] — R given by L( > aixi) = (ag,ay, -+, a,,0,0,---)
i=0
L: R[[z]] — R* given by L( " a;z*) = (ao, a1,az,- )
i=0

are all R-algebra isomorphisms, so we have P,(R) = R"™ R[z] =2 R* and R[[z]] = R*.
7.10 Example: The map L : M,,«,(R) — R™" given by

ai i ai2 -+ QA1n
L = (a1,17a1,27'"aal,n7a2,17"'7a2,n7"';am,1;"’7am,n)
m,1 Qm,2 ot Gmon
is an R-module isomorphism, so we have M, ., (R) &< R™™.
7.11 Example: Let A and B be sets with |A| = |B|, and let g : A — B be a bijection.
Then the map L : R* — RP given by L(f)(b) = f(g~'(b)), that is by L(f) = fg~', is an
R-module isomorphism, and so we have R4 =2 RP. In particular, if |A| = n then we have
RA = R = Rnand if |A] = Ro then we have R4 = RU2% ) = g,
7.12 Example: Let A = (uy,us, -, u,) be a finite ordered basis for a free R-module U.
Then the map ¢4 : U — R™ given by ¢ 4(z) = [z]4 is an R-module isomorphism, so we
have U = R"™.

If B = (vy1,v9,--,v,) is a finite ordered basis for another free R-module V', then the
map gzﬁglqb A U — V is an R-molule isomorphism, so we have U =2 V.

7.13 Example: Let R be a commutative ring. Let ¢ : Hom(R"™, R™) — M,,x»(R) be the
map given by ¢(L) = [L] = (L(e1), L(ez), -+, L(€y)) € Mpmxn(R). Recall that the inverse
of ¢ is the map 1 : My, xn(R) — Hom(R"™, R™) given by (A) = L where Ls(a) = Ax.
Note that 1 preserves the R-module operations because
¢(A+B)=Larp="La+Lp=1(A)+¢(B) and
w(tA) =Lig=tLs= tw(A).

Thus ¢ and 3 are R-module isomorphisms and we have Hom(R"™, R™) = M,,x»(R). In
the case that m = n, we also have

Y(AB) = Lap = LaLp = y(A)y(B)

and so the maps ¢ and v are in fact R-algebra isomorphisms so we have End(R"™) = M, (R)
as R-algebras. By restricting ¢ and 1 to the invertible elements, we also obtain a group
isomorphism Aut(R") = GL,(R).



7.14 Theorem: Let R be a ring and let U and V' be free R-modules. Then U =V if and
only if there exists a basis A for U and a basis B for V' with |A| = |B|.

Proof: Suppose that U = V. Let A be a basis for U and let L : U — V be an isomorphism.
Let B = L(A) = {L(u)|u € A}. Since L is bijective we have |A| = |B|. Note that B spans

n

V because given y € V we can choose x € U with L(z) = y, then write z = ) t;u; with
i=1

t; € R and u; € A, and then we have

y=L(z) = L( étzuz) = étll)(uz) € Span (B).

n
It remains to show that B is linearly independent. Suppose that »_ t;u; = 0 where t; € R
i=1
and the v; are distinct elements in B. For each index i, choose u; € A with L(u;) = v,
and note that the elements u; are distinct because L is bijective. We have

0= tivi = 3. til{ui) = L( ;tu>

n
Because L is injective, it follows that > ¢;u; = 0 and then, because A is linearly indepen-

=1
dent, it follows that each ¢; = 0. Thus B is linearly independent, as required.
Conversely, suppose that A is a basis for U and B is a basis for V' with |A| = |B].
Let g : A — B be a bijection. Define a map L : U — V as follows. Given x € U,

n
write x = > t;u; where t; € R and the u; are distinct elements in 4, and then define
i=1

n

L(z) = > tig(u;). Note that L is an R-module homomorphism because for » € R and for
i=1

x =Y sju; and y = Y t;u; (where we are using the same elements u; in both sums with

i=1 i=1
some of the coefficients equal to zero), we have

L(rx) = L( i(rsz)m) = i rsig(u;) =r i s;g(u;) = rL(z) , and

1=1 1=1

@
I
H

n

L(x+y) = L( i (si + tl)uz> =>_(si +ti)g(wi) = é sig(u;) + étzg(uz) = L(z)+L(y).

1=1 =1

Also note that L is bijective with inverse M : V' — U given by M( zn: tivi> = Zn: tig~(vy),
where t; € R and the v; are distinct elements in B. = =
7.15 Corollary: Let F' be a field and let U and V' be vector spaces over F'. Then
U2V <— dim(U) = dim(V).
7.16 Remark: When U and V are modules over a commutative ring R, we have
U=V <= rank(U) = rank(V),

but we have not built up enough machinery to prove this result.



7.17 Theorem: Let R be a ring, let U be a free R-module, and let V' be any R-module.
Let A be basis for U and, for each u € A, let v, € V. Then there exists a unique R-module
homomorphism L : U — V with L(u) = v, for all u € A.

Proof: Note that if L : U — V is an R-module homomorphism with L(u) = v, for all
u € U, then for t; € R and u; € A we have

L( Z tiui> = Z tzL(u@) = Z ti'Uuz--
=1 i=1 =1

This shows that the map L is unique and must be given by the above formula.

n n
To prove existence, we define L : U — V by L< > tiui> = > tiv,, where t; € R and
i=1 i=1

n
u; € A, and we note that L is an R-module homomorphism because for x = > s;u; and
i=1

n
y = Y. tju; (using the same elements u; in both sums) and r € R we have
i=1

L(rz) = L( ;rsiui> = ;rsivui =r ;sivui =r L(z) , and

L +9) = L( 3 (s tur) = Lo+ v = 2 st + 2 tivn, = L) + L().

i=1
7.18 Corollary: Let R be a commutative ring, let U be a free R-module with basis A

and let V be an R-module. Then the map ¢ : Hom(U, V) — VA, given by ¢(L)(u) = L(u)
for all u € A, is an R-module isomorphism, and so we have Hom(U, V) = VA,

Proof: The above theorem states that the map ¢ is bijective, and we note that ¢ is an
R-module homomorphism because for L, M € Hom(U, V) and t € R we have

(L + M)(u) = (L+ M)(u) = L(u) + M(u) = ¢(L)(u) + ¢(M)(u) , and
¢(tL)(u) = (tL)(u) =t L(u) = to(L)(u)
for all u € A hence ¢(L + M) = ¢(L) + ¢(M) and ¢(tL) = to(L).
7.19 Example: For a module U over a commutative ring R, the dual module of U is

the R-module
U* = Hom(U, R).

By the above corollary, when U is a free module with basis A. we have U* = R4, and if
|A| = n then we have U* =2 R™ = U. When U is a vector space over a field F, U* is called
the dual vector space of U.

7.20 Definition: Let R be a commutative ring and let U and V' be free R-modules with
finite bases. Let A and B be finite ordered bases for U and V respectively, with [A| = n
and |B| = m. For L € Hom(U, V'), we define the matrix of L with respect to .A and B to
be the matrix

(L5 = [¢8L ¢4"] € Muxn(R).
When L € End(U) we write [L] 4 for the matrix [L]4 € M, (R).



7.21 Theorem: Let R be a commutative ring. Let A and B be finite ordered bases for
free R-modules U and V', respectively, with |A| = n and |B| = m. Let L € Hom(U,V).
Then

(1) [L)# is the matrix such hat [L]#[u]4 = [L(u)]B for all w € U, and
(2) if A= (uy,us, - ,uy) and B = (vy,v9, -, v,,) then

1] = ([L(m Jo (D)) s+ [L(un)s] ) € Minxca(R).
Proof: Part (1) holds because for u € U and x = ¢ 4(u) = [u] 4 we have
(Ll [u)a = [¢5L ¢4 |da(u) = (¢8L ¢4") (pa(w)é5(L(w)) = [L(u)] 5
Part (2) follows from Part (1) because for each index k, the k' column of [L]7 is

[L]5 (ex) = [L]g[ukla = [L(ug)] -

7.22 Theorem: Let R be a commutative ring. Let A, B and C be finite ordered bases for
free R-modules U, V and W, respectively.
(1) For L, M € Hom(U, V) and t € R we have [L+M]%s = [LIA+[M]4 and [t L] = ¢ [L]2.
(2) For L € Hom(U, V) and M € Hom(V, W) we have [M L] = [M]E[L]#
Proof: We prove Part (2), leaving the (similar) proof of Part (1) as an exercise. Let
L € Hom(U, V) andn let M € Hom(V,W). Say |A| =n, |B| =m and |C| = 1. Let x € R".
Choose u € U with [u]4 = ¢p.a(u) = z. Then

A A B B, 1A Br 1A
1] = (ML)l = (M), = [M)S (2] = E (LR = 15 [E]

Since [ML]%x = [M]5 L] 5 for all z € R™ it follows that [ML]% = [M]5[L]%.

7.23 Corollary: Let R be a commutative ring. Let A and B be finite ordered bases
for free R-modules U and V. Then the map ¢ : Hom(U,V) — M,,xn(R) given by
¢5 (L) = [L]j is an R-module isomorphism, and the map ¢4 : End(U) — M, (R) given
by ¢4(L) = [L]a is an R-algebra isomorphism which restricts to a group isomorphism
o4 Aut(U) — GL,(R).

7.24 Corollary: (Change of Basis) Let R be a commutative ring. Let U and V be free
R-modules. Let A and C be two ordered bases for U with |A| = |C| = n and let B and D
be two ordered bases for V with |B| = |D| = m. For L € Hom(U,V) and uw € U we have

[ule = [Iu]¢ [u]la and [L]5 = [IvIB[L]5[Iv]G
where Iy and Iy, are the identity maps on U and V.

Proof: By Part (1) of Theorem 7.21 we have [ulc = [Iy(u)], = [I7]¢[u] 4 and by Part (2)
of Theorem 7.22

L] = [V Io]g, = IVIB LIS
7.25 Definition: Let A = (uy,u9, -+, u,) and B = (v1,va,- -+, v,) be two finite ordered
bases for a module U over a commutative ring R. The matrix

[I]Z;‘l = ([U1]B, [ua]g, -+, [un]s ) € M,(R)
is called the change of basis matrix from A to B. Note that [I]7 is invertible with



7.26 Note: Let A and B be two finite ordered bases, with |A| = |B|, for a free module U
over a commutative ring R. For L € End(U), the Change of Basis Theorem gives

[L]s = [LI§ = (N5 [LIA[]%.
If we let A= [L]4 and B = [L|s and P = [I|# then the formula becomes
B=PAP'.

7.27 Note: Given a finite ordered basis B = {vy,va, -, v,} for a free R-module U over
a commutative ring R, and given an invertible matrix P € GL,(R), if we choose u € U
with [ug]s = Pey, then A = {uy,us,-+,u,} is an ordered basis for U such that [I]5 = P.
Thus every invertible matrix P € GL,(R) is equal to a change of basis matrix.

7.28 Definition: Let R be a commutative ring. For A, B € M, (R), we say that A and
B are similar, and we write A ~ B, when B = PAP~! for some P € GL,(R).

7.29 Note: Let R be a commutative ring, and let A, B € M, (R) with A ~ B. Choose
P € GL,(R) so that B = PAP~!. Then we have

det(B) = det(PAP™") = det(P) det(A) det(P)~" = det(A).
Thus similar matrices have the same determinant.

7.30 Definition: Let F' be a field and let U be a finite dimensional vector space over F.
For L € End(U), we define the determinant of L to be

det(L) = det ([L] 1)

where A is any ordered basis for U.



