
MATH 146 Linear Algebra 1, Lecture Notes by Stephen New

Chapter 7. Module Homomorphisms and Linear Maps

7.1 Definition: Let R be a ring and let U and V be R-modules. An (R-module) homo-
morphism from U to V is a map L : U → V such that

L(x+ y) = L(x) + L(y) and L(tx) = t L(x)

for all x, y ∈ U and all t ∈ R. A bijective homomorphism from U to V is called an
isomorphism from U to V , a homomorphism from U to U is called an endomorphism
of U , and an isomorphism from U to U is called an automorphism of U . We say that U
is isomorphic to V , and we write U ∼= V , when there exists an isomorphism L : U → V .
We use the following notation

Hom(U, V ) = HomR(U, V ) =
{
L : U → V

∣∣L is a homomorphism
}
,

Iso(U, V ) = IsoR(U, V ) =
{
L : U → V

∣∣L is an isomorphism
}
,

End(U) = EndR(U) =
{
L : U → U

∣∣L is an endomorphism
}
,

Aut(U) = AutR(U) =
{
L : U → U

∣∣L is an automorphism
}
.

For L,M ∈ Hom(U, V ) and t ∈ R we define L+M and tM by

(L+M)(x) = L(x) +M(x) and (tL)(x) = t L(x).

Using these operations, if R is commutative then the set Hom(U, V ) is an R-module. For
L ∈ Hom(U, V ), the image (or range of L and the kernel (or null set) of L are the sets

Image(L) = Range(L) = L(U) =
{
L(x)

∣∣x ∈ U} and

Ker(L) = Null(L) = L−1(0) =
{
x ∈ U

∣∣L(x) = 0
}
.

When F is a field and U and V are vector spaces over F , an F -module homomorphism
from U to V is also called a linear map from U to V .

7.2 Note: For an R-module homomorphism L : U → V and for x ∈ U we have L(0) = 0

and L(−x) = −L(x), and for ti ∈ R and xi ∈ U we have L
( n∑
i=1

tixi

)
=

n∑
i=1

ti L(xi).

7.3 Definition: When G and H are groups, a map L : G → H is called a group
homomorphism when L(xy) = L(x)L(y) for al x, y ∈ G. A group isomorphism is
a bijective group homomorphism. When R and S are rings, a map L : R → S is called
a ring homomorphism when L(x + y) = L(x) + L(y) and L(xy) = L(x)L(y) for all
x, y ∈ R. A ring isomorphism is a bijective ring homomorphism. When R is a ring
and U and V are R-algebras, a map L : U → V is called an R-algebra homomorphism
when L(x+ y) = L(x) + L(y), L(xy) = L(x)L(y) and L(tx) = t L(x) for all x, y ∈ U and
all t ∈ R. An R-algebra isomorphism is a bijective R-algebra homomorphism.
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7.4 Theorem: Let R be a ring and let U , V and W be R-modules.

(1) If L :U → V andM :V →W are homomorphisms then so is the compositeML :U →W.
(2) If L : U → V is an isomorphism, then so is the inverse L−1 : V → U .

Proof: Suppose that L : U → V and M : V → W are R-module homomorphisms. Then
for all x, y ∈ U and all t ∈ R we have

M(L(x+ y)) = M(L(x) + L(y)) = M(L(x)) +M(L(y)) and

M(L(tx)) = M(t L(x)) = tM(L(x)).

Suppose that L : U → V is an isomorphism. Then given u, v ∈ V and t ∈ R, if we let
x = L−1(u) and y = L−1(v) then we have

L−1(u+ v) = L−1
(
L(x) + L(y)

)
= L−1

(
L(x+ y)

)
= x+ y = L−1(u) + L−1(v) and

L−1(tu) = L−1
(
t L(x)

)
= L−1

(
L(tx)

)
= tx = t L−1(u).

7.5 Corollary: Let R be a ring. Then isomorphism is an equivalence relation on the class
of all R-modules. This means that for all R-modules U , V and W we have

(1) U ∼= U ,
(2) if U ∼= V then V ∼= U , and
(3) if U ∼= V and V ∼= W then U ∼= W .

7.6 Corollary: When R is a commutative ring and U is an R-module, End(U) is a ring
under addition and composition, hence also an R-algebra, and Aut(U) is a group under
composition.

7.7 Theorem: Let L : U → V be an R-algebra homomorphism.

(1) If U0 is a submodule of U then L(U) is a submodule of V . In particular, the image of
L is a submodule of V .
(2) If V0 is a submodule of V then L−1(V0) is a submodule of U . In particular, the kernel
of L is a submodule of U .

Proof: To prove Part (1), let U0 be a submodule of U . Let u, v ∈ L(U0) and let t ∈ R.
Choose x, y ∈ U0 with L(x) = u and L(y) = v. Since x + y ∈ U0 and L(x + y) =
L(x) +L(y) = u+ v, it follows that u+ v ∈ L(U0). Since tx ∈ U0 and L(tx) = t L(x) = tu,
it follows that tu ∈ L(U0). Thus L(U0) is closed under the module operations and so it is
a submodule of V .

To prove Part (2), let V0 be a submodule of V . Let x, y ∈ L−1(V0) and let t ∈ R. Let
u = L(x) ∈ V0 and v = L(y) ∈ V0. Since L(x + y) = L(x) + L(y) = u + v ∈ V0 it follows
that x+ y ∈ L−1(V0). Since L(tx) = t L(x) = Lu ∈ V0 it follows that tx ∈ L−1(V0). Thus
L−1(V0) is closed under the module operations and so it is a sub algebra of U .

7.8 Theorem: Let L : U → V be an R-module homomorphism. Then

(1) L is surjective if and only if Range(L) = V , and
(2) L is injective if and only if Ker(L) = {0}.
Proof: Part (1) is simply a restatement of the definition of subjectivity and does not require
proof. To Prove Part (2), we begin by remarking that since L(0) = 0 we have {0} ⊆ Ker(L).
Suppose L is injective. Then x ∈ Ker(L) =⇒ L(x) = 0 =⇒ L(x) = L(0) =⇒ x = 0 and
so Ker(L) = {0}. Suppose, conversely, that Ker(L) = {0}. Then L(X) = L(y) =⇒
L(x)−L(y) = 0 =⇒ L(x− y) = 0 =⇒ x− y ∈ Ker(L) = {0} =⇒ x− y = 0 =⇒ x = y and
so L is injective.
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7.9 Example: The maps

L : Pn(R)→ Rn+1 given by L
( n∑
i=0

aix
i
)

= (a0, a1, · · · , an)

L : R[x]→ R∞ given by L
( n∑
i=0

aix
i
)

= (a0, a1, · · · , an, 0, 0, · · ·)

L : R[[x]]→ Rω given by L
( ∞∑
i=0

aix
i
)

= (a0, a1, a2, · · ·)

are all R-algebra isomorphisms, so we have Pn(R) ∼= Rn+1, R[x] ∼= R∞ and R[[x]] ∼= Rω.

7.10 Example: The map L : Mm×n(R)→ Rm·n given by

L

 a1,1 a1,2 · · · a1,n
...

...
...

am,1 am,2 · · · am,n

 =
(
a1,1, a1,2, · · · , a1,n, a2,1, · · · , a2,n, · · · , am,1, · · · , am,n

)
is an R-module isomorphism, so we have Mm×n(R) ∼= Rm·n.

7.11 Example: Let A and B be sets with |A| = |B|, and let g : A → B be a bijection.
Then the map L : RA → RB given by L(f)(b) = f(g−1(b)), that is by L(f) = fg−1, is an
R-module isomorphism, and so we have RA ∼= RB . In particular, if |A| = n then we have

RA ∼= R
{1,2,···,n}

= Rn, and if |A| = ℵ0 then we have RA ∼= R
{1,2,3,···}

= Rω.

7.12 Example: Let A = (u1, u2, · · · , un) be a finite ordered basis for a free R-module U .
Then the map φA : U → Rn given by φA(x) = [x]A is an R-module isomorphism, so we
have U ∼= Rn.

If B = (v1, v2, · · · , vn) is a finite ordered basis for another free R-module V , then the
map φ−1B φA : U → V is an R-molule isomorphism, so we have U ∼= V .

7.13 Example: Let R be a commutative ring. Let φ : Hom(Rn, Rm)→Mm×n(R) be the
map given by φ(L) = [L] =

(
L(e1), L(e2), · · · , L(en)

)
∈Mm×n(R). Recall that the inverse

of φ is the map ψ : Mm×n(R) → Hom(Rn, Rm) given by ψ(A) = LA where LA(a) = Ax.
Note that ψ preserves the R-module operations because

φ(A+B) = LA+B = LA + LB = ψ(A) + ψ(B) and

ψ(tA) = LtA = t LA = t ψ(A).

Thus φ and ψ are R-module isomorphisms and we have Hom(Rn, Rm) ∼= Mm×n(R). In
the case that m = n, we also have

ψ(AB) = LAB = LALB = ψ(A)ψ(B)

and so the maps φ and ψ are in fact R-algebra isomorphisms so we have End(Rn) ∼= Mn(R)
as R-algebras. By restricting φ and ψ to the invertible elements, we also obtain a group
isomorphism Aut(Rn) ∼= GLn(R).
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7.14 Theorem: Let R be a ring and let U and V be free R-modules. Then U ∼= V if and
only if there exists a basis A for U and a basis B for V with |A| = |B|.

Proof: Suppose that U ∼= V . Let A be a basis for U and let L : U → V be an isomorphism.
Let B = L(A) =

{
L(u)

∣∣u ∈ A}. Since L is bijective we have |A| = |B|. Note that B spans

V because given y ∈ V we can choose x ∈ U with L(x) = y, then write x =
n∑

i=1

tiui with

ti ∈ R and ui ∈ A, and then we have

y = L(x) = L
( n∑

i=1

tiui

)
=

n∑
i=1

tiL(ui) ∈ Span (B).

It remains to show that B is linearly independent. Suppose that
n∑

i=1

tivi = 0 where ti ∈ R

and the vi are distinct elements in B. For each index i, choose ui ∈ A with L(ui) = vi,
and note that the elements ui are distinct because L is bijective. We have

0 =
n∑

i=1

tivi =
n∑

i=1

tiL(ui) = L
( n∑

i=1

tiui

)
.

Because L is injective, it follows that
n∑

i=1

tiui = 0 and then, because A is linearly indepen-

dent, it follows that each ti = 0. Thus B is linearly independent, as required.
Conversely, suppose that A is a basis for U and B is a basis for V with |A| = |B|.

Let g : A → B be a bijection. Define a map L : U → V as follows. Given x ∈ U ,

write x =
n∑

i=1

tiui where ti ∈ R and the ui are distinct elements in A, and then define

L(x) =
n∑

i=1

tig(ui). Note that L is an R-module homomorphism because for r ∈ R and for

x =
n∑

i=1

siui and y =
n∑

i=1

tiui (where we are using the same elements ui in both sums with

some of the coefficients equal to zero), we have

L(rx) = L
( n∑
i=1

(rsi)ui

)
=

n∑
i=1

rsig(ui) = r
n∑

i=1

sig(ui) = rL(x) , and

L(x+ y) = L
( n∑

i=1

(si + ti)ui

)
=

n∑
i=1

(si + ti)g(ui) =
n∑

i=1

sig(ui) +
n∑

i=1

tig(ui) = L(x)+L(y).

Also note that L is bijective with inverse M : V → U given by M
( n∑

i=1

tivi

)
=

n∑
i=1

tig
−1(vi),

where ti ∈ R and the vi are distinct elements in B.

7.15 Corollary: Let F be a field and let U and V be vector spaces over F . Then

U ∼= V ⇐⇒ dim(U) = dim(V ).

7.16 Remark: When U and V are modules over a commutative ring R, we have

U ∼= V ⇐⇒ rank(U) = rank(V ),

but we have not built up enough machinery to prove this result.
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7.17 Theorem: Let R be a ring, let U be a free R-module, and let V be any R-module.
Let A be basis for U and, for each u ∈ A, let vu ∈ V . Then there exists a unique R-module
homomorphism L : U → V with L(u) = vu for all u ∈ A.

Proof: Note that if L : U → V is an R-module homomorphism with L(u) = vu for all
u ∈ U , then for ti ∈ R and ui ∈ A we have

L
( n∑

i=1

tiui

)
=

n∑
i=1

tiL(ui) =
n∑

i=1

tivui
.

This shows that the map L is unique and must be given by the above formula.

To prove existence, we define L : U → V by L
( n∑

i=1

tiui

)
=

n∑
i=1

tivui where ti ∈ R and

ui ∈ A, and we note that L is an R-module homomorphism because for x =
n∑

i=1

siui and

y =
n∑

i=1

tiui (using the same elements ui in both sums) and r ∈ R we have

L(rx) = L
( n∑

i=1

rsiui

)
=

n∑
i=1

rsivui
= r

n∑
i=1

sivui
= r L(x) , and

L(x+ y) = L
( n∑

i=1

(si + ti)ui

)
=

n∑
i=1

(si + ti)vui =
n∑

i=1

sivui +
n∑

i=1

tivui = L(x) + L(y).

7.18 Corollary: Let R be a commutative ring, let U be a free R-module with basis A
and let V be an R-module. Then the map φ : Hom(U, V )→ V A, given by φ(L)(u) = L(u)
for all u ∈ A, is an R-module isomorphism, and so we have Hom(U, V ) ∼= V A.

Proof: The above theorem states that the map φ is bijective, and we note that φ is an
R-module homomorphism because for L,M ∈ Hom(U, V ) and t ∈ R we have

φ(L+M)(u) = (L+M)(u) = L(u) +M(u) = φ(L)(u) + φ(M)(u) , and

φ(tL)(u) = (tL)(u) = t L(u) = tφ(L)(u)

for all u ∈ A hence φ(L+M) = φ(L) + φ(M) and φ(tL) = tφ(L).

7.19 Example: For a module U over a commutative ring R, the dual module of U is
the R-module

U∗ = Hom(U,R).

By the above corollary, when U is a free module with basis A. we have U∗ ∼= RA, and if
|A| = n then we have U∗ ∼= Rn ∼= U . When U is a vector space over a field F , U∗ is called
the dual vector space of U .

7.20 Definition: Let R be a commutative ring and let U and V be free R-modules with
finite bases. Let A and B be finite ordered bases for U and V respectively, with |A| = n
and |B| = m. For L ∈ Hom(U, V ), we define the matrix of L with respect to A and B to
be the matrix

[L]AB =
[
φBLφ

−1
A
]
∈Mm×n(R).

When L ∈ End(U) we write [L]A for the matrix [L]AA ∈Mn(R).
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7.21 Theorem: Let R be a commutative ring. Let A and B be finite ordered bases for
free R-modules U and V , respectively, with |A| = n and |B| = m. Let L ∈ Hom(U, V ).
Then

(1) [L]AB is the matrix such hat [L]AB [u]A =
[
L(u)

]
B for all u ∈ U , and

(2) if A = (u1, u2, · · · , un) and B = (v1, v2, · · · , vm) then

[L]AB =
([
L(u1)

]
B,
[
L(u2)

]
B, · · · ,

[
L(un)B

])
∈Mm×n(R).

Proof: Part (1) holds because for u ∈ U and x = φA(u) = [u]A we have

[L]AB [u]A =
[
φBLφ

−1
A
]
φA(u) =

(
φBLφ

−1
A
)(
φA(u)

)
φB
(
L(u)

)
=
[
L(u)

]
B.

Part (2) follows from Part (1) because for each index k, the kth column of [L]AB is

[L]AB (ek) = [L]AB [uk]A =
[
L(uk)

]
B.

7.22 Theorem: Let R be a commutative ring. Let A, B and C be finite ordered bases for
free R-modules U , V and W , respectively.

(1) For L,M ∈ Hom(U, V ) and t ∈ R we have
[
L+M

]A
B = [L]AB+[M ]AB and

[
t L
]A
B = t [L]AB .

(2) For L ∈ Hom(U, V ) and M ∈ Hom(V,W ) we have
[
ML

]A
C = [M ]BC [L]AB .

Proof: We prove Part (2), leaving the (similar) proof of Part (1) as an exercise. Let
L ∈ Hom(U, V ) andn let M ∈ Hom(V,W ). Say |A| = n, |B| = m and |C| = l. Let x ∈ Rn.
Choose u ∈ U with [u]A = φA(u) = x. Then[
ML

]A
C x =

[
ML

]A
C [u]A =

[
M(L(u))

]
C =

[
M
]B
C

[
L(u)

]
B =

[
M
]B
C

[
L
]A
B [u]A =

[
M
]B
C

[
L
]A
Bx.

Since
[
ML

]A
C x =

[
M
]B
C

[
L
]A
Bx for all x ∈ Rn it follows that

[
ML

]A
C =

[
M
]B
C

[
L
]A
B .

7.23 Corollary: Let R be a commutative ring. Let A and B be finite ordered bases
for free R-modules U and V . Then the map φAB : Hom(U, V ) → Mm×n(R) given by
φAB (L) = [L]AB is an R-module isomorphism, and the map φA : End(U) → Mn(R) given
by φA(L) = [L]A is an R-algebra isomorphism which restricts to a group isomorphism
φA : Aut(U)→ GLn(R).

7.24 Corollary: (Change of Basis) Let R be a commutative ring. Let U and V be free
R-modules. Let A and C be two ordered bases for U with |A| = |C| = n and let B and D
be two ordered bases for V with |B| = |D| = m. For L ∈ Hom(U, V ) and u ∈ U we have

[u]C = [IU ]AC [u]A and [L]CD = [IV ]BD[L]AB [IU ]CA

where IU and IV are the identity maps on U and V .

Proof: By Part (1) of Theorem 7.21 we have [u]C = [IU (u)
]
C = [IU ]AC [u]A and by Part (2)

of Theorem 7.22 [
L
]C
D =

[
IV LIU

]C
D = [IV ]BD[L]AB [IU ]CA.

7.25 Definition: Let A = (u1, u2, · · · , un) and B = (v1, v2, · · · , vn) be two finite ordered
bases for a module U over a commutative ring R. The matrix

[I]AB =
(
[u1]B, [u2]B, · · · , [un]B

)
∈Mn(R)

is called the change of basis matrix from A to B. Note that [I]AB is invertible with(
[I]AB

)−1
= [I]BA.
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7.26 Note: Let A and B be two finite ordered bases, with |A| = |B|, for a free module U
over a commutative ring R. For L ∈ End(U), the Change of Basis Theorem gives

[L]B = [L]BB = [I]AB [L]AA[I]BA.

If we let A = [L]A and B = [L]B and P = [I]AB then the formula becomes

B = PAP−1.

7.27 Note: Given a finite ordered basis B = {v1, v2, · · · , vn} for a free R-module U over
a commutative ring R, and given an invertible matrix P ∈ GLn(R), if we choose uk ∈ U
with [uk]B = Pek, then A = {u1, u2, · · · , un} is an ordered basis for U such that [I]AB = P .
Thus every invertible matrix P ∈ GLn(R) is equal to a change of basis matrix.

7.28 Definition: Let R be a commutative ring. For A,B ∈ Mn(R), we say that A and
B are similar, and we write A ∼ B, when B = PAP−1 for some P ∈ GLn(R).

7.29 Note: Let R be a commutative ring, and let A,B ∈ Mn(R) with A ∼ B. Choose
P ∈ GLn(R) so that B = PAP−1. Then we have

det(B) = det(PAP−1
)

= det(P ) det(A) det(P )−1 = det(A).

Thus similar matrices have the same determinant.

7.30 Definition: Let F be a field and let U be a finite dimensional vector space over F .
For L ∈ End(U), we define the determinant of L to be

det(L) = det
(
[L]A

)
where A is any ordered basis for U .
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