MATH 146 Linear Algebra 1, Lecture Notes by Stephen New
Chapter 5. The Dot and Cross Products in R”

5.1 Definition: Let F' be a field. For vectors z,y € F" we define the dot product of =
and y to be

zey=yle=> zy € F.
i=1
5.2 Theorem: (Properties of the Dot Product) For all z,y,z € R™ and all t € R we have
(1) (Bilinearity) (x +y) s z2=x2+y+2, (tx) sy =t(z +y)
ze(yta)=zoyta-z, x(ty) =tx-y),
(2) (Symmetry) x « y =y » x, and
(3) (Positive Definiteness) x « x > 0 with x « x = 0 if and only if z = 0.

Proof: The proof is left as an exercise.

5.3 Definition: For a vector x € R™, we define the length (or norm) of = to be

ol = VarE =[St

We say that x is a unit vector when |z| = 1.

5.4 Theorem: (Properties of Length) Let z,y € R™ and let t € R. Then

(1) (Positive Definiteness) |z| > 0 with |x| = 0 if and only if z = 0,

(2) (Scaling) |tz| = |t||z|,

(3) |z £y|* = £2(z - y) + [y|*.

(4) (The Polarization Identities) z « y = 3 (|z + y[* — |z]* — [y|*) = 1 (|z + y|*> — |z — y|*),
(5) (The Cachy-Schwarz Inequality) |x « y| < |z||y| with |z « y| = |z| |y| if and only if the
set {x,y} is linearly dependent, and

(6) (The Triangle Inequality) |z + y| < |z| + |y|.

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that
(4) follows immediately from (3). To prove part (5), suppose first that {z,y} is linearly
dependent. Then one of  and y is a multiple of the other, say y = tx with ¢ € R. Then

(@« yl =2 - (tz)] = [tz - 2)| = [t] |2]* = [2| [tz] = |=][y].

Suppose next that {z,y} is linearly independent. Then for all t € R we have x + ty # 0
and so

0# |z +tyl* = (x + ty) « (v +ty) = |2[> + 2t(x « y) + [y
Since the quadratic on the right is non-zero for all t € R, it follows that the discriminant
of the quadratic must be negative, that is

Az - y)* — 4lzly]* < 0.

Thus (z -+ y)? < |z|?|y|? and hence |x « y| < |x||y|. This proves part (5).
Using part (5) note that

2
@ +yl* = [l +2(z - y) +|yl* < lo+yl*+ 202 - yl+ [y < o +202] [yl +[y* = (2] +]y])
and so |z + y| < |z| + |y|, which proves part (6).
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5.5 Definition: For points a,b € R", we define the distance between a and b to be
dist(a,b) = |b — al.
5.6 Theorem: (Properties of Distance) Let a,b,c € R™. Then

(1) (Positive Definiteness) dist(a,b) > 0 with dist(a,b) = 0 if and only if a = b,
(2) (Symmetry) dist(a,b) = dist(b, a), and
(3) (The Triangle Inequality) dist(a,c) < dist(a, b) 4 dist(b, ¢).

Proof: The proof is left as an exercise.

5.7 Definition: For nonzero vectors 0 # z,y € R™, we define the angle between z and

y to be
1Ty
6(x,y) = cos™! ( ) € [0, 7).
|| [yl
Note that 6(z,y) = % if and only if x « y = 0. For vectors =,y € R", we say that = and y

are orthogonal when z - y = 0.

5.8 Theorem: (Properties of Angle) Let 0 # x,y € R™. Then

1) 6(z,y) € [0, ith
( ) (37 y) [ 7T] wi { Q(m,y) = 7 if and only if y = tx for some t < 0,
(2) (Symmetry) 0(x,y) = 0(y, x),

O(x,y) if0<teR,

3) (Scaling) 0(tx,y) = 0(z,ty) =
(8) (Sealing) 6(tx,y) = 0(x.ty) = v iro> ¢ e R,

(4) (The Law of Cosines) |y — z|* = |z|? + |y|* — 2|z| |y| cos O(x, y),
(5) (Pythagoras’ Theorem) 6(x,y) = 5 if and only if |y — z|* = |z|* + |y|?, and

_ la|

(6) (Trigonometric Ratios) if (y —x) « x = 0 then cos6(z,y) o1 and sin 0(x,y)

O(x,y) = 0 if and only if y = tx for some t > 0, and

_ ly—=|
[yl

Proof: The Law of Cosines follows from the identity |y — z|? = |y|> — 2(y » z) + |z|* and
the definition of §(x,y). Pythagoras’ Theorem is a special case of the Law of Cosines. We
Prove Part (6). Let 0 # z,y € R™ and write § = 6(x,y). Suppose that (y —x) «x = 0.
Then we have y « x — 2 « x = 0 so that = « y = |z|?, and so we have

rey o2 e
2l Tyl ~ Tallyl ~ o]

Also, by Pythagoras’ Theorem we have |z|? + |y — x|? = |y|? so that |y|? — |z|? = |y — =,
and so

cosf =

e S ] et L e

.9 2
sin“0=1-—cos“f =1 = =
|y|? y|? |y|?

Since 6 € [0, 7] we have sinf > 0, and so taking the square root on both sides gives

ly — |
]
5.9 Definition: For points a,b,c € R"™ with a # b and b # ¢ we define

Labc = 0(b—a,c—b).

sinf =



Orthogonal Complement and Orthogonal Projection in R»
5.10 Definition: Let F' be a field and let U, V and W be subspaces of F". Recall that
U+V = {u—l—v‘ue Uyve V}

is a subspace of F'". We say that W is the internal direct sum of U with V', and we write
W=U®V,when W=U+V and UNV = {0}. As an exercise, show that W =U @V
if and only if for every x € W there exist unique vectors u € U and v € V with x = u + v.

5.11 Definition: Let U C R"™ be a subspace. We define the orthogonal complement
of U in R" to be
Ut={zeR"|z-u=0foralluecU}.

5.12 Theorem: (Properties of the Orthogonal Complement) Let U C R™ be a subspace,
let S CU and let A € Mgy, (R). Then

(1) If U = Span (S) then U+ = {z € R"!az cu=0 for allu € S},

(2) (RowA)T = NullA.

(3) Ut is a vector space,

(4) dim(U) + dim(U~+) = n

(5) U U+ =R",

(6) (UH)* =U,

(7) (NullA)+ = RowA.

Proof: To prove part (1), let T' = {x S R”‘:U eu=0forall u € S}. Note that U+ C T.

Let x € T. Let u € U = Span (S), say u = »_ t;u; with each ¢; € R and each u; € S.
i=1

Then zeu==x-+ > tiu; = > t;(x +u;) = 0. Thus 2 € UL and so we have T C U+.
i=1 i=1

I * U1

To prove part (2), let vy, ve,- -+, v, be the rows of A. Note that Az = SO
XUy

we have v € NullA <= z+.v; =0 for alli <= 2z € Span{vy,vs, -, v} = (RowA)~+

by part (1).

Part (3) follows from Part (2) since we can choose the matrix A so that U = Row(A)
and then we have U+ = Null(A4) which is a vector space in R™.

Part (4) also follows from part (2) since if we choose A so that RowA = U then we
have dim(U) + dim(U~) = dim RowA + dim(RowA)+ = dim RowA + dim Null4 = n.

To prove part (5), in light of part (4), it suffices to show that U N U+ = {0}. Let
x € UNU™L. Since z € UL we have 2 « u = 0 for all w € U. In particular, since z € U we
have x « x = 0, and hence x = 0. Thus U N UL = {0} and so U @ U+ = R".

To prove part (6), let € U. By the definition of U+ we have z « v = 0 for allv € U+,
By the definition of (U1)* we see that x € (U+)*+. Thus U C (U+)L. By part (4) we
know that dimU + dim U+ = n and also that dim U+ + dim(U+)+ = n. It follows that
dimU = n — dim U+ = dim(U+)*. Since U C (U1)! and dimU = dim(U~+)+ we have
U = (U)*, as required.

By parts (3) and (6) we have (Nulld)* = ((ROWA)J‘)J_ = RowA, proving part (7).



5.13 Definition: For a subspace U C R™ and a vector x € R", we define the orthogonal
projection of x onto U, denoted by Proj; (), as follows. Since R" = U @ U+, we can
choose unique vectors u,v € R"® with v € U, v € Ut and x = v + v. We then define

Projy (x) = u.

Note that since U = (U1)1, for u and v as above we have Proj;. () = v. When y € R"
and U = Span {y}, we also write Proj,(z) = Proj;(x) and Proj,. () = Proj;. ().

5.14 Theorem: Let U C R" be a subspace and let x € R™. Then Proj; () is the unique
point in U which is nearest to x.

Proof: Let u,v € R" with u € U, v € V and v+ v = z so that Proj;(z) = u. Let
w € U with w # u. Since v € UL and u,w € U we have veu = v+w = 0 and so
ve(w—u)=ve+w—uve+u=0. Thus we have

z—wf=lutv—wP=—(w—u]?=(v—(w—u) - (v—(w—u))

= —2v.(w—u)+|w—u?= v+ w—u®=r—u®+w—u.

Since w # u we have |w — u| > 0 and so |x — w|? > |x — u|?. Thus |x — w| > |z — ul, that
is dist(z, w) > dist(z,u), so u is the vector in U nearest to x, as required.

5.15 Theorem: For any matrix A € M,x;(R) we have Null(ATA) = Null(A) and
Col(AT A) = Col(AT) so that nullity (AT A) = nullity(A) and rank(AT A) = rank(A).

Proof: If x € Null(A) then Az = 0 so ATAz = 0 hence # € Null(ATA). This shows
that Null(A) C Null(ATA). If z € Null(ATA) then we have ATAz = 0 which implies that
|Az|? = (Az)T (Az) = 2TATAz = 0 and so Az = 0. This shows that Null(AT A) C Null(A).
Thus we have Null(ATA) = Null(4). It then follows that

Col(AT)=Row(A4)=Null(A)* =Null(A74)*" =Row(ATA)=Col((AT4)T) = Col(ATA).
5.16 Theorem: Let A € M,,x;(R), let U = Col(A) and let x € R™. Then

(1) the matrix equation ATAt = ATz has a solution t € R!, and for any solution t we have
Projy (z) = At,
(2) if rank(A) = [ then AT A is invertible and
Projy (z) = A(ATA) " ATy

Proof: Note that UL = (Cold)t = Row(AT)+ = Null(AT). Let u,v € R™ with u € U,
v € Ut and u+v = z so that Proj;;(z) = u. Since u € U = ColA we can choose t € R! so
that u = At. Then we have x = u+v = At +v. Multiply by AT to get AT = ATAt+ ATv.
Since v € U+ = Null(AT) we have ATv = 0 so ATAt = ATx. Thus the matrix equation
ATAt = ATx does have a solution t € R!.

Now let ¢ € R! be any solution to ATAt = A'z. Let u = At and v =  — u. Note that
r=u+v,u= At € Col(A) =U, and ATv = AT (z —u) = AT(z — At) = ATz — ATAt =0
so that v € Null(AT) = U+. Thus Proj; (z) = u = At, proving part (1).

Now suppose that rank(A) = I. Since ATA € M;y;(R) with rank(ATA) = rank(A) = I,
the matrix A”A is invertible. Since A”A is invertible, the unique solution ¢ € R' to the
matrix equation ATAt = ATz is the vector t = (ATA)"1 ATz, and so from Part (1) we
have Proj;; (z) = At = A(ATA)~1 ATz, proving Part (2).



The Volume of a Parallelotope

5.17 Definition: Given vectors uq,us, --,ur € R™, we define the parallelotope on
ui, -+, ug to be the set

p(ul’...,uk):{

k
=1

J

We define the volume of this parallelotope, denoted by V(uj,---,ux), recursively by
V(uy) = |ug| and
Viug, - ux) = V(ug,--- ,uk_1)|Pr0jUL (uk)‘

where U = Span {uy, -+, ur_1}.

5.18 Theorem: Let uy,---,u; € R™ and let A = (uy,---,u) € Myxr(R). Then

V(ug, -+, up) = y/det(ATA).

Proof: We prove the theorem by induction on k. Note that when £ = 1, u; € R™ and
A =wu; € Myyxi(R), we have V(u1) = |u1| = J/u1 = u1 = \/ulTul = VATA, as required.
Let k£ > 2 and suppose, inductively, that when A = (uy,---,ug—1) € M,xr—1 we have
det(ATA) > 0 and V(uy,---,up_1) = \/det(ATA). Let B = (u1,---,ux) = (A4,uy). Let
U = Span{uy,---,ux—1} = Col(4). Let v = Projy(ux) and w = Projy.(ur). Note
that v € U = Col(A) and w € U+ = Null(AT). Then we have up = v + w so that
B = (A,v+w). Since v € Col(A), the matrix B can be obtained from the matrix (A4, w)
by performing elementary column operations of the type Cj — Cy + tC;. Let E be the
product of the elementary matrices corresponding to these column operations, and note
that B = (A,v +w) = (A,w)E. Since the row operations Cy — C} + tC; do not alter
the determinant, F is a product of elementary matrices of determinant 1, so we have
det(E) = 1. Since det(E) = 1 and w € Null(AT) we have

det(B'B) = det (" (A,w)" (A w)E) = det (( ﬁ;) (A w))

ATA ATw\  (ATA 0
S\ 0w

) = det(ATA) jw|*.

By the induction hypothesis, we can take the square root on both sides to get

\Jdet(BTB) = \/det(ATA) [w] = V(ur, - up—1) Jw| = V(ur, -, ug).



The Cross Product in R

5.19 Definition: Let F' be a field. For n > 2 we define the cross product
n—1
X: ][] F* - F"
k=1

as follows. Given vectors uy,ug, -, up—1 € F™, we define X (uy,ug, -+, up—1) € F™ to be
the vector with entries

X(u17u27 T 7u’n71)j = (_1)n+]|A('7)|

where AU) € M,,_1(F) is the matrix obtained from A = (u1,us, -, tun_1) € Mpxn_1(F)
by removing the j*® row. Given a vector u € F? we write X (u) as v, and given two
vectors u,v € F3 we write X (u,v) as u x v.

5.20 Example: Given u € F? we have

- () - ()

Given u,v € F3 we have

ug U3
U1 U1 U2V3 — U3V2
up vy 3 3
U Xv= (5 X V2 = |— u v = U3vV1 — U1Vs3
3 3
us U3 U1V2 — U2V1
Uz V2

5.21 Note: Because the determinant is n-linear, alternating and skew-symmetric, it
follows that the cross product is (n — 1)-linear, alternating and skew-symmetric. Thus for
u;, v, w € F™ and t € F' we have

(1) X(ul,...’v+w’...7un_1> — X(ub...’v’...’un_l) +X(u1;"'7w7"',un—1)>

(2) X(ul,...’tuk,... aun—l) — tX(uh...’uk’ e 7un—1)7

(3) X(ula'"Juk‘?”')uly“'?un—l) — _X(Ula"‘7ul""7uk7"'7un—1)-

5.22 Definition: Recall that for uy,---,u, € R", the set {uy,---,u,} is a basis for R"
if and only if det(uq,---,u,) # 0. For an ordered basis A = (uy,---,uy), we say that

A is positively oriented when det(uy,---,u,) > 0 and we say that A is negatively
oriented when det(uy, -, u,) < 0.
5.23 Theorem: Let uq,---,up_1,01, " ,Un_1,w € R™. Then

(1) X(“l? T 7un—1) *wW = det(ulv e 7un—17w)7

(2) X(uy,--+,up—1) =0 if and only if {uq,- -, u,—1} Iis linearly dependent.

(3) When w = X (uq,--,un—1) # 0 we have det(uy,---,up—1,w) > 0 so that the n-tuple
(uy,- -+, un—_1,w) Iis a positively oriented basis for R",

(4) X (uy, -+ un_1) * X (v1, -, v_1) = det(ATB) where A= (u1, -, Un_1) € Mpxn_1(R)
and B=(vy, -+ ,vp_1) € Myxn_1(R), and

(5) | X (u1,- -+, up—1)| is equal to the volume of the parallelipiped on uy,- -+, Up_1.

Proof: T may include a proof later.



