

Chapter 5. The Dot and Cross Products in \mathbf{R}^n

5.1 Definition: Let F be a field. For vectors $x, y \in F^n$ we define the **dot product** of x and y to be

$$x \cdot y = y^T x = \sum_{i=1}^n x_i y_i \in F.$$

5.2 Theorem: (Properties of the Dot Product) For all $x, y, z \in \mathbf{R}^n$ and all $t \in \mathbf{R}$ we have

- (1) (Bilinearity) $(x + y) \cdot z = x \cdot z + y \cdot z$, $(tx) \cdot y = t(x \cdot y)$
 $x \cdot (y + z) = x \cdot y + x \cdot z$, $x \cdot (ty) = t(x \cdot y)$,
- (2) (Symmetry) $x \cdot y = y \cdot x$, and
- (3) (Positive Definiteness) $x \cdot x \geq 0$ with $x \cdot x = 0$ if and only if $x = 0$.

Proof: The proof is left as an exercise.

5.3 Definition: For a vector $x \in \mathbf{R}^n$, we define the **length** (or **norm**) of x to be

$$|x| = \sqrt{x \cdot x} = \sqrt{\sum_{i=1}^n x_i^2}.$$

We say that x is a **unit vector** when $|x| = 1$.

5.4 Theorem: (Properties of Length) Let $x, y \in \mathbf{R}^n$ and let $t \in \mathbf{R}$. Then

- (1) (Positive Definiteness) $|x| \geq 0$ with $|x| = 0$ if and only if $x = 0$,
- (2) (Scaling) $|tx| = |t||x|$,
- (3) $|x \pm y|^2 = |x|^2 \pm 2(x \cdot y) + |y|^2$.
- (4) (The Polarization Identities) $x \cdot y = \frac{1}{2}(|x + y|^2 - |x|^2 - |y|^2) = \frac{1}{4}(|x + y|^2 - |x - y|^2)$,
- (5) (The Cauchy-Schwarz Inequality) $|x \cdot y| \leq |x||y|$ with $|x \cdot y| = |x||y|$ if and only if the set $\{x, y\}$ is linearly dependent, and
- (6) (The Triangle Inequality) $|x + y| \leq |x| + |y|$.

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that (4) follows immediately from (3). To prove part (5), suppose first that $\{x, y\}$ is linearly dependent. Then one of x and y is a multiple of the other, say $y = tx$ with $t \in \mathbf{R}$. Then

$$|x \cdot y| = |x \cdot (tx)| = |t(x \cdot x)| = |t||x|^2 = |x||tx| = |x||y|.$$

Suppose next that $\{x, y\}$ is linearly independent. Then for all $t \in \mathbf{R}$ we have $x + ty \neq 0$ and so

$$0 \neq |x + ty|^2 = (x + ty) \cdot (x + ty) = |x|^2 + 2t(x \cdot y) + t^2|y|^2.$$

Since the quadratic on the right is non-zero for all $t \in \mathbf{R}$, it follows that the discriminant of the quadratic must be negative, that is

$$4(x \cdot y)^2 - 4|x|^2|y|^2 < 0.$$

Thus $(x \cdot y)^2 < |x|^2|y|^2$ and hence $|x \cdot y| < |x||y|$. This proves part (5).

Using part (5) note that

$$|x + y|^2 = |x|^2 + 2(x \cdot y) + |y|^2 \leq |x + y|^2 + 2|x \cdot y| + |y|^2 \leq |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2$$

and so $|x + y| \leq |x| + |y|$, which proves part (6).

5.5 Definition: For points $a, b \in \mathbf{R}^n$, we define the **distance** between a and b to be

$$\text{dist}(a, b) = |b - a|.$$

5.6 Theorem: (Properties of Distance) Let $a, b, c \in \mathbf{R}^n$. Then

- (1) (Positive Definiteness) $\text{dist}(a, b) \geq 0$ with $\text{dist}(a, b) = 0$ if and only if $a = b$,
- (2) (Symmetry) $\text{dist}(a, b) = \text{dist}(b, a)$, and
- (3) (The Triangle Inequality) $\text{dist}(a, c) \leq \text{dist}(a, b) + \text{dist}(b, c)$.

Proof: The proof is left as an exercise.

5.7 Definition: For nonzero vectors $0 \neq x, y \in \mathbf{R}^n$, we define the **angle** between x and y to be

$$\theta(x, y) = \cos^{-1} \left(\frac{x \cdot y}{|x| |y|} \right) \in [0, \pi].$$

Note that $\theta(x, y) = \frac{\pi}{2}$ if and only if $x \cdot y = 0$. For vectors $x, y \in \mathbf{R}^n$, we say that x and y are **orthogonal** when $x \cdot y = 0$.

5.8 Theorem: (Properties of Angle) Let $0 \neq x, y \in \mathbf{R}^n$. Then

- (1) $\theta(x, y) \in [0, \pi]$ with $\begin{cases} \theta(x, y) = 0 \text{ if and only if } y = tx \text{ for some } t > 0, \text{ and} \\ \theta(x, y) = \pi \text{ if and only if } y = tx \text{ for some } t < 0, \end{cases}$
- (2) (Symmetry) $\theta(x, y) = \theta(y, x)$,
- (3) (Scaling) $\theta(tx, y) = \theta(x, ty) = \begin{cases} \theta(x, y) & \text{if } 0 < t \in \mathbf{R}, \\ \pi - \theta(x, y) & \text{if } 0 > t \in \mathbf{R}, \end{cases}$
- (4) (The Law of Cosines) $|y - x|^2 = |x|^2 + |y|^2 - 2|x| |y| \cos \theta(x, y)$,
- (5) (Pythagoras' Theorem) $\theta(x, y) = \frac{\pi}{2}$ if and only if $|y - x|^2 = |x|^2 + |y|^2$, and
- (6) (Trigonometric Ratios) if $(y - x) \cdot x = 0$ then $\cos \theta(x, y) = \frac{|x|}{|y|}$ and $\sin \theta(x, y) = \frac{|y - x|}{|y|}$.

Proof: The Law of Cosines follows from the identity $|y - x|^2 = |y|^2 - 2(y \cdot x) + |x|^2$ and the definition of $\theta(x, y)$. Pythagoras' Theorem is a special case of the Law of Cosines. We Prove Part (6). Let $0 \neq x, y \in \mathbf{R}^n$ and write $\theta = \theta(x, y)$. Suppose that $(y - x) \cdot x = 0$. Then we have $y \cdot x - x \cdot x = 0$ so that $x \cdot y = |x|^2$, and so we have

$$\cos \theta = \frac{x \cdot y}{|x| |y|} = \frac{|x|^2}{|x| |y|} = \frac{|x|}{|y|}.$$

Also, by Pythagoras' Theorem we have $|x|^2 + |y - x|^2 = |y|^2$ so that $|y|^2 - |x|^2 = |y - x|^2$, and so

$$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{|x|^2}{|y|^2} = \frac{|y|^2 - |x|^2}{|y|^2} = \frac{|y - x|^2}{|y|^2}.$$

Since $\theta \in [0, \pi]$ we have $\sin \theta \geq 0$, and so taking the square root on both sides gives

$$\sin \theta = \frac{|y - x|}{|y|}.$$

5.9 Definition: For points $a, b, c \in \mathbf{R}^n$ with $a \neq b$ and $b \neq c$ we define

$$\angle abc = \theta(b - a, c - b).$$

Orthogonal Complement and Orthogonal Projection in \mathbf{R}^n

5.10 Definition: Let F be a field and let U, V and W be subspaces of F^n . Recall that

$$U + V = \{u + v \mid u \in U, v \in V\}$$

is a subspace of F^n . We say that W is the **internal direct sum** of U with V , and we write $W = U \oplus V$, when $W = U + V$ and $U \cap V = \{0\}$. As an exercise, show that $W = U \oplus V$ if and only if for every $x \in W$ there exist unique vectors $u \in U$ and $v \in V$ with $x = u + v$.

5.11 Definition: Let $U \subseteq \mathbf{R}^n$ be a subspace. We define the **orthogonal complement** of U in \mathbf{R}^n to be

$$U^\perp = \{x \in \mathbf{R}^n \mid x \cdot u = 0 \text{ for all } u \in U\}.$$

5.12 Theorem: (Properties of the Orthogonal Complement) Let $U \subseteq \mathbf{R}^n$ be a subspace, let $S \subseteq U$ and let $A \in M_{k \times n}(\mathbf{R})$. Then

- (1) If $U = \text{Span}(S)$ then $U^\perp = \{x \in \mathbf{R}^n \mid x \cdot u = 0 \text{ for all } u \in S\}$,
- (2) $(\text{Row } A)^T = \text{Null } A$.
- (3) U^\perp is a vector space,
- (4) $\dim(U) + \dim(U^\perp) = n$
- (5) $U \oplus U^\perp = \mathbf{R}^n$,
- (6) $(U^\perp)^\perp = U$,
- (7) $(\text{Null } A)^\perp = \text{Row } A$.

Proof: To prove part (1), let $T = \{x \in \mathbf{R}^n \mid x \cdot u = 0 \text{ for all } u \in S\}$. Note that $U^\perp \subseteq T$.

Let $x \in T$. Let $u \in U = \text{Span}(S)$, say $u = \sum_{i=1}^n t_i u_i$ with each $t_i \in \mathbf{R}$ and each $u_i \in S$.

Then $x \cdot u = x \cdot \sum_{i=1}^n t_i u_i = \sum_{i=1}^n t_i (x \cdot u_i) = 0$. Thus $x \in U^\perp$ and so we have $T \subseteq U^\perp$.

To prove part (2), let v_1, v_2, \dots, v_n be the rows of A . Note that $Ax = \begin{pmatrix} x \cdot v_1 \\ \vdots \\ x \cdot v_n \end{pmatrix}$ so

we have $x \in \text{Null } A \iff x \cdot v_i = 0 \text{ for all } i \iff x \in \text{Span}\{v_1, v_2, \dots, v_n\}^\perp = (\text{Row } A)^\perp$ by part (1).

Part (3) follows from Part (2) since we can choose the matrix A so that $U = \text{Row}(A)$ and then we have $U^\perp = \text{Null}(A)$ which is a vector space in \mathbf{R}^n .

Part (4) also follows from part (2) since if we choose A so that $\text{Row } A = U$ then we have $\dim(U) + \dim(U^\perp) = \dim \text{Row } A + \dim(\text{Row } A)^\perp = \dim \text{Row } A + \dim \text{Null } A = n$.

To prove part (5), in light of part (4), it suffices to show that $U \cap U^\perp = \{0\}$. Let $x \in U \cap U^\perp$. Since $x \in U^\perp$ we have $x \cdot u = 0$ for all $u \in U$. In particular, since $x \in U$ we have $x \cdot x = 0$, and hence $x = 0$. Thus $U \cap U^\perp = \{0\}$ and so $U \oplus U^\perp = \mathbf{R}^n$.

To prove part (6), let $x \in U$. By the definition of U^\perp we have $x \cdot v = 0$ for all $v \in U^\perp$. By the definition of $(U^\perp)^\perp$ we see that $x \in (U^\perp)^\perp$. Thus $U \subseteq (U^\perp)^\perp$. By part (4) we know that $\dim U + \dim U^\perp = n$ and also that $\dim U^\perp + \dim(U^\perp)^\perp = n$. It follows that $\dim U = n - \dim U^\perp = \dim(U^\perp)^\perp$. Since $U \subseteq (U^\perp)^\perp$ and $\dim U = \dim(U^\perp)^\perp$ we have $U = (U^\perp)^\perp$, as required.

By parts (3) and (6) we have $(\text{Null } A)^\perp = ((\text{Row } A)^\perp)^\perp = \text{Row } A$, proving part (7).

5.13 Definition: For a subspace $U \subseteq \mathbf{R}^n$ and a vector $x \in \mathbf{R}^n$, we define the **orthogonal projection** of x onto U , denoted by $\text{Proj}_U(x)$, as follows. Since $\mathbf{R}^n = U \oplus U^\perp$, we can choose unique vectors $u, v \in \mathbf{R}^n$ with $u \in U$, $v \in U^\perp$ and $x = u + v$. We then define

$$\text{Proj}_U(x) = u.$$

Note that since $U = (U^\perp)^\perp$, for u and v as above we have $\text{Proj}_{U^\perp}(x) = v$. When $y \in \mathbf{R}^n$ and $U = \text{Span}\{y\}$, we also write $\text{Proj}_y(x) = \text{Proj}_U(x)$ and $\text{Proj}_{y^\perp}(x) = \text{Proj}_{U^\perp}(x)$.

5.14 Theorem: Let $U \subseteq \mathbf{R}^n$ be a subspace and let $x \in \mathbf{R}^n$. Then $\text{Proj}_U(x)$ is the unique point in U which is nearest to x .

Proof: Let $u, v \in \mathbf{R}^n$ with $u \in U$, $v \in V$ and $u + v = x$ so that $\text{Proj}_U(x) = u$. Let $w \in U$ with $w \neq u$. Since $v \in U^\perp$ and $u, w \in U$ we have $v \cdot u = v \cdot w = 0$ and so $v \cdot (w - u) = v \cdot w - v \cdot u = 0$. Thus we have

$$\begin{aligned} |x - w|^2 &= |u + v - w|^2 = |v - (w - u)|^2 = (v - (w - u)) \cdot (v - (w - u)) \\ &= |v|^2 - 2v \cdot (w - u) + |w - u|^2 = |v|^2 + |w - u|^2 = |x - u|^2 + |w - u|^2. \end{aligned}$$

Since $w \neq u$ we have $|w - u| > 0$ and so $|x - w|^2 > |x - u|^2$. Thus $|x - w| > |x - u|$, that is $\text{dist}(x, w) > \text{dist}(x, u)$, so u is the vector in U nearest to x , as required.

5.15 Theorem: For any matrix $A \in M_{n \times l}(\mathbf{R})$ we have $\text{Null}(A^T A) = \text{Null}(A)$ and $\text{Col}(A^T A) = \text{Col}(A^T)$ so that $\text{nullity}(A^T A) = \text{nullity}(A)$ and $\text{rank}(A^T A) = \text{rank}(A)$.

Proof: If $x \in \text{Null}(A)$ then $Ax = 0$ so $A^T A x = 0$ hence $x \in \text{Null}(A^T A)$. This shows that $\text{Null}(A) \subseteq \text{Null}(A^T A)$. If $x \in \text{Null}(A^T A)$ then we have $A^T A x = 0$ which implies that $|Ax|^2 = (Ax)^T (Ax) = x^T A^T A x = 0$ and so $Ax = 0$. This shows that $\text{Null}(A^T A) \subseteq \text{Null}(A)$. Thus we have $\text{Null}(A^T A) = \text{Null}(A)$. It then follows that

$$\text{Col}(A^T) = \text{Row}(A) = \text{Null}(A)^\perp = \text{Null}(A^T A)^\perp = \text{Row}(A^T A) = \text{Col}((A^T A)^T) = \text{Col}(A^T A).$$

5.16 Theorem: Let $A \in M_{n \times l}(\mathbf{R})$, let $U = \text{Col}(A)$ and let $x \in \mathbf{R}^n$. Then

(1) the matrix equation $A^T A t = A^T x$ has a solution $t \in \mathbf{R}^l$, and for any solution t we have

$$\text{Proj}_U(x) = At,$$

(2) if $\text{rank}(A) = l$ then $A^T A$ is invertible and

$$\text{Proj}_U(x) = A(A^T A)^{-1} A^T x.$$

Proof: Note that $U^\perp = (\text{Col}A)^\perp = \text{Row}(A^T)^\perp = \text{Null}(A^T)$. Let $u, v \in \mathbf{R}^n$ with $u \in U$, $v \in U^\perp$ and $u + v = x$ so that $\text{Proj}_U(x) = u$. Since $u \in U = \text{Col}A$ we can choose $t \in \mathbf{R}^l$ so that $u = At$. Then we have $x = u + v = At + v$. Multiply by A^T to get $A^T = A^T A t + A^T v$. Since $v \in U^\perp = \text{Null}(A^T)$ we have $A^T v = 0$ so $A^T A t = A^T x$. Thus the matrix equation $A^T A t = A^T x$ does have a solution $t \in \mathbf{R}^l$.

Now let $t \in \mathbf{R}^l$ be any solution to $A^T A t = A^T x$. Let $u = At$ and $v = x - u$. Note that $x = u + v$, $u = At \in \text{Col}(A) = U$, and $A^T v = A^T(x - u) = A^T(x - At) = A^T x - A^T A t = 0$ so that $v \in \text{Null}(A^T) = U^\perp$. Thus $\text{Proj}_U(x) = u = At$, proving part (1).

Now suppose that $\text{rank}(A) = l$. Since $A^T A \in M_{l \times l}(\mathbf{R})$ with $\text{rank}(A^T A) = \text{rank}(A) = l$, the matrix $A^T A$ is invertible. Since $A^T A$ is invertible, the unique solution $t \in \mathbf{R}^l$ to the matrix equation $A^T A t = A^T x$ is the vector $t = (A^T A)^{-1} A^T x$, and so from Part (1) we have $\text{Proj}_U(x) = At = A(A^T A)^{-1} A^T x$, proving Part (2).

The Volume of a Parallelotope

5.17 Definition: Given vectors $u_1, u_2, \dots, u_k \in \mathbf{R}^n$, we define the **parallelotope** on u_1, \dots, u_k to be the set

$$P(u_1, \dots, u_k) = \left\{ \sum_{j=1}^k t_j u_j \mid 0 \leq t_j \leq 1 \text{ for all } j \right\}.$$

We define the **volume** of this parallelotope, denoted by $V(u_1, \dots, u_k)$, recursively by $V(u_1) = |u_1|$ and

$$V(u_1, \dots, u_k) = V(u_1, \dots, u_{k-1}) |\text{Proj}_{U^\perp}(u_k)|$$

where $U = \text{Span} \{u_1, \dots, u_{k-1}\}$.

5.18 Theorem: Let $u_1, \dots, u_k \in \mathbf{R}^n$ and let $A = (u_1, \dots, u_k) \in M_{n \times k}(\mathbf{R})$. Then

$$V(u_1, \dots, u_n) = \sqrt{\det(A^T A)}.$$

Proof: We prove the theorem by induction on k . Note that when $k = 1$, $u_1 \in \mathbf{R}^n$ and $A = u_1 \in M_{n \times 1}(\mathbf{R})$, we have $V(u_1) = |u_1| = \sqrt{u_1 \cdot u_1} = \sqrt{u_1^T u_1} = \sqrt{A^T A}$, as required. Let $k \geq 2$ and suppose, inductively, that when $A = (u_1, \dots, u_{k-1}) \in M_{n \times k-1}$ we have $\det(A^T A) > 0$ and $V(u_1, \dots, u_{k-1}) = \sqrt{\det(A^T A)}$. Let $B = (u_1, \dots, u_k) = (A, u_k)$. Let $U = \text{Span} \{u_1, \dots, u_{k-1}\} = \text{Col}(A)$. Let $v = \text{Proj}_U(u_k)$ and $w = \text{Proj}_{U^\perp}(u_k)$. Note that $v \in U = \text{Col}(A)$ and $w \in U^\perp = \text{Null}(A^T)$. Then we have $u_k = v + w$ so that $B = (A, v + w)$. Since $v \in \text{Col}(A)$, the matrix B can be obtained from the matrix (A, w) by performing elementary column operations of the type $C_k \mapsto C_k + tC_i$. Let E be the product of the elementary matrices corresponding to these column operations, and note that $B = (A, v + w) = (A, w)E$. Since the row operations $C_k \mapsto C_k + tC_i$ do not alter the determinant, E is a product of elementary matrices of determinant 1, so we have $\det(E) = 1$. Since $\det(E) = 1$ and $w \in \text{Null}(A^T)$ we have

$$\begin{aligned} \det(B^T B) &= \det(E^T (A, w)^T (A, w) E) = \det \left(\begin{pmatrix} A^T \\ w^T \end{pmatrix} (A \ w) \right) \\ &= \det \begin{pmatrix} A^T A & A^T w \\ w^T A & w^T w \end{pmatrix} = \begin{pmatrix} A^T A & 0 \\ 0 & |w|^2 \end{pmatrix} = \det(A^T A) |w|^2. \end{aligned}$$

By the induction hypothesis, we can take the square root on both sides to get

$$\sqrt{\det(B^T B)} = \sqrt{\det(A^T A)} |w| = V(u_1, \dots, u_{k-1}) |w| = V(u_1, \dots, u_k).$$

The Cross Product in \mathbf{R}^n

5.19 Definition: Let F be a field. For $n \geq 2$ we define the **cross product**

$$X : \prod_{k=1}^{n-1} F^n \rightarrow F^n$$

as follows. Given vectors $u_1, u_2, \dots, u_{n-1} \in F^n$, we define $X(u_1, u_2, \dots, u_{n-1}) \in F^n$ to be the vector with entries

$$X(u_1, u_2, \dots, u_{n-1})_j = (-1)^{n+j} |A^{(j)}|$$

where $A^{(j)} \in M_{n-1}(F)$ is the matrix obtained from $A = (u_1, u_2, \dots, u_{n-1}) \in M_{n \times n-1}(F)$ by removing the j^{th} row. Given a vector $u \in F^2$ we write $X(u)$ as u^\times , and given two vectors $u, v \in F^3$ we write $X(u, v)$ as $u \times v$.

5.20 Example: Given $u \in F^2$ we have

$$u^\times = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}^\times = \begin{pmatrix} -u_2 \\ u_1 \end{pmatrix}.$$

Given $u, v \in F^3$ we have

$$u \times v = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} \left| \begin{array}{cc} u_2 & v_2 \\ u_3 & v_3 \end{array} \right| \\ -\left| \begin{array}{cc} u_1 & v_1 \\ u_3 & v_3 \end{array} \right| \\ \left| \begin{array}{cc} u_1 & v_1 \\ u_2 & v_2 \end{array} \right| \end{pmatrix} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}.$$

5.21 Note: Because the determinant is n -linear, alternating and skew-symmetric, it follows that the cross product is $(n-1)$ -linear, alternating and skew-symmetric. Thus for $u_i, v, w \in F^n$ and $t \in F$ we have

- (1) $X(u_1, \dots, v + w, \dots, u_{n-1}) = X(u_1, \dots, v, \dots, u_{n-1}) + X(u_1, \dots, w, \dots, u_{n-1})$,
- (2) $X(u_1, \dots, t u_k, \dots, u_{n-1}) = t X(u_1, \dots, u_k, \dots, u_{n-1})$,
- (3) $X(u_1, \dots, u_k, \dots, u_l, \dots, u_{n-1}) = -X(u_1, \dots, u_l, \dots, u_k, \dots, u_{n-1})$.

5.22 Definition: Recall that for $u_1, \dots, u_n \in \mathbf{R}^n$, the set $\{u_1, \dots, u_n\}$ is a basis for \mathbf{R}^n if and only if $\det(u_1, \dots, u_n) \neq 0$. For an ordered basis $\mathcal{A} = (u_1, \dots, u_n)$, we say that \mathcal{A} is **positively oriented** when $\det(u_1, \dots, u_n) > 0$ and we say that \mathcal{A} is **negatively oriented** when $\det(u_1, \dots, u_n) < 0$.

5.23 Theorem: Let $u_1, \dots, u_{n-1}, v_1, \dots, v_{n-1}, w \in \mathbf{R}^n$. Then

- (1) $X(u_1, \dots, u_{n-1}) \cdot w = \det(u_1, \dots, u_{n-1}, w)$,
- (2) $X(u_1, \dots, u_{n-1}) = 0$ if and only if $\{u_1, \dots, u_{n-1}\}$ is linearly dependent.
- (3) When $w = X(u_1, \dots, u_{n-1}) \neq 0$ we have $\det(u_1, \dots, u_{n-1}, w) > 0$ so that the n -tuple (u_1, \dots, u_{n-1}, w) is a positively oriented basis for \mathbf{R}^n ,
- (4) $X(u_1, \dots, u_{n-1}) \cdot X(v_1, \dots, v_{n-1}) = \det(A^T B)$ where $A = (u_1, \dots, u_{n-1}) \in M_{n \times n-1}(\mathbf{R})$ and $B = (v_1, \dots, v_{n-1}) \in M_{n \times n-1}(\mathbf{R})$, and
- (5) $|X(u_1, \dots, u_{n-1})|$ is equal to the volume of the parallelepiped on u_1, \dots, u_{n-1} .

Proof: I may include a proof later.