
MATH 146 Linear Algebra 1, Lecture Notes by Stephen New

Chapter 5. The Dot and Cross Products in Rn

5.1 Definition: Let F be a field. For vectors x, y ∈ Fn we define the dot product of x
and y to be

x. y = yTx =
n∑
i=1

xiyi ∈ F .

5.2 Theorem: (Properties of the Dot Product) For all x, y, z ∈ Rn and all t ∈ R we have

(1) (Bilinearity) (x+ y). z = x. z + y . z , (tx). y = t(x. y)
x. (y + z) = x. y + x. z , x. (ty) = t(x. y),

(2) (Symmetry) x. y = y .x, and
(3) (Positive Definiteness) x.x ≥ 0 with x.x = 0 if and only if x = 0.

Proof: The proof is left as an exercise.

5.3 Definition: For a vector x ∈ Rn, we define the length (or norm) of x to be

|x| =
√
x.x =

√
n∑
i=1

xi
2.

We say that x is a unit vector when |x| = 1.

5.4 Theorem: (Properties of Length) Let x, y ∈ Rn and let t ∈ R. Then

(1) (Positive Definiteness) |x| ≥ 0 with |x| = 0 if and only if x = 0,
(2) (Scaling) |tx| = |t||x|,
(3) |x± y|2 = |x|2 ± 2(x. y) + |y|2.
(4) (The Polarization Identities) x. y = 1

2

(
|x+ y|2 − |x|2 − |y|2

)
= 1

4

(
|x+ y|2 − |x− y|2

)
,

(5) (The Cachy-Schwarz Inequality) |x. y| ≤ |x| |y| with |x. y| = |x| |y| if and only if the
set {x, y} is linearly dependent, and
(6) (The Triangle Inequality) |x+ y| ≤ |x|+ |y|.
Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that
(4) follows immediately from (3). To prove part (5), suppose first that {x, y} is linearly
dependent. Then one of x and y is a multiple of the other, say y = tx with t ∈ R. Then

|x. y| = |x. (tx)| = |t(x.x)| = |t| |x|2 = |x| |tx| = |x| |y|.

Suppose next that {x, y} is linearly independent. Then for all t ∈ R we have x + ty 6= 0
and so

0 6= |x+ ty|2 = (x+ ty). (x+ ty) = |x|2 + 2t(x. y) + t2|y|2.
Since the quadratic on the right is non-zero for all t ∈ R, it follows that the discriminant
of the quadratic must be negative, that is

4(x. y)2 − 4|x|2|y|2 < 0.

Thus (x. y)2 < |x|2|y|2 and hence |x. y| < |x| |y|. This proves part (5).
Using part (5) note that

|x+y|2 = |x|2 +2(x. y)+ |y|2 ≤ |x+y|2 +2|x. y|+ |y|2 ≤ |x|2 +2|x| |y|+ |y|2 =
(
|x|+ |y|

)2
and so |x+ y| ≤ |x|+ |y|, which proves part (6).
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5.5 Definition: For points a, b ∈ Rn, we define the distance between a and b to be

dist(a, b) = |b− a|.

5.6 Theorem: (Properties of Distance) Let a, b, c ∈ Rn. Then

(1) (Positive Definiteness) dist(a, b) ≥ 0 with dist(a, b) = 0 if and only if a = b,
(2) (Symmetry) dist(a, b) = dist(b, a), and
(3) (The Triangle Inequality) dist(a, c) ≤ dist(a, b) + dist(b, c).

Proof: The proof is left as an exercise.

5.7 Definition: For nonzero vectors 0 6= x, y ∈ Rn, we define the angle between x and
y to be

θ(x, y) = cos−1
(
x. y
|x| |y|

)
∈ [0, π].

Note that θ(x, y) = π
2 if and only if x. y = 0. For vectors x, y ∈ Rn, we say that x and y

are orthogonal when x. y = 0.

5.8 Theorem: (Properties of Angle) Let 0 6= x, y ∈ Rn. Then

(1) θ(x, y) ∈ [0, π] with

{
θ(x, y) = 0 if and only if y = tx for some t > 0, and

θ(x, y) = π if and only if y = tx for some t < 0,

(2) (Symmetry) θ(x, y) = θ(y, x),

(3) (Scaling) θ(tx, y) = θ(x, ty) =

{
θ(x, y) if 0 < t ∈ R,

π − θ(x, y) if 0 > t ∈ R,

(4) (The Law of Cosines) |y − x|2 = |x|2 + |y|2 − 2|x| |y| cos θ(x, y),
(5) (Pythagoras’ Theorem) θ(x, y) = π

2 if and only if |y − x|2 = |x|2 + |y|2, and

(6) (Trigonometric Ratios) if (y− x).x = 0 then cos θ(x, y) = |x|
|y| and sin θ(x, y) = |y−x|

|y| .

Proof: The Law of Cosines follows from the identity |y − x|2 = |y|2 − 2(y .x) + |x|2 and
the definition of θ(x, y). Pythagoras’ Theorem is a special case of the Law of Cosines. We
Prove Part (6). Let 0 6= x, y ∈ Rn and write θ = θ(x, y). Suppose that (y − x).x = 0.
Then we have y .x− x.x = 0 so that x. y = |x|2, and so we have

cos θ =
x. y
|x| |y|

=
|x|2

|x| |y|
=
|x|
|y|

.

Also, by Pythagoras’ Theorem we have |x|2 + |y − x|2 = |y|2 so that |y|2 − |x|2 = |y − x|2,
and so

sin2 θ = 1− cos2 θ = 1− |x|
2

|y|2
=
|y|2 − |x|2

|y|2
=
|y − x|2

|y|2
.

Since θ ∈ [0, π] we have sin θ ≥ 0, and so taking the square root on both sides gives

sin θ =
|y − x|
|y|

.

5.9 Definition: For points a, b, c ∈ Rn with a 6= b and b 6= c we define

6 abc = θ(b− a, c− b).
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Orthogonal Complement and Orthogonal Projection in Rn

5.10 Definition: Let F be a field and let U , V and W be subspaces of Fn. Recall that

U + V =
{
u+ v

∣∣u ∈ U, v ∈ V }
is a subspace of Fn. We say that W is the internal direct sum of U with V , and we write
W = U ⊕ V , when W = U + V and U ∩ V = {0}. As an exercise, show that W = U ⊕ V
if and only if for every x ∈W there exist unique vectors u ∈ U and v ∈ V with x = u+ v.

5.11 Definition: Let U ⊆ Rn be a subspace. We define the orthogonal complement
of U in Rn to be

U⊥ =
{
x ∈ Rn

∣∣x.u = 0 for all u ∈ U
}
.

5.12 Theorem: (Properties of the Orthogonal Complement) Let U ⊆ Rn be a subspace,
let S ⊆ U and let A ∈Mk×n(R). Then

(1) If U = Span (S) then U⊥ =
{
x ∈ Rn

∣∣x · u = 0 for all u ∈ S
}

,
(2) (RowA)T = NullA.
(3) U⊥ is a vector space,
(4) dim(U) + dim(U⊥) = n
(5) U ⊕ U⊥ = Rn,
(6) (U⊥)⊥ = U ,
(7) (NullA)⊥ = RowA.

Proof: To prove part (1), let T =
{
x ∈ Rn

∣∣x.u = 0 for all u ∈ S
}

. Note that U⊥ ⊆ T .

Let x ∈ T . Let u ∈ U = Span (S), say u =
n∑
i=1

tiui with each ti ∈ R and each ui ∈ S.

Then x.u = x. n∑
i=1

tiui =
n∑
i=1

ti(x.ui) = 0. Thus x ∈ U⊥ and so we have T ⊆ U⊥.

To prove part (2), let v1, v2, · · · , vn be the rows of A. Note that Ax =

 x. v1
...

x. vn

 so

we have x ∈ NullA ⇐⇒ x. vi = 0 for all i ⇐⇒ x ∈ Span {v1, v2, · · · , vk}⊥ = (RowA)⊥

by part (1).
Part (3) follows from Part (2) since we can choose the matrix A so that U = Row(A)

and then we have U⊥ = Null(A) which is a vector space in Rn.
Part (4) also follows from part (2) since if we choose A so that RowA = U then we

have dim(U) + dim(U⊥) = dim RowA+ dim(RowA)⊥ = dim RowA+ dim NullA = n.
To prove part (5), in light of part (4), it suffices to show that U ∩ U⊥ = {0}. Let

x ∈ U ∩ U⊥. Since x ∈ U⊥ we have x.u = 0 for all u ∈ U . In particular, since x ∈ U we
have x.x = 0, and hence x = 0. Thus U ∩ U⊥ = {0} and so U ⊕ U⊥ = Rn.

To prove part (6), let x ∈ U . By the definition of U⊥ we have x. v = 0 for all v ∈ U⊥.
By the definition of (U⊥)⊥ we see that x ∈ (U⊥)⊥. Thus U ⊆ (U⊥)⊥. By part (4) we
know that dimU + dimU⊥ = n and also that dimU⊥ + dim(U⊥)⊥ = n. It follows that
dimU = n − dimU⊥ = dim(U⊥)⊥. Since U ⊆ (U⊥)⊥ and dimU = dim(U⊥)⊥ we have
U = (U⊥)⊥, as required.

By parts (3) and (6) we have (NullA)⊥ =
(
(RowA)⊥

)⊥
= RowA, proving part (7).
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5.13 Definition: For a subspace U ⊆ Rn and a vector x ∈ Rn, we define the orthogonal
projection of x onto U , denoted by ProjU (x), as follows. Since Rn = U ⊕ U⊥, we can
choose unique vectors u, v ∈ Rn with u ∈ U , v ∈ U⊥ and x = u+ v. We then define

ProjU (x) = u.

Note that since U = (U⊥)⊥, for u and v as above we have ProjU⊥(x) = v. When y ∈ Rn

and U = Span {y}, we also write Projy(x) = ProjU (x) and Projy⊥(x) = ProjU⊥(x).

5.14 Theorem: Let U ⊆ Rn be a subspace and let x ∈ Rn. Then ProjU (x) is the unique
point in U which is nearest to x.

Proof: Let u, v ∈ Rn with u ∈ U , v ∈ V and u + v = x so that ProjU (x) = u. Let
w ∈ U with w 6= u. Since v ∈ U⊥ and u,w ∈ U we have v .u = v .w = 0 and so
v . (w − u) = v .w − v .u = 0. Thus we have

|x− w|2 = |u+ v − w|2 = |v − (w − u)|2 =
(
v − (w − u)

). (v − (w − u)
)

= |v|2 − 2 v . (w − u) + |w − u|2 = |v|2 + |w − u|2 = |x− u|2 + |w − u|2 .

Since w 6= u we have |w − u| > 0 and so |x− w|2 > |x− u|2. Thus |x− w| > |x− u|, that
is dist(x,w) > dist(x, u), so u is the vector in U nearest to x, as required.

5.15 Theorem: For any matrix A ∈ Mn×l(R) we have Null(ATA) = Null(A) and
Col(ATA) = Col(AT ) so that nullity(ATA) = nullity(A) and rank(ATA) = rank(A).

Proof: If x ∈ Null(A) then Ax = 0 so ATAx = 0 hence x ∈ Null(ATA). This shows
that Null(A) ⊆ Null(ATA). If x ∈ Null(ATA) then we have ATAx = 0 which implies that
|Ax|2 = (Ax)T (Ax) = xTATAx = 0 and so Ax = 0. This shows that Null(ATA) ⊆ Null(A).
Thus we have Null(ATA) = Null(A). It then follows that

Col(AT )=Row(A)=Null(A)⊥=Null(ATA)⊥=Row(ATA)=Col
(
(ATA)T

)
=Col(ATA).

5.16 Theorem: Let A ∈Mn×l(R), let U = Col(A) and let x ∈ Rn. Then

(1) the matrix equation ATA t = ATx has a solution t ∈ Rl, and for any solution t we have

ProjU (x) = At,

(2) if rank(A) = l then ATA is invertible and

ProjU (x) = A(ATA)−1ATx.

Proof: Note that U⊥ = (ColA)⊥ = Row(AT )⊥ = Null(AT ). Let u, v ∈ Rn with u ∈ U ,
v ∈ U⊥ and u+ v = x so that ProjU (x) = u. Since u ∈ U = ColA we can choose t ∈ Rl so
that u = At. Then we have x = u+ v = At+ v. Multiply by AT to get AT = ATAt+AT v.
Since v ∈ U⊥ = Null(AT ) we have AT v = 0 so ATA t = ATx. Thus the matrix equation
ATA t = ATx does have a solution t ∈ Rl.

Now let t ∈ Rl be any solution to ATA t = Atx. Let u = At and v = x−u. Note that
x = u+ v, u = At ∈ Col(A) = U , and AT v = AT (x−u) = AT (x−At) = ATx−ATA t = 0
so that v ∈ Null(AT ) = U⊥. Thus ProjU (x) = u = At, proving part (1).

Now suppose that rank(A) = l. Since ATA ∈Ml×l(R) with rank(ATA) = rank(A) = l,
the matrix ATA is invertible. Since ATA is invertible, the unique solution t ∈ Rl to the
matrix equation ATA t = ATx is the vector t = (ATA)−1ATx, and so from Part (1) we
have ProjU (x) = At = A(ATA)−1ATx, proving Part (2).
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The Volume of a Parallelotope

5.17 Definition: Given vectors u1, u2, · · · , uk ∈ Rn, we define the parallelotope on
u1, · · · , uk to be the set

P (u1, · · · , uk) =
{ k∑
j=1

tiui

∣∣∣0 ≤ ti ≤ 1 for all i
}
.

We define the volume of this parallelotope, denoted by V (u1, · · · , uk), recursively by
V (u1) = |u1| and

V (u1, · · · , uk) = V (u1, · · · , uk−1)
∣∣ProjU⊥(uk)

∣∣
where U = Span {u1, · · · , uk−1}.

5.18 Theorem: Let u1, · · · , uk ∈ Rn and let A = (u1, · · · , uk) ∈Mn×k(R). Then

V (u1, · · · , un) =
√

det(ATA).

Proof: We prove the theorem by induction on k. Note that when k = 1, u1 ∈ Rn and
A = u1 ∈ Mn×1(R), we have V (u1) = |u1| =

√
u1 .u1 =

√
u1Tu1 =

√
ATA, as required.

Let k ≥ 2 and suppose, inductively, that when A = (u1, · · · , uk−1) ∈ Mn×k−1 we have
det(ATA) > 0 and V (u1, · · · , uk−1) =

√
det(ATA). Let B = (u1, · · · , uk) = (A, uk). Let

U = Span {u1, · · · , uk−1} = Col(A). Let v = ProjU (uk) and w = ProjU⊥(uk). Note
that v ∈ U = Col(A) and w ∈ U⊥ = Null(AT ). Then we have uk = v + w so that
B = (A, v + w). Since v ∈ Col(A), the matrix B can be obtained from the matrix (A,w)
by performing elementary column operations of the type Ck 7→ Ck + tCi. Let E be the
product of the elementary matrices corresponding to these column operations, and note
that B = (A, v + w) = (A,w)E. Since the row operations Ck 7→ Ck + tCi do not alter
the determinant, E is a product of elementary matrices of determinant 1, so we have
det(E) = 1. Since det(E) = 1 and w ∈ Null(AT ) we have

det(BTB) = det
(
ET (A,w)T (A,w)E

)
= det

((
AT

wT

)(
A w

))
= det

(
ATA ATw
wTA wTw

)
=

(
ATA 0

0 |w|2
)

= det(ATA) |w|2.

By the induction hypothesis, we can take the square root on both sides to get√
det(BTB) =

√
det(ATA) |w| = V (u1, · · · , uk−1) |w| = V (u1, · · · , uk).
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The Cross Product in Rn

5.19 Definition: Let F be a field. For n ≥ 2 we define the cross product

X :
n−1∏
k=1

Fn → Fn

as follows. Given vectors u1, u2, · · · , un−1 ∈ Fn, we define X(u1, u2, · · · , un−1) ∈ Fn to be
the vector with entries

X(u1, u2, · · · , un−1)j = (−1)n+j |A(j)|

where A(j) ∈ Mn−1(F ) is the matrix obtained from A = (u1, u2, · · · , un−1) ∈ Mn×n−1(F )
by removing the jth row. Given a vector u ∈ F 2 we write X(u) as u×, and given two
vectors u, v ∈ F 3 we write X(u, v) as u× v.

5.20 Example: Given u ∈ F 2 we have

u× =

(
u1
u2

)×
=

(
−u2
u1

)
.

Given u, v ∈ F 3 we have

u× v =

u1
u2
u3

×
 v1
v2
v3

 =



∣∣∣u2 v2
u3 v3

∣∣∣
−
∣∣∣u1 v1
u3 v3

∣∣∣∣∣∣u1 v1
u2 v2

∣∣∣

 =

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 .

5.21 Note: Because the determinant is n-linear, alternating and skew-symmetric, it
follows that the cross product is (n− 1)-linear, alternating and skew-symmetric. Thus for
ui, v, w ∈ Fn and t ∈ F we have

(1) X(u1, · · · , v + w, · · · , un−1) = X(u1, · · · , v, · · · , un−1) +X(u1, · · · , w, · · · , un−1),
(2) X(u1, · · · , t uk, · · · , un−1) = tX(u1, · · · , uk, · · · , un−1),
(3) X(u1, · · · , uk, · · · , ul, · · · , un−1) = −X(u1, · · · , ul, · · · , uk, · · · , un−1).

5.22 Definition: Recall that for u1, · · · , un ∈ Rn, the set {u1, · · · , un} is a basis for Rn

if and only if det(u1, · · · , un) 6= 0. For an ordered basis A = (u1, · · · , un), we say that
A is positively oriented when det(u1, · · · , un) > 0 and we say that A is negatively
oriented when det(u1, · · · , un) < 0.

5.23 Theorem: Let u1, · · · , un−1, v1, · · · , vn−1, w ∈ Rn. Then

(1) X(u1, · · · , un−1).w = det(u1, · · · , un−1, w),
(2) X(u1, · · · , un−1) = 0 if and only if {u1, · · · , un−1} is linearly dependent.
(3) When w = X(u1, · · · , un−1) 6= 0 we have det(u1, · · · , un−1, w) > 0 so that the n-tuple
(u1, · · · , un−1, w) is a positively oriented basis for Rn,
(4)X(u1, · · · , un−1).X(v1, · · · , vn−1) = det(ATB) whereA=(u1, · · · , un−1) ∈Mn×n−1(R)
and B=(v1, · · · , vn−1) ∈Mn×n−1(R), and
(5)

∣∣X(u1, · · · , un−1)
∣∣ is equal to the volume of the parallelipiped on u1, · · · , un−1.

Proof: I may include a proof later.
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