
MATH 146 Linear Algebra 1, Lecture Notes by Stephen New

Chapter 4. Determinants

Permutations

4.1 Definition: A group is a set G together with an element e ∈ G, called the identity
element, and a binary operation ∗ : G×G→ G, where for a, b ∈ G we write ∗(a, b) as a ∗ b
or often simply as ab, such that

(1) ∗ is associative: (ab)c = a(bc) for all a, b, c ∈ G,
(2) e is an identity: ae = a = ea for all a ∈ G, and
(3) every a ∈ G has an inverse: for every a ∈ G there exists b ∈ G with ab = e = ba.

A group G is called abelian when
(4) ∗ is commutative: ab = ba for all a, b ∈ G.

4.2 Note: Let G be a group. Note that the identity element e ∈ G is the unique element
that satisfies Axiom (2) in the above definition because if u ∈ G has the property that
ua = a = au for all a ∈ G, then in the case that a = e we obtain e = ue = e. Also note
given a ∈ G the element b which satisfies Axiom (3) above is unique because if ab = e and
ca = e then we have b = eb = (ca)b = c(ab) = ce = e.

4.3 Definition: Let G be a group. Given a ∈ G, the unique element b ∈ G such that
ab = e = ba is called the inverse of a and is denoted by a−1 (unless the operation in G
is addition denoted by +, in which case the inverse of a is also called the negative of a
and is denoted by −a). We write a0 = e and for k ∈ Z+ we write ak = aa · · · a (where the
product involves k copies of a) and a−k = (ak)−1.

4.4 Note: In a group G, we have the cancellation property: for all a, b, c ∈ G, if ab = ac
(or if ca = ba) then b = c. Indeed, if ab = ac then

b = eb = (a−1a)b = a−1(ab) = a−1(ac) = (a−1a)c = ec = c.

4.5 Example: If R is a ring under addition and multiplication then R is also an abelian
group under addition. The identity element is 0 and the inverse of a ∈ R is −a. For
example Zn, Z, Q, R and C are all abelian groups under addition.

4.6 Example: If R is a ring under addition and multiplication then the set

R∗ =
{
a ∈ R

∣∣a is invertible
}

is a group under multiplication. The identity element is 1 and the inverse of a ∈ R is a−1.
For example Z∗ = {1,−1}, Q∗ = Q \ {0}, R∗ = R \ {0} and C∗ = C \ {0} are all abelian
groups under multiplication. For n ∈ Z+, the group of units modulo n is the group

Un = Zn
∗ =

{
a ∈ Zn

∣∣ gcd(a, n) = 1
}
.

The group of units Un is an abelian group under multiplication modulo n. When R is a
ring (usually commutative), the general linear group GLn(R) is the group

GLn(R) =
{
A ∈Mn(R)

∣∣A is invertible
}
.

When n ≥ 2, the general linear group GLn(R) is a non-abelian group under matrix mul-
tiplication.
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4.7 Definition: Let X be a set. The group of permutations of X is the group

Perm (X) =
{
f : X → X

∣∣f is bijective
}

under composition. The identity element is the identity map I : X → X given by I(x) = x
for all x ∈ X. For n ∈ Z+, the nth symmetric group is the group

Sn = Perm
(
{1, 2, · · · , n}

)
.

4.8 Definition: When a1, a2, · · · , al are distinct elements in {1, 2, · · · , n} we write

α = (a1, a2, · · · , al)
for the permutation α ∈ Sn given by

α(a1) = a2 , α(a2) = a3 , · · · , α(al−1) = al , α(al) = a1

α(k) = k for all k /∈ {a1, a2, · · · , al} .
Such a permutation is called a cycle of length l or an l-cycle.

4.9 Note: We make several remarks.

(1) We have e = (1) = (2) = · · · = (n).
(2) We have (a1, a2, · · · , al) = (a2, a3, · · · , al, a1) = (a3, a4, · · · , al, a1, a2) = · · ·.
(3) An l-cycle with l ≥ 2 can be expressed uniquely in the form α = (a1, a2, · · · , al) with
a1 = min{a1, a2, · · · , al}.
(4) If α = (a1, a2, · · · , al) then α−1 = (al, al−1, · · · , a2, a1) = (a1, al, · · · , a3, a2).
(5) If n ≥ 3 then we have (12)(23) = (123) and (23)(12) = (132) so Sn is not abelian.

4.10 Definition: In Sn, given cycles αi with αi = (ai,1, ai,2, · · · , ai,li), we say that the
cycles αi are disjoint when all the elements ai,j ∈ {1, 2, · · · , n} are distinct.

4.11 Theorem: (Cycle Notation) Every α ∈ Sn can be written as a product of disjoint
cycles. Indeed every α 6= e can be written uniquely in the form

α = (a1,1, · · · , a1,l1)(a2,1, · · · , a2,l2) · · · (am,1, · · · , am,lm)

with m ≥ 1, each li ≥ 2, the elements ai,j all distinct, each ai,1 = min{ai,1, ai,2, · · · , ai,li}
and a1,1 < a2,1 < · · · < am,1.

Proof: Let e 6= α ∈ Sn where n ≥ 2. To write α in the given form, we must take
a1,1 to be the smallest element k ∈ {1, 2, · · · , n} with α(k) 6= k. Then we must have
a1,2 = α(a1,1), a1,3 = α(a1,2) = α2(a1,1), and so on. Eventually we must reach l1 such that
a1,1 = αl1(a1,1), indeed since {1, 2, · · · , n} is finite, eventually we find αi(a1,1) = αj(a1,1)
for some 1 ≤ i < j and then a1,1 = α−iαi(a1,1) = α−iαj(a1,1) = αj−i(a1,1). For the
smallest such l1 the elements a1,1, · · · , a1,l1 will be disjoint since if we had a1,i = a1,j for
some 1 ≤ i < j ≤ l1 then, as above, we would have αj−i(a11) = a11 with 1 ≤ j − i < l1.
This gives us the first cycle α1 = (a1,1, a1,2, · · · , a1,l1).

If we have α = α1 we are done. Otherwise there must be some k ∈ {1, 2, · · · , n} with
k /∈ {a1,1, a1,2, · · · , a1,l1} such that α(k) 6= k, and we must choose a2,1 to be the smallest
such k. As above we obtain the second cycle α2 = (a2,1, a2,2, · · · , a2,l2). Note that α2 must
be disjoint from α1 because if we had αi(a2,1) = αj(a1,1) for some i, j then we would have
a2,1 = α−iαi(a2,1) = α−iαj(a1,1) = αj−i(a1,1) ∈ {a1,1, · · · , a1,l1}.

At this stage, if α = α1α2 we are done, and otherwise we continue the procedure.

4.12 Definition: When a permutation e 6= α ∈ Sn is written in the unique form of the
above theorem, we say that α is written in cycle notation. We usually write e as e = (1).
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4.13 Theorem: (Even and Odd Permutations) In Sn, with n ≥ 2,

(1) every α ∈ Sn is a product of 2-cycles,
(2) if e = (a1, b1)(a2, b2) · · · (al, bl) then l is even, that is l = 0mod 2, and
(3) if α = (a1, b1)(a2, b2) · · · (al, bl) = (c1, d1)(c2, d2) · · · (cm, dm) then l = m mod 2.

Solution: To prove part (1), note that given α ∈ Sn we can write α as a product of cycles,
and we have

(a1, a2, · · · , al) = (a1, al)(a1, al−1) · · · (a1, a2) .

We shall prove part (2) by induction. First note that we cannot write e as a single
2-cycle, but we can write e as a product of two 2-cycles, for example e = (1, 2)(1, 2). Fix
l ≥ 3 and suppose, inductively, that for all k < l, if we can write e as a product of k
2-cycles the k must be even. Suppose that e can be written as a product of l 2-cycles, say
e = (a1, b1)(a2, b2) · · · (al, bl). Let a = a1. Of all the ways we can write e as a product of l
2-cycles, in the form e = (x1, y1)(x2, y2) · · · (xl, yl), with xi = a for some i, choose one way,
say e = (r1, s1)(r2, s2) · · · (rl, sl) with rm = a and ri, si 6= a for all i < m, with m being as
large as possible. Note that m 6= l since for α = (r1, s1) · · · (rl, sl) with rl = a and ri, si 6= a
for i < l we have α(sl) = a 6= sl and so α 6= e. Consider the product (rm, sm)(rm+1, sm+1).
This product must be (after possibly interchanging rm+1 and sm+1) of one of the forms

(a, b)(a, b) , (a, b)(a, c) , (a, b)(b, c) , (a, b)(c, d)

where a, b, c, d are distinct. Note that

(a, b)(a, c) = (a, c, b) = (b, c)(a, b),

(a, b)(b, c) = (a, b, c) = (b, c)(a, c), and

(a, b)(c, d) = (c, d)(a, b) ,

and so in each of these three cases we could rewrite e as a product of l 2-cycles with the
first occurrence of a being farther to the right, contradicting the fact that we chose m to
be as large as possible. Thus the product (rm, sm)(rm+1, sm+1) is of the form (a, b)(a, b).
By cancelling these two terms, we can write e as a product of (l − 2) 2-cycles. By the
induction hypothesis, (l − 2) is even, and so l is even.

Finally, to prove part (3), suppose that α = (a1, b1) · · · (al, bl) = (c1, d1) · · · (cm, dm).
Then we have

e = αα−1 = (a1, b1) · · · (al, bl)(cm, dm) · · · (c1, d1).

By part (2), l +m is even, and so l = m mod 2.

4.14 Definition: For n ≥ 2, a permutation α ∈ Sn is called even if it can be written as
a product of an even number of 2-cycles. Otherwise α can be written as a product of an
odd number of 2-cycles, and then it is called odd. We define the sign (or the parity) of
α ∈ Sn to be

(−1)α =

{
1 if α is even,

−1 if α is odd.

4.15 Note: Note that (−1)e = 1 and that for α, β ∈ Sn, we have (−1)αβ = (−1)α(−1)β

and (−1)α
−1

= (−1)α. Also note that when α is an l-cycle we have (−1)α = (−1)l−1

because (a1, a2, · · · , al) = (a1, a2)(a2, a3) · · · (al−1, al).
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Multilinear Maps

4.16 Notation: Let R be a commutative ring. For positive integers n1, n2, · · · , nk, let

k∏
i=1

Rni =
{

(u1, u2, · · · , uk)
∣∣each ui ∈ Rni

}
.

Note that

Mn×k(R) =
k∏
i=1

Rn =
{

(u1, u2, · · · , uk)
∣∣each ui ∈ Rn

}
.

4.17 Definition: For a map L :
k∏
i=1

Rni → Rm, we say that L is k-linear when for each

index j ∈ {1, 2, · · · , k} and for all ui, v, w ∈ Rnj and all t ∈ R we have

L(u1, · · · , uj−1, v + w, uj+1, · · · , un) = L(u1, · · · , uj−1, v, uj+1, · · · , un)

+ L(u1, · · · , uj−1, w, uj+1, · · · , un) , and

L(u1, · · · , uj−1, tv, uj+1, · · · , un) = t L(u1, · · · , uj−1, uj , uj+1, · · · , un).

For a k-linear map L : Mn×k(R) =
k∏
i=1

Rn → Rm we say that L is symmetric when for

each index j ∈ {1, 2, · · · , k − 1} and for all ui, v, w ∈ Rn we have

L(u1, · · · , uj−1, v, w, uj+2, · · · , un) = L(u1, · · · , uj−1, w, v, uj+2, · · · , un)

or equivalently when for every permutation σ ∈ Sk and all ui ∈ Rn we have

L(u1, u2, · · · , uk) = L(uσ(1), uσ(2), · · · , uσ(n)),

and we say that L is skew-symmetric when for each index j ∈ {1, 2, · · · , k − 1} and for
all ui, v, w ∈ Rn we have

L(u1, · · · , uj−1, v, w, uj+2, · · · , un) = −L(u1, · · · , uj−1, w, v, uj+2, · · · , un)

or equivalently when for every permutation σ ∈ Sk and all ui ∈ Rn we have

L(u1, u2, · · · , uk) = (−1)σL(uσ(1), uσ(2), · · · , uσ(n)),

and we say that L is alternating when for each index j ∈ {1, 2, · · · , k − 1} and for all
ui, v ∈ Rn we have

L(u1, · · · , uj−1, v, v, uj+2, · · · , un) = 0.

4.18 Example: As an exercise, show that for every matrix A ∈ Mm×n(R), the map
L : Rn × Rm → R given by L(x, y) = yTAx is 2-linear and, conversely, that given any
2-linear map L : Rn × Rm → R there exists a unique matrix A ∈ Mm×n(R) such that
L(x, y) = yTAx for all x ∈ Rn and y ∈ Rm.

4.19 Theorem: Let R be a commutative ring. Let L : Mn×k =
k∏
i=1

Rn → Rm be k-linear.

Then

(1) if L is alternating then L is skew-symmetric,
(2) if L is alternating then for all indices i, j ∈ {1, 2, · · · , k} with i < j and for all ui, v ∈ Rn
we have L(u1, · · · , ui−1, v, ui+1, · · · , uj−1, v, uj+1, · · · , un) = 0, and
(3) if 2 ∈ R∗ and L is skew-symmetric then L is alternating.
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Proof: To prove Part (1), we suppose that L is alternating. Then for j ∈ {1, 2, · · · , k − 1}
and ui, v, w ∈ Rn we have

0 = L(u1, · · · , uj−1, v + w, v + w, uj+2, · · · , un)

= L(u1, · · · , v, v, · · · , un) + L(u1, · · · , v, w, · · · , un)

+ L(u1, · · · , w, v, · · · , un) + L(u1, · · · , w, w, · · · , un)

= L(u1, · · · , v, w, · · · , un) + L(u1, · · · , w, v, · · · , un)

and so L(u1, · · · , v, w, · · · , un) = −L(u1, · · · , w, v, · · · , un), hence L is skew-symmetric.

To prove Part (2) we again suppose that L is alternating. Then, as shown immediately
above, L is also skew-symmetric and so for indices i, j ∈ {1, 2, · · · , k} with i < j and for
ui, v ∈ Rn, in the case that j > i+ 1 we have

L(u1, · · · , ui−1,v, w, ui+2, · · · , uj−1, v, uj+1, · · · , un)

= −L(u1, · · · , ui−1, v, v, ui+2, · · · , uj−1, w, uj+1 · · · , un) = 0.

Finally, to prove Part (3), suppose that 2 ∈ R∗ and that L is skew-symmetric. Then
for an index j ∈ {1, 2, · · · , k − 1} and for ui, v ∈ Rn we have

L(u1, · · · , uj−1, v, v, uj+2, · · · , un) = −L(u1, · · · , uj−1, v, v, uj+2, · · · , un)

and so 2L(u1, · · · , uj−1, v, v, uj+2, · · · , un) = 0. Since 2 ∈ R∗ we can multiply both sides
by 2−1 to get L(u1, · · · , uj−1, v, v, uj+2, · · · , uk) = 0.

4.20 Theorem: Let R be a commutative ring. Given c ∈ R there exists a unique

alternating n-linear map L : Mn(R) =
n∏
i=1

Rn → R such that L(I) = L(e1, e2, · · · , en) = c.

This unique map L is given by

L(A) = c ·
∑
σ∈Sn

(−1)σAσ(1),1Aσ(2),2 · · ·Aσ(n),n , that is

L(u1, u2, · · · , un) = c ·
∑
σ∈Sn

(−1)σ(u1)σ(1)(u2)σ(2) · · · (un)σ(n).

Proof: First we prove uniqueness. Suppose that L : Mn(R) =
n∏
i=1

Rn → R is alternating

and n-linear with L(I) = c. Then for all ui ∈ Rn we have

L(u1, u2, · · · , un) = L
( n∑
i1=1

(u1)i1ei1 ,
n∑

i2=1

(u2)i2ei2 , · · · ,
n∑

in=1

(un)inein

)
=

n∑
i1,i2,···,in=1

(u1)i1(u2)i2 · · · (un)inL(ei1 , ei2 , · · · , ein).

Note that because L is alternating, whenever we have eij = eik for some j 6= k, we
obtain L(ei1 , ei2 , · · · , ein) = 0, and so the only nonzero terms in the above sum occur when
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i1, i2, · · · , in are distinct, so there is a permutation σ ∈ Sn with ij = σ(j) for all j. Thus

L(u1, u2, · · · , un) =
∑
σ∈Sn

(u1)σ(1)(u2)σ(2) · · · (un)σ(n)L(eσ(1), eσ(2), · · · , eσ(n))

=
∑
σ∈Sn

(u1)σ(1)(u2)σ(2) · · · (un)σ(n)(−1)σL(e1, e2, · · · , en)

= c ·
∑
σ∈Sn

(−1)σ(u1)σ(1)(u2)σ(2) · · · (un)σ(n)

This proves that there is a unique such map L and that it is given by the required formula.

To prove existence, it suffices to show that the map L : Mn(R) =
n∏
i=1

Rn → R given

by the formula

L(u1, u2, · · · , un) = c ·
∑
σ∈Sn

(−1)σ(u1)σ(1)(u2)σ(2) · · · (un)σ(n).

is n-linear and alternating with L(I) = c. Note that this map L is n-linear because

L(u1, · · · , v + w, · · · , un) = c ·
∑
σ∈Sn

(−1)σ(u1)σ(1) · · · (v + w)σ(j), · · · (un)σ(n)

= c ·
∑
σ∈Sn

(−1)σ(u1)σ(1) · · · vσ(j) · · · (un)σ(n) + c
∑
σ∈Sn

(−1)σ(u1)σ(1) · · ·wσ(j) · · · (un)σ(n)

= L(u1, · · · , v, · · · , un) + L(u1, · · · , w, · · · , un)

and similarly L(u1, · · · , tv, · · · , un) = t L(u1, · · · , v, · · · , un).
Note that L is alternating because, given indices i, j ∈ {1, 2, · · · , n} with i < j, when

ui = uj = v we have

L(u1, · · · ,v, · · · , v, · · · , un) = c ·
∑
σ∈Sn

(−1)σ(u1)σ(1) · · · vσ(i) · · · vσ(j) · · · (un)σ(n)

= c ·
∑

σ∈Sn,σ(i)<σ(j)

(−1)σ(u1)σ(1) · · · vσ(i) · · · vσ(j) · · · (un)σ(n)

+ c ·
∑

τ∈Sn,τ(i)>τ(j)

(−1)τ (u1)τ(1) · · · vτ(i) · · · vτ(j) · · · (un)τ(n).

This is equal to 0 because the term in the first sum labeled by σ ∈ Sn with σ(i) < σ(j) can
be paired with the term in the second sum labeled by τ = σ(i, j) (where σ(i, j) denotes
the composite of σ with the 2-cycle (i, j)), and then the sum of the two terms in each pair
is equal to 0 because (−1)τ = −(−1)σ.

Finally note that

L(e1, e2, · · · , en) = c ·
∑
σ∈Sn

(−1)σ(e1)σ(1)(e2)σ(2) · · · (en)σ(n)

= c ·
∑
σ∈Sn

(−1)σδ1,σ(1)δ2,σ(2) · · · δn,σ(n) = c

because the only nonzero term in the sum occurs when σ = e.
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The Determinant

4.21 Definition: Let R be a commutative ring. The unique alternating n-linear map
det : Mn(R) → R with det(I) = 1 is called the determinant map. For A ∈ Mn(R), the
determinant of A, denoted by |A| or by det(A), is given by

|A| = det(A) =
∑
σ∈Sn

(−1)σAσ(1),1Aσ(2),2 · · ·Aσ(n),n.

4.22 Example: As an exercise, find an explicit formula for the determinant of a 2 × 2
matrix and for the determinant of a 3× 3 matrix.

4.23 Note: Given c ∈ R, according to the above theorem, the unique alternating n-linear
map L : Mn(R)→ R with L(I) = c is given by L(A) = c |A|.
4.24 Theorem: Let R be a commutative ring and let A,B ∈Mn(R). Then

(1) |AT | = |A|, and
(2) |AB| = |A| |B|.
Proof: To prove Part (1) note that

|A| =
∑
σ∈Sn

(−1)σAσ(1),1Aσ(2),2 · · ·Aσ(n),n

=
∑
σ∈Sn

(−1)σA1,σ−1(1)A2,σ−1(2) · · ·An,σ−1(n)

=
∑
τ∈Sn

(−1)τA1,τ(1)A2,τ(2) · · ·An,τ(n)

=
∑
τ∈Sn

(−1)τ (AT )τ(1),1(AT )τ(2),2 · · · (AT )τ(n),n = |AT |.

To prove Part (2), fix a matrix A ∈ Mn(R) and define L : Mr(R) → R by L(B) = |AB|.
Note that L is n-linear because

L(u1, · · · , v + w, · · · , un) =
∣∣A(u1, · · · , v + w, · · · , un)

∣∣
=
∣∣(Au1, · · · , A(v + w), · · · , Aun)

∣∣
=
∣∣(Au1, · · · , Av +Aw, · · · , Aun)

∣∣
=
∣∣(Au1, · · · , Av, · · · , Aun)

∣∣+
∣∣(Au1, · · · , Aw, · · · , Aun)

∣∣
=
∣∣A(u1, · · · , v, · · · , un)

∣∣+
∣∣A(u1, · · · , w, · · · , un)

∣∣
= L(u1, · · · , v, · · · , un) + L(u1, · · · , w, · · · , un).

and similarly L(u1, · · · , tv, · · · , un) = t L(u1, · · · , v, · · · , un). Note that L is alternating
because

L(u1, · · · , v, v, · · · , un) =
∣∣A(u1, · · · , v, v, · · · , un)

∣∣
=
∣∣(Au1, · · · , Av,Av, · · · , Aun)

∣∣ = 0.

Note that L(I) =
∣∣AI∣∣ = |A|. Thus, by Theorem 4.20 (see Note 4.23) it follows that

L(B) = L(I)|B| = |A| |A|.
4.25 Definition: Let R be a commutative ring and let A ∈ Mn(R). We say that A is
upper triangular when Aj,k = 0 for all j > k, and we say that A is lower-triangular
when Aj,k = 0 for all j < k.
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4.26 Theorem: Let R be a commutative ring and let A,B ∈Mn(R).

(1) If B is obtained from A by performing an elementary column operation then |B| is
obtained from |A| as follows.
(a) if we use Ck ↔ Cl with k 6= l then |B| = −|A|,
(b) if we use Ck 7→ t Ck with t ∈ R then |B| = t |A|, and
(c) if we use Ck 7→ Ck + tCl with t ∈ R and k 6= l then |B| = |A|.
The same rules apply when B is obtained from A using an elementary row operation.

(2) If A is either upper-triangular or lower-triangular then |A| =
n∏
i=1

Ai,i.

Proof: If B is obtained from A using the column operation Ck ↔ Cl with k 6= l then
|B| = −|A| because the determinant map is skew-symmetric. If B is obtained from A
using Ck 7→ t Ck with t ∈ R then |B| = t|A| because the determinant map is linear.
Suppose B is obtained from A using Ck 7→ Ck + t Cl where t ∈ R and k 6= l. Write
A = (u1, u2 · · · , un) with each ui ∈ Rn. Then since the determinant map is n-linear and
alternating we have

|B| =
∣∣(u1, · · · , uk + tul, · · · , ul, · · · , un)

∣∣
=
∣∣(u1, · · · , uk, · · · , ul, · · · , un)

∣∣+ t
∣∣(u1, · · · , ul, · · · , ul, · · · , un)

∣∣
= |A|+ t · 0 = |A|.

This proves Part (1) in the case of column operations. The same rules apply when using
row operations because |AT | = |A|.

To prove Part (2), suppose that A is upper-triangular (the case that A is lower-
triangular is similar). We claim that for every σ ∈ Sn with σ 6= e we have σ(i) > i,
hence Aσ(i),i = 0, for some i ∈ {1, 2, · · · , n}. Suppose, for a contradiction, that σ 6= e and
σ(i) ≤ i for all indices i. Let k be the largest index for which σ(k) < k. Then we have
σ(i) = i > k for all i > k and σ(k) < k and σ(i) ≤ i < k for all i < k. This implies that
there is no index i for which σ(i) = k, but this is not possible since σ is surjective. This

proves the claim. Thus |A| =
∑
σ∈Sn

(−1)σAσ(1),1Aσ(2),2 · · ·Aσ(n),n =
n∏
i=1

Ai,i because the

only nonzero term in the above sum occurs when σ = e.

4.27 Example: The above theorem gives us a method that we can use to calculate
determinants. For example, using only row operations of the form Rk → Rk+ tRl we have∣∣∣∣∣∣∣

1 3 2 4
2 4 1 2
3 5 4 1
1 1 5 3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 3 2 4
0 −2 −3 −6
0 −4 −2 −11
0 −2 3 −1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 3 2 4
0 2 −1 5
0 −4 −2 −11
0 −2 3 −1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 3 2 4
0 2 −1 5
0 0 −4 −1
0 0 2 4

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 3 2 4
0 2 −1 1
0 0 2 11
0 0 2 4

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 3 2 4
0 2 −1 5
0 0 2 11
0 0 0 −7

∣∣∣∣∣∣∣ = −28.

4.28 Definition: Let R be a commutative ring and let A ∈Mn(R) with n ≥ 2. We write
A(j,k) to denote the (n − 1) × (n − 1) matrix which is obtained by removing the jth row
and the kth column of A. The cofactor matrix of A is the matrix Cof(A) ∈Mn(R) with
entries

Cof(A)k,l = (−1)k+l
∣∣A(l,k).
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4.29 Theorem: Let R be a commutative ring and let A ∈Mn(R) with n ≥ 2.

(1) For each k ∈ {1, 2, · · · , n} we have

|A| =
n∑
j=1

(−1)j+kAj,k
∣∣A(j,k)

∣∣ =
n∑
j=1

(−1)k+jAk, j
∣∣A(k, j)

∣∣.
(2) We have

A · Cof(A) = |A| · I = Cof(A) ·A.

(3) A is invertible in Mn(R) if and only if |A| is invertible in R, and in this case we have
|A−1| = |A|−1 and

A−1 = 1
|A|Cof(A).

(4) If A is invertible then the unique solution to the equation Ax = b is the element x ∈ Rn
with entries

xk =
|Bk|
|A|

where Bk is the matrix obtained by replacing the kth column of A by b.

Proof: We have

|A| =
∑
σ∈Sn

(−1)σAσ(1),1Aσ(2),2 · · ·Aσ(n),n

=
n∑
j=1

∑
σ∈Sn,σ(k)=j

(−1)σAσ(1),1 · · ·Aσ(k−1),k−1Aj,kAσ(k+1),k+1 · · ·Aσ(n),n

=

n∑
j=1

Aj,k
∑

σ∈Sn,σ(k)=j

(−1)σA(j,k)
τ(1),1 · · ·A(j,k)

τ(k−1),k−1A
(j,k)

τ(k),k · · ·A(j,k)
τ(k−1),k−1

where τ = τ(σ) ∈ Sn−1 is the permutation defined as follows:

if i < k τ(i) =

{
σ(i) if σ(i) < j,

σ(i)− 1 if σ(i) > j,
and if i > k τ(i− 1) =

{
σ(i) if σ(i) < j,

σ(i)− 1 if σ(i) > j,

or equivalently, τ is the composite

τ = (n, n− 1, · · · , j + 1, j)σ (k, k + 1, · · · , n− 1, n).

Note that (−1)τ = (−1)n−j(−1)σ(−1)n−k and so we have (−1)σ = (−1)j+k(−1)τ . Thus

|A| =
n∑
j=1

Aj,k
∑

τ∈Sn−1

(−1)j+k(−1)τA(j,k)
τ(1),1 · · ·A(j,k)

τ(n−1),n−1

=

n∑
j=1

(−1)j+kAj,k
∣∣A(j,k)

∣∣.
The proof that |A| =

n∑
j=1

(−1)k+jAk,j
∣∣A(k,j)

∣∣ is similar (or it follows from the formula

|AT | = |A|). This completes the proof of Part (1).
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To prove Part (2) we note that(
Cof(A) ·A

)
k,l

=
n∑
j=1

Cof(A)k,jAj,l =
n∑
j=1

(−i)k+jAj,l
∣∣A(j,k)

∣∣.
By Part (1), the sum on the right is equal to the determinant of the matrix B(k,l) ∈Mn(R)
which is obtained from A by replacing the kth column of A by a copy of its lth column.
Since B(k,l) is equal to A when k = l, and B(k,l) has two equal columns when k 6= l we
have (

Cof(A) ·A
)
k,l

=
∣∣B(k,l)

∣∣ =

{
|A| if k = l,

0 if k 6= l

}
= |A| · δk,l.

This proves that Cof(A) ·A = |A| · I. A similar proof shows that A · Cof(A) = |A| · I.
If A is invertible in Mn(R), then we have |A| |A−1| = |A ·A−1| = |I| = 1 and similarly

|A−1| |A| = 1 and so |A| and |A−1| are invertible in R with |A−1| = |A|. Conversely, the
formulas in Part (2) show that if |A| is invertible in R then A is invertible in Mn(R) with
A−1 = 1

|A| Cof(A). This proves Part (3).

Part (4) now follows from Parts (1) and (3). Indeed if A is invertible then the solution
to Ax = b is given by x = A−1b and so

xk =
(
A−1b

)
k

= 1
|A|
(
Cof(A) b

)
k

= 1
|A|

n∑
j=1

Cof(A)k,jbj

= 1
|A|

n∑
j=1

(−1)k+jbj
∣∣A(j,k)

∣∣ = 1
|A| |Bk|

where Bk is the matrix obtained by replacing the kth column of A by b.

4.30 Definition: For a matrix A ∈ Mn(R), the first of the two sums in Part (1) of the
above theorem is called the cofactor expansion of |A| along the kth column of A, and
the second sum is called the cofactor expansion of |A| along the kth row of A.

4.31 Example: Using row operations of the form Rk 7→ Rk + tRl, together with cofactor
expansions along various columns, we have∣∣∣∣∣∣∣∣∣

2 1 3 4 2
5 2 4 3 1
1 0 2 3 1
2 0 1 2 0
4 3 5 6 2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
2 1 3 4 2
1 0 −2 −5 −3
1 0 2 3 1
2 0 1 2 0
−2 0 −4 −6 −4

∣∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
1 −2 −5 −3
1 2 3 1
2 1 2 0
−2 −4 −6 −4

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
4 4 4 0
1 2 3 1
2 1 2 0
2 4 6 0

∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣
4 4 4
2 1 2
2 4 6

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
−4 0 −4

2 1 2
−6 0 −2

∣∣∣∣∣∣ = −
∣∣∣∣−4 −4
−6 −2

∣∣∣∣ = −
∣∣∣∣ 8 0
−6 −2

∣∣∣∣ = 16.

4.32 Example: From the formula in Part (2), if ad− bc 6= 0 then we have(
a b
c d

)−1
=

1

ad− bc

(
d b
−c a

)
.

As an exercise, find a similar formula for the inverse of a 3× 3 matrix.
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