MATH 146 Linear Algebra 1, Lecture Notes by Stephen New

Chapter 4. Determinants

Permutations

4.1 Definition: A group is a set G together with an element e € GG, called the identity
element, and a binary operation * : G X G — G, where for a,b € G we write *(a,b) as a*b
or often simply as ab, such that

(1) * is associative: (ab)c = a(bc) for all a,b,c € G,

(2) e is an identity: ae = a = ea for all a € G, and

(3) every a € G has an inverse: for every a € G there exists b € G with ab = e = ba.

A group G is called abelian when

(4) * is commutative: ab = ba for all a,b € G.

4.2 Note: Let G be a group. Note that the identity element e € GG is the unique element
that satisfies Axiom (2) in the above definition because if u € G has the property that
ua = a = au for all a € G, then in the case that a = e we obtain e = ue = e. Also note
given a € G the element b which satisfies Axiom (3) above is unique because if ab = e and
ca = e then we have b = eb = (ca)b = c(ab) = ce = e.

4.3 Definition: Let G be a group. Given a € G, the unique element b € G such that
ab = e = ba is called the inverse of a and is denoted by a~! (unless the operation in G
is addition denoted by 4+, in which case the inverse of a is also called the negative of a
and is denoted by —a). We write a’ = e and for k € Z* we write a* = aa---a (where the
product involves k copies of a) and a=* = (a*)~ 1.

4.4 Note: In a group G, we have the cancellation property: for all a,b,c € G, if ab = ac
(or if ca = ba) then b = c. Indeed, if ab = ac then

b=ceb=(a"ta)b=a"1(ab) = a (ac) = (¢ 'a)c = ec = c.

4.5 Example: If R is a ring under addition and multiplication then R is also an abelian
group under addition. The identity element is 0 and the inverse of a € R is —a. For
example Z,, Z, Q, R and C are all abelian groups under addition.

4.6 Example: If R is a ring under addition and multiplication then the set

R*={ac R‘a is invertible}
is a group under multiplication. The identity element is 1 and the inverse of a € R is a™*'.
For example Z* = {1,—1}, Q* = Q\ {0}, R* =R\ {0} and C* = C\ {0} are all abelian
groups under multiplication. For n € Z™, the group of units modulo n is the group

Up=12," = {a € Zy,| ged(a,n) = 1}.

The group of units U,, is an abelian group under multiplication modulo n. When R is a
ring (usually commutative), the general linear group GL,(R) is the group

GL,(R) = {A € M,(R)|A is invertible}.

When n > 2, the general linear group GL, (R) is a non-abelian group under matrix mul-
tiplication.



4.7 Definition: Let X be a set. The group of permutations of X is the group
Perm (X) = {f : X — X|f is bijective}

under composition. The identity element is the identity map I : X — X given by I(z) = =
for all x € X. For n € Z*, the n'® symmetric group is the group

Sn = Perm ({1, 2, ,n})
4.8 Definition: When aq,as, -, a; are distinct elements in {1,2,---,n} we write
a=(ay,as, -, a)
for the permutation o € S,, given by
alay) =as , alaz) =az, -+, alaj—1) =a; , ala) = ay
a(k) =k for all k ¢ {a1,az2, -, a;}.
Such a permutation is called a cycle of length [ or an [-cycle.

4.9 Note: We make several remarks.

(1) We have e = (1) = (2) = --- = (n).

(2) We have (a1,a9,---,a;) = (az,as, -, a;,a1) = (ag,aq, - ,a;,a1,a2) = - - -

(3) An [-cycle with | > 2 can be expressed uniquely in the form a = (a1, a2, -, a;) with
ay = min{ay,asg, -, a;}.

(4) If a = (a1,az2, -+,a;) then a=! = (aj,a;_1,- -+, a2,a1) = (a1, a,- -, a3, as).

(5) If n > 3 then we have (12)(23) = (123) and (23)(12) = (132) so S, is not abelian.
4.10 Definition: In S, given cycles o; with o = (a;1,ai2, -+, a;,,), we say that the
cycles «; are disjoint when all the elements a; ; € {1,2,---,n} are distinct.

4.11 Theorem: (Cycle Notation) Every o € S,, can be written as a product of disjoint
cycles. Indeed every o # e can be written uniquely in the form

a=(a1,1, a1 )(az1, 5 020,)  (@m1, A,
with m > 1, each l; > 2, the elements a; ; all distinct, each a;; = min{a; 1,a;2, -, a1, }
and ar1 <agy < - < Qm,1-
Proof: Let e # a € S, where n > 2. To write « in the given form, we must take
a1 to be the smallest element k£ € {1,2,---,n} with a(k) # k. Then we must have
a12 = a(a11), a13 = a(ar2) = a?(a1,1), and so on. Eventually we must reach [; such that

a1 = a'(ay 1), indeed since {1,2,---,n} is finite, eventually we find a‘(a; 1) = o (a1,1)
for some 1 < 4 < j and then a1 = a *a’(a11) = a ‘al(ar1) = a?/~*(ay1). For the
smallest such {; the elements a; 1, -+, a1, will be disjoint since if we had a;; = a1 ; for
some 1 < i < j <l then, as above, we would have o/ ~*(a;1) = aj; with 1 < j —i < I;.
This gives us the first cycle oy = (a1,1,a1,2,- -+, a11,)-

If we have o = a; we are done. Otherwise there must be some k € {1,2,---,n} with
k ¢ {ai1,a12,---,a1,, } such that a(k) # k, and we must choose az,; to be the smallest
such k. As above we obtain the second cycle as = (a2,1,a2.2, -, a2,,). Note that as must
be disjoint from a; because if we had a’(az 1) = a’(ay,1) for some i, j then we would have
ag1 = a_io/(ag,l) = a_iaj(am) = ozj_i(alyl) S {a171, s al’ll}.

At this stage, if & = ajas we are done, and otherwise we continue the procedure.

4.12 Definition: When a permutation e # «a € S, is written in the unique form of the
above theorem, we say that « is written in cycle notation. We usually write e as e = (1).



4.13 Theorem: (Even and Odd Permutations) In S,,, with n > 2,

(1) every a € S,, is a product of 2-cycles,
(2) if e = (a1,b1)(az,b2) -+ - (ar,b;) then [ is even, that is | = Omod 2, and
(3) if « = (a1,b1)(ag,b2) -+~ (a;,b;) = (c1,d1)(c2,d2) -+ - (¢m, d,) then I = m mod 2.

Solution: To prove part (1), note that given o € S,, we can write a as a product of cycles,
and we have

(a17a27 e ,CLZ) = (alaal)(aJ?al—l) e (a17a2) .

We shall prove part (2) by induction. First note that we cannot write e as a single
2-cycle, but we can write e as a product of two 2-cycles, for example e = (1,2)(1,2). Fix
[ > 3 and suppose, inductively, that for all £ < [, if we can write e as a product of k
2-cycles the k£ must be even. Suppose that e can be written as a product of [ 2-cycles, say
e = (a1,b1)(ag,bs) - (a;,b). Let a = ay. Of all the ways we can write e as a product of [
2-cycles, in the form e = (z1,y1)(x2,y2) - - - (21, y1), with x; = a for some i, choose one way,
say e = (11,81)(r2,82) - -+ (r1, 8;) with r,,, = a and r;, s; # a for all ¢ < m, with m being as
large as possible. Note that m # [ since for o = (r1,$1) -+~ (ry, 8;) with r; = a and r;, s; # a
for i < 1 we have a(s;) = a # s; and so « # e. Consider the product (7, $m) (Tm+1, Smt1)-
This product must be (after possibly interchanging 7,1 and s,,+1) of one of the forms

(a,b)(a,b) , (a,b)(a,c), (a,b)(b,c), (a,b)(c,d)

where a, b, ¢, d are distinct. Note that

(a,b)(a,c) = (a,e,b) = (
(a,b)(b,c) = (a,b,c) = (
(CL, b) (07 d) - (C7 d) (a7 b) >

and so in each of these three cases we could rewrite e as a product of [ 2-cycles with the
first occurrence of a being farther to the right, contradicting the fact that we chose m to
be as large as possible. Thus the product (74, $m)(Tm+1, Sm+1) is of the form (a,b)(a,b).
By cancelling these two terms, we can write e as a product of (I —2) 2-cycles. By the
induction hypothesis, (I — 2) is even, and so [ is even.

Finally, to prove part (3), suppose that a = (a1,b1) - (a;, b)) = (c1,d1) -+ (Cm, dim)-
Then we have

»¢)(a,b),

b
b,c)(a,c), and

e=aat = (a1,b1) - (a;,0)(Cm,dm) - - - (c1,dy).
By part (2), [ +m is even, and so [ = m mod 2.

4.14 Definition: For n > 2, a permutation a € S,, is called even if it can be written as
a product of an even number of 2-cycles. Otherwise o can be written as a product of an
odd number of 2-cycles, and then it is called odd. We define the sign (or the parity) of
a €S, to be

(1) =

1 if « is even,
—1if « is odd.

4.15 Note: Note that (—1)¢ = 1 and that for a, 8 € S,,, we have (—1)* = (=1)¥(—1)"
and (—1)0‘71 = (—1)®. Also note that when « is an [-cycle we have (—1)% = (—1)!7!
because (ay,as,---,a;) = (a1,a2)(az,a3) - (a;_1, ap).



Multilinear Maps

4.16 Notation: Let R be a commutative ring. For positive integers ny,ns,---,ng, let
k
HR"i = {(ul,uQ, _ ,uk)‘each u; € R”}
i=1

Note that .

M, «k(R) = HR" = {(ul,uQ, e ,uk)’each u; € R"}.

=1

k
4.17 Definition: For a map L: [[ R™ — R™, we say that L is k-linear when for each
i=1
index j € {1,2,---,k} and for all u;,v,w € R™ and all £ € R we have

L(uy, - uj_1,0+w, Ujq1, 5 Up) = L(ur, -+, Uj—1,0,Ujq1, -+, Up)
+L(Ula oy Uj—1, W, U410 ",Un) ’ and
L(uh s ,uj,l,tv,ujJrl, R ,un) = tL(Ul, s ,uj,l,uj,uj+1, s ,un).

For a k-linear map L : M, «i(R) = ﬁ R" — R™ we say that L is symmetric when for
each index j € {1,2,---,k — 1} and Zfzrl all u;,v,w € R™ we have
L(uy, -, uj_1,0, W, Ujq2, -+, Up) = L(ug, -+, uj_1, W, 0, Ujyo, -+, Up)
or equivalently when for every permutation o € S, and all u; € R™ we have
L(uy,ug, -+ ugp) = L(Ug(1), Ue(2), " * 5 Uo(n))

and we say that L is skew-symmetric when for each index j € {1,2,---,k — 1} and for
all u;,v,w € R™ we have

L(Ul, U1, U, W, Ujy2, ,Un) = - L(Ul, o, Uj—1, W, UV, Ujg, s 7un)
or equivalently when for every permutation o € S and all u; € R™ we have
L(uh Uz, -+ ;uk) = (_1)UL(U'0(1)7 Ug(2)y " ° 7ua(n)),

and we say that L is alternating when for each index j € {1,2,---,k — 1} and for all
u;, v € R™ we have

L(uy, -+, uj_1,0,0, U542, -, up) = 0.
4.18 Example: As an exercise, show that for every matrix A € M,,x,(R), the map
L : R"x R™ — R given by L(z,y) = yTAx is 2-linear and, conversely, that given any
2-linear map L : R" x R™ — R there exists a unique matrix A € M,,x,(R) such that
L(z,y) = yTAx for all z € R™ and y € R™.

k
4.19 Theorem: Let R be a commutative ring. Let L : M, x; = [[ R™ — R™ be k-linear.
i=1
Then

(1) if L is alternating then L is skew-symmetric,

(2) if L is alternating then for all indices i,j € {1,2,---,k} withi < j and for all u;,v € R"
we have L(u1, -+, Ui—1,0, Uig1, ", Uj—1,V, Uj1, "+, Up) =0, and

(3) if 2 € R* and L is skew-symmetric then L is alternating.

4



Proof: To prove Part (1), we suppose that L is alternating. Then for j € {1,2,---,k — 1}
and u;,v,w € R"™ we have

0:L(ulu'"7uj—1av+wav+w7uj+27”'7un)
:L(ul,---,v,v,~~~,un)—|—L(u1,-~~,v,w,---,un)
+L(u17...7w"v’...,un)_i_L(ul,...,w,w,...’un)
:L(ul,---,’u,w,---,un)—|—L(u1,---,w,v,---,un)
and so L(uy,---,v,w, -+, uy,) = — L(uy, -+, w,v, -+, u,), hence L is skew-symmetric.

To prove Part (2) we again suppose that L is alternating. Then, as shown immediately
above, L is also skew-symmetric and so for indices 4,7 € {1,2,---,k} with ¢ < j and for
u;, v € R", in the case that j > i+ 1 we have

L(ula oy U1,V Wy Ug42, 7y Uj—1, Uy Ujp1, - 0 7un)

= _L(ula iy Ui—1, U, U, U2, 0 Uj—1, W, Uj41 0 7un) =0.

Finally, to prove Part (3), suppose that 2 € R* and that L is skew-symmetric. Then
for an index j € {1,2,---,k — 1} and for u;,v € R™ we have

L(Ul,'",Uj_l,’U,’U,Uj+2,"',Un) = —L(Ul,"',Uj_l,U,U,Uj+2,"',un)
and so 2 L(uq,- -+, uj—1,0,0,Uj42, -, uy) = 0. Since 2 € R* we can multiply both sides
by 271 to get L(uy, -, uj—1,0,0,uj42, -, u) = 0.

4.20 Theorem: Let R be a commutative ring. Given ¢ € R there exists a unique
n
alternating n-linear map L : M, (R) = [[ R™ — R such that L(I) = L(ey,e3,---,e,) = c.
i=1
This unique map L is given by

L(A)=c- Z (—1)7 Ay1)1Av(2) 2 Ag(nym » that is

gES,
L(u17u27 to 7un) =cC: Z (_1)U(u1)a(1) (u2)a'(2) T (un)a'(’n)
ocES,
Proof: First we prove uniqueness. Suppose that L : M,(R) = [[ R™ — R is alternating
i=1

and n-linear with L(I) = ¢. Then for all u; € R™ we have

L(uy,ug, - uy) = L( i (u1)i, €4, i (U2)in€in s "y i (un)inein>

i1:1 12:1 ’L'n:1
n

= Y ()i (un)iy o ()i, Lleny e e,

i17i27“'5in:1

Note that because L is alternating, whenever we have e;; = e;, for some j # k, we
obtain L(e;,,€;,, -+, e;, ) = 0, and so the only nonzero terms in the above sum occur when
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i1,1%2,- -, i, are distinct, so there is a permutation o € S,, with i; = o(j) for all j. Thus

Luy,ug, -+, uy) = Z (u1)o(1)(U2)o(2) - - (Un) o) L(€a(1), €5(2)s " * 7 s €a(n))

oES,
= Z (u1)a(1)(U2)a(2) T (un)a(n)(_l)UL(ela €2, €n)
oES,
=c- Z (=1)7(u1) o) (U2) ) -+ (Un)o(n)
oeS,

This proves that there is a unique such map L and that it is given by the required formula.
n

To prove existence, it suffices to show that the map L : M,,(R) = [[ R™ — R given
i=1
by the formula

L{uy,ug, -+ un) = ¢+ > (=1)7(u1)o@)(U2)o@) - (Un)o(n)-
cES,

is n-linear and alternating with L(I) = c¢. Note that this map L is n-linear because

L('U/l, S —+ w, - ,un) =c- Z (_1)G(U1)a(l) e ('U -+ w)o_(]), e (un)o_(n)
oES,

=c Z “(u1)o(1) Vo gy (Un)om) +¢ Z T(u1)e(1)  Wo(j) -+ (Un)o(n)
oES oES,
:L(u17...71}7...,un)+L(u17...’w7...7un)
and similarly L(uy, -« tv, -« up) =t L(ug, -, 0, Uy).
Note that L is alternating because, given indices ¢,j € {1,2,---,n} with i < j, when
u; = uj = v we have

Ly, 0,0, uy) = - Z (—1)7(u1)o(1) - Vo(i) = Vo(j) - - (Un)o(n)
oES,

—c- Z (=1)7(u1)o(1) " Vori) " Vo(j) - (Un)eo(m)
€Sy, 0(i)<a(j)

tes D (P ()ry vty ey () e
TESH,T(3)>7(j)

This is equal to 0 because the term in the first sum labeled by o € S,, with (i) < o(j) can
be paired with the term in the second sum labeled by 7 = o(i,7) (where o(i,j) denotes
the composite of o with the 2-cycle (7, j)), and then the sum of the two terms in each pair

is equal to 0 because (—1)" = —(—1)7.
Finally note that

L(ey,ez,---,e,) =c- Z (=D (e1)sy(€2)o2) - - (en)om)
oES,

=c- Z (=1)701 6(1)02,0(2) " * * Onyo(n) = C

oES,

because the only nonzero term in the sum occurs when o = e.



The Determinant

4.21 Definition: Let R be a commutative ring. The unique alternating n-linear map
det : M,,(R) — R with det(]) = 1 is called the determinant map. For A € M, (R), the
determinant of A, denoted by |A| or by det(A), is given by

Al = det(A) = Y (=1)7Ag1)140(2)2 " Ao(n)n-
o€S,

4.22 Example: As an exercise, find an explicit formula for the determinant of a 2 x 2
matrix and for the determinant of a 3 x 3 matrix.

4.23 Note: Given ¢ € R, according to the above theorem, the unique alternating n-linear
map L : M, (R) — R with L(I) = cis given by L(A) = c|A]|.

4.24 Theorem: Let R be a commutative ring and let A, B € M, (R). Then

(1) |AT] = |A], and

(2) [AB| = |A][B.

Proof: To prove Part (1) note that

|A| = Z (—1)7 Apy140(2)2 - Astm)m
oceSy

= Z (_1)0141,0*1(1)142,0*1(2) to An,afl(n)
ocES,

= Z ()" A1) A2r@2)  Anr(n)
TESK

= Z (_1)T(AT)T(1),1(AT)T(2),2 e (AT)T(n),n = |AT|

TES,

To prove Part (2), fix a matrix A € M,,(R) and define L : M,.(R) — R by L(B) = |AB|.
Note that L is n-linear because

A(uly...’?}_{_w’...?un)‘
(Au1,~-~,A(U+w)7--~,Aun)’
(Aul,---,Av—i—Aw,---,Aun)}
(Aul,---,Av,---,Aun)‘—|—|(Au1,---,Aw,---,Aun)‘
A(U1,~~~,v7---,un)}+]A(U1,~~~,w,---,un)|

L(ul,---,v—i—w,---,un):

:L(u17...,fl)’...7un)+L(u17...,w7...’un)_

and similarly L(uy,---,tv, -+, up,) = t L(u1,---,v,---,u,). Note that L is alternating
because
L(U]_,"‘,U,'U,"',un): |A(u1,...7v’v’...7un>‘
= |(Au1,---,Av,Av,---,Aun)‘ =0.

Note that L(I) = |AI| = |A|. Thus, by Theorem 4.20 (see Note 4.23) it follows that
L(B) = L(I)|B| = |] |4,
4.25 Definition: Let R be a commutative ring and let A € M,,(R). We say that A is

upper triangular when A;; = 0 for all j > k, and we say that A is lower-triangular
when A;, =0 for all j < k.



4.26 Theorem: Let R be a commutative ring and let A, B € M, (R).

(1) If B is obtained from A by performing an elementary column operation then |B| is
obtained from |A| as follows.

(a) if we use Cy <> C; with k # | then |B| = —|A]|,

(b) if we use Cy +— t Cy, with t € R then |B| =t |A|, and

(c) if we use Cy, +— Cy +tCy witht € R and k # | then |B| = |A|.

The same rules apply when B is obtained from A using an elementary row operation.
n

(2) If A is either upper-triangular or lower-triangular then |A| = [] Ai..
i=1

Proof: If B is obtained from A using the column operation C} <> C; with k # [ then
|B| = —|A| because the determinant map is skew-symmetric. If B is obtained from A
using C +— tC} with t € R then |B| = t|A| because the determinant map is linear.
Suppose B is obtained from A using Cp — Cjp + tC; where t € R and k # [. Write
A = (u1,ug -+, uy) with each u; € R™. Then since the determinant map is n-linear and
alternating we have

|B|: ‘(ulv...juk+tul’...’ul,...’un)|
- ‘(’U,l,'",Uk,"','l,tl,"',un)‘+t|(U1,"‘,Ul,"',Ul,"‘,un)‘
— A +t-0=|A|

This proves Part (1) in the case of column operations. The same rules apply when using
row operations because |AT| = |A|.

To prove Part (2), suppose that A is upper-triangular (the case that A is lower-
triangular is similar). We claim that for every o € S,, with o # e we have o(i) > 1,
hence A,(;); = 0, for some i € {1,2,---,n}. Suppose, for a contradiction, that o # e and
o(i) < ¢ for all indices i. Let k be the largest index for which o(k) < k. Then we have
o(i) =1>kforalli>kand o(k) <k and o(i) <i < k for all ¢ < k. This implies that
there is no index i for which o(i) = k, but this is not possible since o is surjective. This

n
proves the claim. Thus [A] = > (=1)7A,1)1462),2 - Asm),n = [] Ai,i because the
cES, i=1
only nonzero term in the above sum occurs when o = e.
4.27 Example: The above theorem gives us a method that we can use to calculate
determinants. For example, using only row operations of the form Ry — Ry +t R; we have

1 3 2 4 |1 3 2 4 1 3 2 4 13 2 4
2 41 2 [0-2-3 6| |0 2 -1 5| |0 2-1 5
35 4 1| |0 —4 —2 —11| |0 —4 =2 —11| [0 0 —4 -1
115 3 lo-2 3 -1 0-2 3 -1 00 2 4
13 2 4 13 2 4
o2 -1 1021 5]
00 2 11| |0 0 2 11 '

0 0 2 4 0 0 0 -7

4.28 Definition: Let R be a commutative ring and let A € M,,(R) with n > 2. We write
AU*) to denote the (n — 1) x (n — 1) matrix which is obtained by removing the j** row
and the k' column of A. The cofactor matrix of A is the matrix Cof(A) € M,,(R) with
entries

COf(A)kvl = (—1)k+l ‘A(l’k).



4.29 Theorem: Let R be a commutative ring and let A € M, (R) with n > 2.
(1) For each k € {1,2,---,n} we have

[A] =D (1 F AL APD] = 5 (1) A s[4S,
j=1 j=1
(2) We have
A - Cof(A) =|A|- I =Cof(A) - A.

(3) A is invertible in M,,(R) if and only if |A| is invertible in R, and in this case we have
|A~Y = |A|7! and

Al = |A‘Cof(A)

(4) If A is invertible then the unique solution to the equation Ax = b is the element © € R"

with entries
| By

T —
|4
where By, is the matrix obtained by replacing the k* column of A by b.
Proof: We have

‘A’ = Z (—]_)Crflg(]_)71140(2)72 e AO’(n),n

O'ESn

Z Z (_1)UAU(1),1 T Ao(k—1),k—1Aj,kAa(k—|—1),k—|—1 T Ao(n),n
i=1 oceS,,0(k)=j

Z g (=D)7AUR g AUR ) et AR e AUP) G e
: gGSn,J(k) _]

where 7 = 7(0) € S,,—1 is the permutation defined as follows:
o(i) ifo(i) < g,
o(i) —1if o(i) > j,

o(i) ifo(i) <y,

o(i) = 1if o(z) > j,

or equivalently, 7 is the composite
T=mmn—-1,--,7+1,5)o(k;k+1,---,n—1,n).

Note that (—1)7 = (=1)"79(—1)?(—1)""* and so we have (—1)° = (—=1)T*(—1)". Thus

ifi <k T(i):{ and if i > k T(i—l):{

|A| Z AJ k Z 1)j+k(_1)TA(j7k)T(1),1 T AU’k)T(n—l),n—l

TESH_1
- Z(—l)j+kAj,k
j=1

The proof that |A| = Z(—l)kﬂAk’j}A(k’j)} is similar (or it follows from the formula
j=1
|AT| = | A]). This completes the proof of Part (1).

A(J'JC)‘_




To prove Part (2) we note that
n

(COf(A) ' A)k . > Cof(A) Az =Y (—i)F A [AUR)],
o

=1

By Part (1), the sum on the right is equal to the determinant of the matrix B*!) ¢ M, (R)
which is obtained from A by replacing the k" column of A by a copy of its [** column.
Since B is equal to A when k = [, and B*Y has two equal columns when k # | we

have
Alif k=1,
(Cot(4)-4) = |BHD| = 4] —|A] - 5.
k.l 0 ifk#1

This proves that Cof(A) - A = |A|-I. A similar proof shows that A - Cof(A4) = |4]| - I.

If A is invertible in M, (R), then we have |A||[A™!| = |A-A~!| = |I| = 1 and similarly
|A71|]A] = 1 and so |A| and |A™!| are invertible in R with |A™!| = |A|. Conversely, the
formulas in Part (2) show that if |A| is invertible in R then A is invertible in M, (R) with
A7t = ﬁ Cof(A). This proves Part (3).

Part (4) now follows from Parts (1) and (3). Indeed if A is invertible then the solution
to Az = b is given by x = A~b and so

2= (A7), = iy (Cof(4)), = & 3 Cof(A)isb,

= ﬁj;l(_l)kﬂ‘bj |AGR) | = ﬁ | By|

where B}, is the matrix obtained by replacing the k** column of A by b.

4.30 Definition: For a matrix A € M, (R), the first of the two sums in Part (1) of the
above theorem is called the cofactor expansion of |A| along the k" column of A, and
the second sum is called the cofactor expansion of |A| along the k'" row of A.

4.31 Example: Using row operations of the form Ry +— Ry +t R;, together with cofactor
expansions along various columns, we have

2 1 3 4 2 2 1 3 4 2

5 2 4 31 1 0-2-5-3 L2 h s a1
1 2 3 1 1 2 3 1
1023 1|=[1 0 2 3 1|=- = -
2 1 2 0 2 1 2 0
2 01 20 2 01 2 0 o _4 —6 —4 5 46 0
4.3 5 6 2 2 0 -4 —6 —4
4 4 4 4.0 —4
=—]2 1 2|=-]2 1 2:—&?5‘:—@_02’:16.
2 4 6 6 0 —2

4.32 Example: From the formula in Part (2), if ad — bc # 0 then we have

a b\ 1 d b
c d ad—bc \—c a’

As an exercise, find a similar formula for the inverse of a 3 x 3 matrix.
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