Chapter 3. Matrices and Concrete Linear Maps

The Row Space, Column Space and Null Space of a Matrix

3.1 Definition: Let R be a ring. For a matrix A € M,,x,(R), the row span of A,
denoted by Row(A), is the span of the rows of A, the column span of A, denoted by
Col(A), is the span of the columns of A, and the null set of A, is the set

Null(A) = {z € F"|Az = 0}.

When F'is a field, Row(A) and Col(A) are also called the row space and column space
of A, and we define the rank of A and the nullity of A are the dimensions

rank(A) = dim (ColA) and nullity(A) = dim (Null4).

3.2 Note: For A = (uy,ug, -, up) € Mpyxn(R) and t € R™ we have At = > t;u;, so
i=1
Col(A) = {At|t € R"}.

3.3 Theorem: Let F' be a field, let A € My, xn(F) and let b € F™. If x = p is a solution
to the equation Ax = b then

{# € F'"|Az = b} = p+ Null(4).
Proof: If Ap = b then for x € F™ we have
Az =b <= Az =Ap < A(x—p)=0 <= (z—p) € NullA <= z € p+ Null(4).
3.4 Note: For A = {uy,u2, -, u,} C F™ and A = (uy,ua, -, Up) € Myxn(F),

A is linearly independent
< for all ty,ta, -+, t, € F ,if > t;u; =0 then each t; =0
i=1
< forallte F" ,if At =0thent=0
<= Null(4) = {0} <= Null(R) = {0}
<= R has a pivot in every column <= R is of the form R = (é) , and
A spans F'™" <= Col(A) = F™
<= for every x € F'" there exists t € F" with At =«
<= for every y € F"" there exists t € F" with Rt =y
<= R has a pivot in every row.
3.5 Theorem: Let F' be a field, let A = (uy,us,- -, un) € Myxn(F), and suppose A ~ R

where R is in reduced row echelon form with pivots in columns 1 < j; < jo < -+ < j, < n.
Then

(1) the non-zero rows of R form a basis for Row(A),
(2) the set {u;,,u;,, -, u;j, } is a basis for Col(A), and

(3) when we solve Ax = b using Gauss-Jordan elimination and write the solution as
x = p+ Bt as in Note 2.16, the columns of B form a basis for Null(A).



Proof: First we prove Part (1). By Theorem 1.31, when we perform an elementary row
operation on a matrix, the span of the rows is unchanged, and so we have Row(A) =
Row(R). The nonzero rows of R span Row(R), so it suffices to show that the nonzero
rows of R are linearly independent. Let 1 < j; < jo < --- < j, be the indices of the
pivot columns in R. Let vy, va, -+, v, be the nonzero rows of R. Because R is in reduced
row echelon form, for 1 < ¢ < rand 1 < k < r we have (v;);, = ;. It follows that
{v1,v9,- -+, v} is linearly independent because if > t;v; = 0 with each t; € F' then for all

=1
k with 1 < k < r we have

T T T
0= (Qtivi)jk = zlti(vi)jk = zltiai,k = tp.
1= 1= 1=

To prove Part (2), let 1 < I3 <l < --+,l,—, < n be the indices of the non-pivot
columns. Let vi,ve,---,v, € F™ be the columns of R and note that we have v;, = ¢;
for 1 < i < r. When we use row operations to reduce A to R, the same row operations

1 :
reduce Ay = (uj,, --,uj.) to Ry = (vj,,---,v5,) = (e1,--,e) = (O) This shows
that {uj,,---,u; . } is linearly independent. When we use row operations to reduce A to
R, the same row operations will reduce (A|uy) to (R|vg), and so the equation Ax = uy
has the same solutions as the equation Rxr = wy. Since only the first r columns of R
T T
are nonzero, each column vy can be written as vy = Y (vg)ie; = Y. (vg);v;, = Rt where
i=1 i=1

t € R™ is given by t; = v, and t;, = 0. Since Ax — ug and Rx = v have the same
'

solutions, we also have u, = At = ) (vi);u;, € Span{uj,,uj,, -, u;. }. This shows that
i=1
Col(A) = Span {u1,ug, -+, u,} = Span {u;,, -, u;,.}.
Since the solution set to the equation Az = b is the set

{r e R"|Az = b} = p+ Col(B) = p+ Null(A)

we must have Col(B) = Null(A). Since (as in Note 2.16) we have By, = I, it follows that the
columns of B are linearly independent using the same argument that we used in Part (1)
to show that the nonzero rows of R are linearly independent. This proves Part (3).

3.6 Corollary: Let F be a field, let A € M, (F'), suppose that A is row equivalent to
a reduced row echelon matrix which has r pivots. Then
rank(A) = dim(RowA) = dim(ColA) = r , and
nullity (A) = dim(NullA) =n —r.
3.7 Corollary: Let F be a field, let A € M,,,x»(F') and suppose that A is row equivalent
to a row reduced echelon matrix R.

(1) The rows of A are linearly independent <= the columns of A span F™ <=
rank(A) =m <= R has a pivot in every row.

(2) The rows of A span F™ <= the columns of A are linearly independent <=

0

(3) The rows of A form a basis for R" <= the columns of A form a basis for F'" <=
rank(A)=m=n < R=1.

rank(A) =n <= R has a pivot in every column <= R is of the form R = (I)



Matrices and Linear Maps

3.8 Definition: Let R be a ring. A map L : R™ — R™ is called linear when
(1) L(x +y) = L(z) + L(y) for all x,y € R™, and
(2) L(tz) =t L(z) for all x € R™ and all t € R.

3.9 Note: Given a matrix A € M, «xn(R), the map L: R™ — R™ given by L(x) = Az is
linear.

3.10 Theorem: Let L : R™ — R™ be linear. There exists a unique matrix A € M, x,(R)
such that L(z) = Az for all z € R", namely the matrix A = (L(e1), L(e2), -+, L(ey,)).

Proof: Let L : R — R™ and let A = (ug,u2, -, up) € Mpyxn(R). If L(z) = Az for
all x € R then for each index k we have up = Aer = L(ex). Conversely, suppose that
ur = L(ey) for every index k. Then for all x € R™ we have

L(x) = L( Z xiez‘) = Z x; L(el) = Z TilU; = Azx.
i=1 i=1 i=1

3.11 Notation: Often, we shall not make a notational distinction between the matrix
A € Mp,xn(R) and its corresponding linear map A : R" — R™ given by A(z) = Ax.
When we do wish to make a distinction, we shall use the following notation. Given a
matrix A € My, xn(R) we let Ly : R™ — R™ be the linear map given by

La(z) = Az for all z € R"
and given a linear map L : R™ — R"™ we let [L] be the corresponding matrix given by
[L] = (L(e1), L(es), -+, L(en)) € Mumxn(R).

3.12 Definition: For a linear map L : R™ — R™, the kernel (or the null set of L is the
set
Ker(L) = Null(L) = L™ *(0) = {z € R"|L(z) = 0}

and the image (or the range of L) is the set
Image(L) = Range(L) = L(R") = {L(z)|x € R"}.

We also use the same terminology for a matrix A € M,,x,(R) when we think of the
matrix as a linear map, so when A = [L] we have Ker(L) = Null(L) = Ker(A) = Null(A)
and Image(L) = Range(L) = Image(A) = Range(A) = Col(4). When F is a field and
L: F™ — F™ is linear, we define the rank and the nullity of L to be the dimensions
rank(L) = dim (Range(L)) and nullity(L) = dim (Null(L)).

3.13 Theorem: Let R be a ring and let L : R* — R"™ be a linear map. Then
(1) L is surjective if and only if Range(L) = F™, and
(2) L is injective if and only if Null(L) = {0}.
Proof: Part (1) is obvious, so we only prove Part (2). Note that since L is linear we have
L(0) =L(0-0) =0L(0) = 0 and so 0 € Null(L). Suppose that L is injective. Then for
x € R™ we have z € Null(L) = L(z) = 0 = L(x) = L(0) = = = 0 so Null(L) = {0}.
Conversely, suppose that Null(L) = {0}. Then for z,y € R™ we have

Liz)=Ly) = Lz—y)=0= (z—y) eNull(L) ={0} = 2z—-—y=0=2z=y

and so L is injective.



3.14 Example: The identity map on R" is the map I : R™ — R™ given by I(z) = x for
all x € R™, and it corresponds to the identity matrix I € M, (R) with entries I; ; = §; ;.
The zero map O : R" — R™ given by O(z) = 0 for all x € R™ corresponds to the zero
matrix O € M,,x,(R) with entries O; ; = 0 for all i, j.

3.15 Note: Given linear maps L, M : R — R™ and K : R™ — R! and given t € R, the
maps (L + M) : R* — R" tL and KL : R® — R! given by (L + M)(x) = L(z) + M(z),
(tL)(x) =t L(z) and (KL)(x) = K(L(x)) are all linear. For example, to see that KL is
linear, note that for z,y € R™ and t € R we have

(KL)(z+y) = K(L(z +v)) = K(L(z) + L(y))
= K(L(x)) + K(L(y)) = (KL)(x) + (KL)(y) , and
KL(tz) = K(L(tz)) = K(t L(z)) = t K (L(z)) = t(KL)(z).

3.16 Definition: Given A, B € M,,«,(R) we define A+ B € M,,xn(R) to be the matrix
such that (A + B)(z) = Az + Bx for all x € R". Given A € M,,x»(R) and t € R, we
define tA € M,,xn(R) to be the matrix such that (tA)(z) = t Az for all x € R™. Given
A€ Miym(R) and B € My« (R) we define AB € Mj«,(R) to be the matrix such that
(AB)x = A(Bx) for all z € R".

3.17 Note: From the above definitions, it follows immediately that for all matrices A, B, C'
of appropriate sizes and for all s,t € R, we have

(A+B)+C=A+(B+0),

A+B=B+ A,

(1)

)

(3)

(4) A+ (—4) =0,
(5) (AB)C = A(BC),

(6) IA= A= AI,

(7) OA =0 and AO = O,

(8) (A+ B)C = AC+ BC and A(B+C) = AB + AC,

(9) s(tA) = (st)A,

(10) if R is commutative then A(tB) = t(AB),

(11) (s+t)A=sA+tA and t(A+ B) = tA+tB, and

(12) 0A=0,1A= A and (-1)A = —A.

In particular, the set M, (R) is a ring under addition and multiplication of matrices.

3.18 Theorem: For A, B € M,,«»(R) and t € R, the matrices A+ B and tA are given
by (A + B)i,j = A@j + Bi,j and (tA)Z‘J = tAi,j . For A = (Ul,UQ, tee ,’LLZ)T S Mle(R)
and B = (v1,v2, - +,0,) € Myuxn(R), the matrix AB is given by
(AB)j’k = vauk = 221 Aj,iBi,k .

Proof: For A, B € M,,xn(R), the k'™ column of (A+ B) is equal to (A+ B)ey = Aey, + Bey,
which is the sum of the k** columns of A and B. It follows that (A + B)jr=A;r+ Bj
for all j, k. Similarly for ¢t € R, the k*® column of tA is equal to (tA)e, = t Ae;, which is ¢
times the k** column of A.

Now let A = (u1,---,u)Y € Miym(R) and B = (v1,--+,0n) € Myxn(R). The k'
column of (AB) is equal to (AB)ey = A(Bey) = Avy, so the (j, k) entry of AB is equal to

(AB)jk = v up = (Aj1, Aj2, -, Ajm)
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The Transpose and the Inverse
3.19 Definition: For a linear map L : R® — R™ the transpose of L is the map
LT : R™ — R" such that [LT] = [L]7.

3.20 Note: When R is a ring, for A € M,,x,(R) we have Row(A4) = Col(AT) and
Col(A) = Row(AT). When F is a field, for A € M,,x,(F) we have rank(A) = rank(AT)
and for a linear map L : R™ — R™ we have rank(L) = rank(LT).

3.21 Definition: For linear maps L : R — R™ and M : R™ — R", when LM =1
where I : R™ — R™ we say that L is a left inverse of M and that M is a right inverse
of L, and when LM = I and ML = I we say that L and M are (two-sided) inverses of
each other. When L : R™ — R™ has a (two-sided) inverse M : R™ — R"™ we say that L is
invertible. We use the same terminology for matrices A € M, «,,(R) and B € My, xm(R).

3.22 Theorem: Let R be a ring, let A € My,«n(R) and B € Myxm(R). If B is a left
inverse of A and C' is a right inverse of A then B = C. A similar result holds for linear
maps L : R — R™ and K, M : R™ — R".

Proof: Suppose that BA = I and that AC' = I. Then
B =BI=B(AC)=(BA)C=1IC=C.
3.23 Theorem: Let R be a commutative ring.
(1) For A, B € My, xn(R) and t € R we have
(A=A, (A+B)T = AT + BT and (tA)T =t AT,

A similar result holds for linear maps L, M : R — R™.
(2) If A€ Miym(R) and B € My, xn(R) then

(AB)T = BTAT.
A similar result holds for linear maps L : R® — R™ and M : R™ — R™.
(3) For invertible matrices A, B € M,,(R) and for an invertible element t € R we have

(A™H™, tA) ' =1A"1 and (AB)"'=B1AL
A similar result holds for invertible linear maps L, M : R™ — R".

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that R is
commutative and let A € Mjx.,(R) and B € M,,x,(R). Then for all indices j, k we have

(AB)", , = (AB)i; = ZlAk,iBi,j = ZlBi,jAk’i = ZIBTj, iAT,; = (BTAT);

To prove Part (3), let A, B € M,(R) be invertible matrices and let t € R be an
invertible element. Because AA™! = [ and A7'4 = I, it follows that (A71)"! = A.
Because (tA)( A) = (t-7)AA7! = 1 I =1 and sunllarly ($A4)(tA) = I, it follows
that (t4)~' = 1 A. Because (AB)(B7'A™Y) = A(BB71)A™! = AA™! = I and similarly
B_IA_l)(AB) = I, it follows that (AB) = B~1A7L



3.24 Theorem: Let F be a field and let A € M, xn(F),

(1) A is surjective <= A has a right inverse matrix,

(2) A is injective <= A has a left inverse matrix,

(3) if A is bijective then n = m and A has a (two-sided) inverse matrix, and
(4) when n = m, A is bijective <= A is surjective <= A is injective.

A similar result holds for a linear map L : R™ — R™.

Proof: We prove Part (1). Suppose first that A has a right inverse matrix, say AB = I
with B € My, «xn(F'). Then given y € F™ we can choose x € F™ to get

Az = A(By) = (AB)y = Iy = y.

Thus A is surjective. Conversely, suppose that A is surjective. For each index k €
{1,2,---,m}, choose uy € F™ so that Aup = e, and then let B = (uj,uz, -, upy) €
M5 (F). Then we have

AB:A(U’IJU’QJ.”7U7TL): (AulaAu27"'7Aum) :(617627"'76771) =1.

To prove Part (2), suppose first that A has a left inverse matrix, say BA = [ with
B € M, (F). Then for x € F™ we have

Az =0= B(Az)=0= (BA)x=0= Iz =0=2=0

and so Null(A) = {0}. Thus A is injective. Conversely, suppose that A is injective. Then
Null(A) = {}, so the columns of A are linearly independent, hence the rows of A span F",
equivalently the columns of AT span F™, hence Range(AT) = F™ and so AT is surjective.
Since AT is surjective, we can choose C' € M, xn(F) so that ATC =1. Let B=CT so
that ATBT = I. Transpose both sides to get BA = I” = I. Thus the matrix B is a left
inverse of A.

Parts (3) and (4) follow easily from Parts (1) and (2) together with previous results
(namely Note 3.4, Corollary 3.7 and Theorems 3.13 and 3.22).

3.25 Note: To obtain a right inverse of a given matrix A € M,,,x,(F') using the method
described in the proof of Part (1) of the above theorem, we can find vectors uy, ug, - - -, Uy, €
F™ such that Auy = ey, for each index k by reducing each of the augmented matrices (Ale).
Since the same row operations which are used to reduce (Aley) to the form (R|uy), (with
R in reduced echelon form) will also reduce each of the augmented matrices (Aleg) to the
form (R|ex), we can solve all of the equations Auy = e simultaneously by reducing the

matrix (A|I) = (Ale1, ez, -, em) to the form (R|uq,ug, -, Um).
1 3 2
3.26 Example: Let A= |2 4 1| € M3(Q). Find A~%.
1 1 0
Solution: We have
1 3 21 0 0 1 3 2 1 0 0
AD=|2 4 1|0 1 0]~[0-2-3]-21 0
1 1 00 0 1 0 -2 —-21|—-1 0 1
1 3 2|11 0 0 1003 -1 32
3 1
0 -2 -2|-1 0 1 0 0 1] 1 -1 1

and so A~! is equal to the matrix whichh appears on the right of the final matrix above.



