

Chapter 3. Matrices and Concrete Linear Maps

The Row Space, Column Space and Null Space of a Matrix

3.1 Definition: Let R be a ring. For a matrix $A \in M_{m \times n}(R)$, the **row span** of A , denoted by $\text{Row}(A)$, is the span of the rows of A , the **column span** of A , denoted by $\text{Col}(A)$, is the span of the columns of A , and the **null set** of A , is the set

$$\text{Null}(A) = \{x \in F^n \mid Ax = 0\}.$$

When F is a field, $\text{Row}(A)$ and $\text{Col}(A)$ are also called the **row space** and **column space** of A , and we define the **rank** of A and the **nullity** of A are the dimensions

$$\text{rank}(A) = \dim(\text{Col}A) \quad \text{and} \quad \text{nullity}(A) = \dim(\text{Null}A).$$

3.2 Note: For $A = (u_1, u_2, \dots, u_n) \in M_{m \times n}(R)$ and $t \in R^n$ we have $At = \sum_{i=1}^n t_i u_i$, so

$$\text{Col}(A) = \{At \mid t \in R^n\}.$$

3.3 Theorem: Let F be a field, let $A \in M_{m \times n}(F)$ and let $b \in F^m$. If $x = p$ is a solution to the equation $Ax = b$ then

$$\{x \in F^n \mid Ax = b\} = p + \text{Null}(A).$$

Proof: If $Ap = b$ then for $x \in F^n$ we have

$$Ax = b \iff Ax = Ap \iff A(x - p) = 0 \iff (x - p) \in \text{Null}A \iff x \in p + \text{Null}(A).$$

3.4 Note: For $\mathcal{A} = \{u_1, u_2, \dots, u_n\} \subseteq F^m$ and $A = (u_1, u_2, \dots, u_n) \in M_{m \times n}(F)$,

\mathcal{A} is linearly independent

$$\begin{aligned} &\iff \text{for all } t_1, t_2, \dots, t_n \in F, \text{ if } \sum_{i=1}^n t_i u_i = 0 \text{ then each } t_i = 0 \\ &\iff \text{for all } t \in F^n, \text{ if } At = 0 \text{ then } t = 0 \\ &\iff \text{Null}(A) = \{0\} \iff \text{Null}(R) = \{0\} \\ &\iff R \text{ has a pivot in every column} \iff R \text{ is of the form } R = \begin{pmatrix} I \\ 0 \end{pmatrix}, \text{ and} \end{aligned}$$

\mathcal{A} spans $F^m \iff \text{Col}(A) = F^m$

$$\begin{aligned} &\iff \text{for every } x \in F^m \text{ there exists } t \in F^n \text{ with } At = x \\ &\iff \text{for every } y \in F^m \text{ there exists } t \in F^n \text{ with } Rt = y \\ &\iff R \text{ has a pivot in every row.} \end{aligned}$$

3.5 Theorem: Let F be a field, let $A = (u_1, u_2, \dots, u_n) \in M_{m \times n}(F)$, and suppose $A \sim R$ where R is in reduced row echelon form with pivots in columns $1 \leq j_1 < j_2 < \dots < j_r \leq n$. Then

- (1) the non-zero rows of R form a basis for $\text{Row}(A)$,
- (2) the set $\{u_{j_1}, u_{j_2}, \dots, u_{j_r}\}$ is a basis for $\text{Col}(A)$, and
- (3) when we solve $Ax = b$ using Gauss-Jordan elimination and write the solution as $x = p + Bt$ as in Note 2.16, the columns of B form a basis for $\text{Null}(A)$.

Proof: First we prove Part (1). By Theorem 1.31, when we perform an elementary row operation on a matrix, the span of the rows is unchanged, and so we have $\text{Row}(A) = \text{Row}(R)$. The nonzero rows of R span $\text{Row}(R)$, so it suffices to show that the nonzero rows of R are linearly independent. Let $1 \leq j_1 < j_2 < \dots < j_r$ be the indices of the pivot columns in R . Let v_1, v_2, \dots, v_r be the nonzero rows of R . Because R is in reduced row echelon form, for $1 \leq i \leq r$ and $1 \leq k \leq r$ we have $(v_i)_{j_k} = \delta_{i,k}$. It follows that $\{v_1, v_2, \dots, v_r\}$ is linearly independent because if $\sum_{i=1}^r t_i v_i = 0$ with each $t_i \in F$ then for all k with $1 \leq k \leq r$ we have

$$0 = \left(\sum_{i=1}^r t_i v_i \right)_{j_k} = \sum_{i=1}^r t_i (v_i)_{j_k} = \sum_{i=1}^r t_i \delta_{i,k} = t_k.$$

To prove Part (2), let $1 \leq l_1 < l_2 < \dots < l_{n-r} \leq n$ be the indices of the non-pivot columns. Let $v_1, v_2, \dots, v_n \in F^m$ be the columns of R and note that we have $v_{j_i} = e_i$ for $1 \leq i \leq r$. When we use row operations to reduce A to R , the same row operations reduce $A_J = (u_{j_1}, \dots, u_{j_r})$ to $R_J = (v_{j_1}, \dots, v_{j_r}) = (e_1, \dots, e_r) = \begin{pmatrix} I \\ 0 \end{pmatrix}$. This shows that $\{u_{j_1}, \dots, u_{j_r}\}$ is linearly independent. When we use row operations to reduce A to R , the same row operations will reduce $(A|u_k)$ to $(R|v_k)$, and so the equation $Ax = u_k$ has the same solutions as the equation $Rx = v_k$. Since only the first r columns of R are nonzero, each column v_k can be written as $v_k = \sum_{i=1}^r (v_k)_i e_i = \sum_{i=1}^r (v_k)_i v_{j_i} = Rt$ where $t \in R^n$ is given by $t_J = v_k$ and $t_L = 0$. Since $Ax = u_k$ and $Rx = v_k$ have the same solutions, we also have $u_k = At = \sum_{i=1}^r (v_k)_i u_{j_i} \in \text{Span}\{u_{j_1}, u_{j_2}, \dots, u_{j_r}\}$. This shows that $\text{Col}(A) = \text{Span}\{u_1, u_2, \dots, u_n\} = \text{Span}\{u_{j_1}, \dots, u_{j_r}\}$.

Since the solution set to the equation $Ax = b$ is the set

$$\{x \in \mathbf{R}^n | Ax = b\} = p + \text{Col}(B) = p + \text{Null}(A)$$

we must have $\text{Col}(B) = \text{Null}(A)$. Since (as in Note 2.16) we have $B_L = I$, it follows that the columns of B are linearly independent using the same argument that we used in Part (1) to show that the nonzero rows of R are linearly independent. This proves Part (3).

3.6 Corollary: Let F be a field, let $A \in M_{m \times n}(F)$, suppose that A is row equivalent to a reduced row echelon matrix which has r pivots. Then

$$\begin{aligned} \text{rank}(A) &= \dim(\text{Row}A) = \dim(\text{Col}A) = r, \text{ and} \\ \text{nullity}(A) &= \dim(\text{Null}A) = n - r. \end{aligned}$$

3.7 Corollary: Let F be a field, let $A \in M_{m \times n}(F)$ and suppose that A is row equivalent to a row reduced echelon matrix R .

- (1) The rows of A are linearly independent \iff the columns of A span $F^m \iff \text{rank}(A) = m \iff R$ has a pivot in every row.
- (2) The rows of A span $F^n \iff$ the columns of A are linearly independent $\iff \text{rank}(A) = n \iff R$ has a pivot in every column $\iff R$ is of the form $R = \begin{pmatrix} I \\ 0 \end{pmatrix}$.
- (3) The rows of A form a basis for $\mathbf{R}^n \iff$ the columns of A form a basis for $F^m \iff \text{rank}(A) = m = n \iff R = I$.

Matrices and Linear Maps

3.8 Definition: Let R be a ring. A map $L : R^n \rightarrow R^m$ is called **linear** when

- (1) $L(x + y) = L(x) + L(y)$ for all $x, y \in R^n$, and
- (2) $L(tx) = t L(x)$ for all $x \in R^n$ and all $t \in R$.

3.9 Note: Given a matrix $A \in M_{m \times n}(R)$, the map $L : \mathbf{R}^n \rightarrow R^m$ given by $L(x) = Ax$ is linear.

3.10 Theorem: Let $L : R^n \rightarrow R^m$ be linear. There exists a unique matrix $A \in M_{m \times n}(R)$ such that $L(x) = Ax$ for all $x \in R^n$, namely the matrix $A = (L(e_1), L(e_2), \dots, L(e_n))$.

Proof: Let $L : R^n \rightarrow R^m$ and let $A = (u_1, u_2, \dots, u_n) \in M_{m \times n}(R)$. If $L(x) = Ax$ for all $x \in R$ then for each index k we have $u_k = Ae_k = L(e_k)$. Conversely, suppose that $u_k = L(e_k)$ for every index k . Then for all $x \in R^n$ we have

$$L(x) = L\left(\sum_{i=1}^n x_i e_i\right) = \sum_{i=1}^n x_i L(e_i) = \sum_{i=1}^n x_i u_i = Ax.$$

3.11 Notation: Often, we shall not make a notational distinction between the matrix $A \in M_{m \times n}(R)$ and its corresponding linear map $A : R^n \rightarrow R^m$ given by $A(x) = Ax$. When we do wish to make a distinction, we shall use the following notation. Given a matrix $A \in M_{m \times n}(R)$ we let $L_A : R^n \rightarrow R^m$ be the linear map given by

$$L_A(x) = Ax \text{ for all } x \in R^n$$

and given a linear map $L : R^n \rightarrow R^m$ we let $[L]$ be the corresponding matrix given by

$$[L] = (L(e_1), L(e_2), \dots, L(e_n)) \in M_{m \times n}(R).$$

3.12 Definition: For a linear map $L : R^n \rightarrow R^m$, the **kernel** (or the **null set**) of L is the set

$$\text{Ker}(L) = \text{Null}(L) = L^{-1}(0) = \{x \in R^n | L(x) = 0\}$$

and the **image** (or the **range**) of L is the set

$$\text{Image}(L) = \text{Range}(L) = L(R^n) = \{L(x) | x \in R^n\}.$$

We also use the same terminology for a matrix $A \in M_{m \times n}(R)$ when we think of the matrix as a linear map, so when $A = [L]$ we have $\text{Ker}(L) = \text{Null}(L) = \text{Ker}(A) = \text{Null}(A)$ and $\text{Image}(L) = \text{Range}(L) = \text{Image}(A) = \text{Range}(A) = \text{Col}(A)$. When F is a field and $L : F^n \rightarrow F^m$ is linear, we define the **rank** and the **nullity** of L to be the dimensions

$$\text{rank}(L) = \dim(\text{Range}(L)) \text{ and } \text{nullity}(L) = \dim(\text{Null}(L)).$$

3.13 Theorem: Let R be a ring and let $L : R^n \rightarrow R^m$ be a linear map. Then

- (1) L is surjective if and only if $\text{Range}(L) = F^m$, and
- (2) L is injective if and only if $\text{Null}(L) = \{0\}$.

Proof: Part (1) is obvious, so we only prove Part (2). Note that since L is linear we have $L(0) = L(0 \cdot 0) = 0$ and so $0 \in \text{Null}(L)$. Suppose that L is injective. Then for $x \in R^n$ we have $x \in \text{Null}(L) \implies L(x) = 0 \implies L(x) = L(0) \implies x = 0$ so $\text{Null}(L) = \{0\}$. Conversely, suppose that $\text{Null}(L) = \{0\}$. Then for $x, y \in R^n$ we have

$$L(x) = L(y) \implies L(x - y) = 0 \implies (x - y) \in \text{Null}(L) = \{0\} \implies x - y = 0 \implies x = y$$

and so L is injective.

3.14 Example: The **identity map** on R^n is the map $I : R^n \rightarrow R^n$ given by $I(x) = x$ for all $x \in R^n$, and it corresponds to the identity matrix $I \in M_n(R)$ with entries $I_{i,j} = \delta_{i,j}$. The **zero map** $O : R^n \rightarrow R^m$ given by $O(x) = 0$ for all $x \in R^n$ corresponds to the zero matrix $O \in M_{m \times n}(R)$ with entries $O_{i,j} = 0$ for all i, j .

3.15 Note: Given linear maps $L, M : R^n \rightarrow R^m$ and $K : R^m \rightarrow R^l$ and given $t \in R$, the maps $(L + M) : R^n \rightarrow R^m$, tL and $KL : R^n \rightarrow R^l$ given by $(L + M)(x) = L(x) + M(x)$, $(tL)(x) = tL(x)$ and $(KL)(x) = K(L(x))$ are all linear. For example, to see that KL is linear, note that for $x, y \in R^n$ and $t \in R$ we have

$$\begin{aligned} (KL)(x + y) &= K(L(x + y)) = K(L(x) + L(y)) \\ &= K(L(x)) + K(L(y)) = (KL)(x) + (KL)(y), \text{ and} \\ KL(tx) &= K(L(tx)) = K(tL(x)) = tK(L(x)) = t(KL)(x). \end{aligned}$$

3.16 Definition: Given $A, B \in M_{m \times n}(R)$ we define $A + B \in M_{m \times n}(R)$ to be the matrix such that $(A + B)(x) = Ax + Bx$ for all $x \in R^n$. Given $A \in M_{m \times n}(R)$ and $t \in R$, we define $tA \in M_{m \times n}(R)$ to be the matrix such that $(tA)(x) = tAx$ for all $x \in R^n$. Given $A \in M_{l \times m}(R)$ and $B \in M_{m \times n}(R)$ we define $AB \in M_{l \times n}(R)$ to be the matrix such that $(AB)x = A(Bx)$ for all $x \in R^n$.

3.17 Note: From the above definitions, it follows immediately that for all matrices A, B, C of appropriate sizes and for all $s, t \in R$, we have

- (1) $(A + B) + C = A + (B + C)$,
- (2) $A + B = B + A$,
- (3) $O + A = A = A + O$,
- (4) $A + (-A) = 0$,
- (5) $(AB)C = A(BC)$,
- (6) $IA = A = AI$,
- (7) $OA = O$ and $AO = O$,
- (8) $(A + B)C = AC + BC$ and $A(B + C) = AB + AC$,
- (9) $s(tA) = (st)A$,
- (10) if R is commutative then $A(tB) = t(AB)$,
- (11) $(s + t)A = sA + tA$ and $t(A + B) = tA + tB$, and
- (12) $0A = O$, $1A = A$ and $(-1)A = -A$.

In particular, the set $M_n(R)$ is a ring under addition and multiplication of matrices.

3.18 Theorem: For $A, B \in M_{m \times n}(R)$ and $t \in R$, the matrices $A + B$ and tA are given by $(A + B)_{i,j} = A_{i,j} + B_{i,j}$ and $(tA)_{i,j} = tA_{i,j}$. For $A = (u_1, u_2, \dots, u_l)^T \in M_{l \times m}(R)$ and $B = (v_1, v_2, \dots, v_n) \in M_{m \times n}(R)$, the matrix AB is given by

$$(AB)_{j,k} = v_j^T u_k = \sum_{i=1}^m A_{j,i} B_{i,k}.$$

Proof: For $A, B \in M_{m \times n}(R)$, the k^{th} column of $(A + B)$ is equal to $(A + B)e_k = Ae_k + Be_k$ which is the sum of the k^{th} columns of A and B . It follows that $(A + B)_{j,k} = A_{j,k} + B_{j,k}$ for all j, k . Similarly for $t \in R$, the k^{th} column of tA is equal to $(tA)e_k = tAe_k$ which is t times the k^{th} column of A .

Now let $A = (u_1, \dots, u_l)^T \in M_{l \times m}(R)$ and $B = (v_1, \dots, v_n) \in M_{m \times n}(R)$. The k^{th} column of (AB) is equal to $(AB)e_k = A(Be_k) = Av_k$, so the (j, k) entry of AB is equal to

$$(AB)_{j,k} = v_j^T u_k = (A_{j,1}, A_{j,2}, \dots, A_{j,m})$$

The Transpose and the Inverse

3.19 Definition: For a linear map $L : R^n \rightarrow R^m$ the **transpose** of L is the map $L^T : R^m \rightarrow R^n$ such that $[L^T] = [L]^T$.

3.20 Note: When R is a ring, for $A \in M_{m \times n}(R)$ we have $\text{Row}(A) = \text{Col}(A^T)$ and $\text{Col}(A) = \text{Row}(A^T)$. When F is a field, for $A \in M_{m \times n}(F)$ we have $\text{rank}(A) = \text{rank}(A^T)$ and for a linear map $L : R^n \rightarrow R^m$ we have $\text{rank}(L) = \text{rank}(L^T)$.

3.21 Definition: For linear maps $L : R^n \rightarrow R^m$ and $M : R^m \rightarrow R^n$, when $LM = I$ where $I : R^m \rightarrow R^m$ we say that L is a **left inverse** of M and that M is a **right inverse** of L , and when $LM = I$ and $ML = I$ we say that L and M are (two-sided) **inverses** of each other. When $L : R^n \rightarrow R^m$ has a (two-sided) inverse $M : R^m \rightarrow R^n$ we say that L is **invertible**. We use the same terminology for matrices $A \in M_{m \times n}(R)$ and $B \in M_{n \times m}(R)$.

3.22 Theorem: Let R be a ring, let $A \in M_{m \times n}(R)$ and $B \in M_{n \times m}(R)$. If B is a left inverse of A and C is a right inverse of A then $B = C$. A similar result holds for linear maps $L : R^n \rightarrow R^m$ and $K, M : R^m \rightarrow R^n$.

Proof: Suppose that $BA = I$ and that $AC = I$. Then

$$B = BI = B(AC) = (BA)C = IC = C.$$

3.23 Theorem: Let R be a commutative ring.

(1) For $A, B \in M_{m \times n}(R)$ and $t \in R$ we have

$$(A^T)^T = A, \quad (A + B)^T = A^T + B^T \quad \text{and} \quad (tA)^T = t A^T.$$

A similar result holds for linear maps $L, M : \mathbf{R}^n \rightarrow R^m$.

(2) If $A \in M_{l \times m}(R)$ and $B \in M_{m \times n}(R)$ then

$$(AB)^T = B^T A^T.$$

A similar result holds for linear maps $L : R^l \rightarrow R^m$ and $M : R^m \rightarrow R^n$.

(3) For invertible matrices $A, B \in M_n(R)$ and for an invertible element $t \in R$ we have

$$(A^{-1})^{-1}, \quad (tA)^{-1} = \frac{1}{t} A^{-1} \quad \text{and} \quad (AB)^{-1} = B^{-1} A^{-1}.$$

A similar result holds for invertible linear maps $L, M : R^n \rightarrow R^n$.

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that R is commutative and let $A \in M_{l \times m}(R)$ and $B \in M_{m \times n}(R)$. Then for all indices j, k we have

$$(AB)^T{}_{j,k} = (AB)_{k,j} = \sum_{i=1}^m A_{k,i} B_{i,j} = \sum_{i=1}^m B_{i,j} A_{k,i} = \sum_{i=1}^m B^T j, i A^T{}_{i,k} = (B^T A^T)_{j,k}.$$

To prove Part (3), let $A, B \in M_n(R)$ be invertible matrices and let $t \in R$ be an invertible element. Because $AA^{-1} = I$ and $A^{-1}A = I$, it follows that $(A^{-1})^{-1} = A$. Because $(tA)(\frac{1}{t}A) = (t \cdot \frac{1}{t})AA^{-1} = 1 \cdot I = I$ and similarly $(\frac{1}{t}A)(tA) = I$, it follows that $(tA)^{-1} = \frac{1}{t}A$. Because $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = I$ and similarly $B^{-1}A^{-1}(AB) = I$, it follows that $(AB)^{-1} = B^{-1}A^{-1}$.

3.24 Theorem: Let F be a field and let $A \in M_{m \times n}(F)$,

- (1) A is surjective $\iff A$ has a right inverse matrix,
- (2) A is injective $\iff A$ has a left inverse matrix,
- (3) if A is bijective then $n = m$ and A has a (two-sided) inverse matrix, and
- (4) when $n = m$, A is bijective $\iff A$ is surjective $\iff A$ is injective.

A similar result holds for a linear map $L : R^n \rightarrow R^m$.

Proof: We prove Part (1). Suppose first that A has a right inverse matrix, say $AB = I$ with $B \in M_{n \times n}(F)$. Then given $y \in F^m$ we can choose $x \in F^n$ to get

$$Ax = A(By) = (AB)y = Iy = y.$$

Thus A is surjective. Conversely, suppose that A is surjective. For each index $k \in \{1, 2, \dots, m\}$, choose $u_k \in F^n$ so that $Au_k = e_k$, and then let $B = (u_1, u_2, \dots, u_m) \in M_{n \times m}(F)$. Then we have

$$AB = A(u_1, u_2, \dots, u_m) = (Au_1, Au_2, \dots, Au_m) = (e_1, e_2, \dots, e_m) = I.$$

To prove Part (2), suppose first that A has a left inverse matrix, say $BA = I$ with $B \in M_{n \times n}(F)$. Then for $x \in F^n$ we have

$$Ax = 0 \implies B(Ax) = 0 \implies (BA)x = 0 \implies Ix = 0 \implies x = 0$$

and so $\text{Null}(A) = \{0\}$. Thus A is injective. Conversely, suppose that A is injective. Then $\text{Null}(A) = \{\}$, so the columns of A are linearly independent, hence the rows of A span F^n , equivalently the columns of A^T span F^n , hence $\text{Range}(A^T) = F^n$ and so A^T is surjective. Since A^T is surjective, we can choose $C \in M_{m \times n}(F)$ so that $A^T C = I$. Let $B = C^T$ so that $A^T B^T = I$. Transpose both sides to get $BA = I^T = I$. Thus the matrix B is a left inverse of A .

Parts (3) and (4) follow easily from Parts (1) and (2) together with previous results (namely Note 3.4, Corollary 3.7 and Theorems 3.13 and 3.22).

3.25 Note: To obtain a right inverse of a given matrix $A \in M_{m \times n}(F)$ using the method described in the proof of Part (1) of the above theorem, we can find vectors $u_1, u_2, \dots, u_m \in F^n$ such that $Au_k = e_k$ for each index k by reducing each of the augmented matrices $(A|e_k)$. Since the same row operations which are used to reduce $(A|e_1)$ to the form $(R|u_1)$, (with R in reduced echelon form) will also reduce each of the augmented matrices $(A|e_k)$ to the form $(R|e_k)$, we can solve all of the equations $Au_k = e_k$ simultaneously by reducing the matrix $(A|I) = (A|e_1, e_2, \dots, e_m)$ to the form $(R|u_1, u_2, \dots, u_m)$.

3.26 Example: Let $A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 4 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in M_3(\mathbf{Q})$. Find A^{-1} .

Solution: We have

$$\begin{aligned} (A|I) &= \left(\begin{array}{ccc|ccc} 1 & 3 & 2 & 1 & 0 & 0 \\ 2 & 4 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|ccc} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & -2 & -3 & -2 & 1 & 0 \\ 0 & -2 & -2 & -1 & 0 & 1 \end{array} \right) \\ &\sim \left(\begin{array}{ccc|ccc} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} & 1 & -\frac{1}{2} & 0 \\ 0 & -2 & -2 & -1 & 0 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & -1 & \frac{5}{2} \\ 0 & 1 & 0 & -\frac{1}{2} & 1 & -\frac{3}{2} \\ 0 & 0 & 1 & 1 & -1 & 1 \end{array} \right) \end{aligned}$$

and so A^{-1} is equal to the matrix which appears on the right of the final matrix above.