
Chapter 3. Matrices and Concrete Linear Maps

The Row Space, Column Space and Null Space of a Matrix

3.1 Definition: Let R be a ring. For a matrix A ∈ Mm×n(R), the row span of A,
denoted by Row(A), is the span of the rows of A, the column span of A, denoted by
Col(A), is the span of the columns of A, and the null set of A, is the set

Null(A) =
{
x ∈ Fn

∣∣Ax = 0
}
.

When F is a field, Row(A) and Col(A) are also called the row space and column space
of A, and we define the rank of A and the nullity of A are the dimensions

rank(A) = dim
(
ColA

)
and nullity(A) = dim

(
NullA

)
.

3.2 Note: For A = (u1, u2, · · · , un) ∈Mm×n(R) and t ∈ Rn we have At =
n∑

i=1

tiui, so

Col(A) =
{
At
∣∣t ∈ Rn

}
.

3.3 Theorem: Let F be a field, let A ∈Mm×n(F ) and let b ∈ Fm. If x = p is a solution
to the equation Ax = b then{

x ∈ Fn
∣∣Ax = b

}
= p+ Null(A).

Proof: If Ap = b then for x ∈ Fn we have

Ax = b ⇐⇒ Ax = Ap ⇐⇒ A(x− p) = 0 ⇐⇒ (x− p) ∈ NullA ⇐⇒ x ∈ p+ Null(A).

3.4 Note: For A = {u1, u2, · · · , un} ⊆ Fm and A = (u1, u2, · · · , un) ∈Mm×n(F ),

A is linearly independent

⇐⇒ for all t1, t2, · · · , tn ∈ F , if
n∑

i=1

tiui = 0 then each ti = 0

⇐⇒ for all t ∈ Fn , if At = 0 then t = 0

⇐⇒ Null(A) = {0} ⇐⇒ Null(R) = {0}

⇐⇒ R has a pivot in every column ⇐⇒ R is of the form R =

(
I
0

)
, and

A spans Fm ⇐⇒ Col(A) = Fm

⇐⇒ for every x ∈ Fm there exists t ∈ Fn with At = x

⇐⇒ for every y ∈ Fm there exists t ∈ Fn with Rt = y

⇐⇒ R has a pivot in every row.

3.5 Theorem: Let F be a field, let A = (u1, u2, · · · , un) ∈Mm×n(F ), and suppose A ∼ R
where R is in reduced row echelon form with pivots in columns 1 ≤ j1 < j2 < · · · < jr ≤ n.
Then

(1) the non-zero rows of R form a basis for Row(A),

(2) the set {uj1 , uj2 , · · · , ujr} is a basis for Col(A), and

(3) when we solve Ax = b using Gauss-Jordan elimination and write the solution as
x = p+Bt as in Note 2.16, the columns of B form a basis for Null(A).
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Proof: First we prove Part (1). By Theorem 1.31, when we perform an elementary row
operation on a matrix, the span of the rows is unchanged, and so we have Row(A) =
Row(R). The nonzero rows of R span Row(R), so it suffices to show that the nonzero
rows of R are linearly independent. Let 1 ≤ j1 < j2 < · · · < jr be the indices of the
pivot columns in R. Let v1, v2, · · · , vr be the nonzero rows of R. Because R is in reduced
row echelon form, for 1 ≤ i ≤ r and 1 ≤ k ≤ r we have (vi)jk = δi,k. It follows that

{v1, v2, · · · , vr} is linearly independent because if
r∑

i=1

tivi = 0 with each ti ∈ F then for all

k with 1 ≤ k ≤ r we have

0 =
( r∑
i=1

tivi
)
jk

=
r∑

i=1

ti(vi)jk =
r∑

i=1

tiδi,k = tk.

To prove Part (2), let 1 ≤ l1 < l2 < · · · , ln−r ≤ n be the indices of the non-pivot
columns. Let v1, v2, · · · , vn ∈ Fm be the columns of R and note that we have vji = ei
for 1 ≤ i ≤ r. When we use row operations to reduce A to R, the same row operations

reduce AJ = (uj1 , · · · , ujr ) to RJ = (vj1 , · · · , vjt) = (e1, · · · , er) =

(
I
0

)
. This shows

that {uj1 , · · · , ujr} is linearly independent. When we use row operations to reduce A to
R, the same row operations will reduce (A|uk) to (R|vk), and so the equation Ax = uk
has the same solutions as the equation Rx = vk. Since only the first r columns of R

are nonzero, each column vk can be written as vk =
r∑

i=1

(vk)iei =
r∑

i=1

(vk)ivji = Rt where

t ∈ Rn is given by tJ = vk and tL = 0. Since Ax = uk and Rx = vk have the same

solutions, we also have uk = At =
r∑

i=1

(vk)iuji ∈ Span {uj1 , uj2 , · · · , ujr}. This shows that

Col(A) = Span {u1, u2, · · · , un} = Span {uj1 , · · · , ujr}.
Since the solution set to the equation Ax = b is the set

{x ∈ Rn|Ax = b} = p+ Col(B) = p+ Null(A)

we must have Col(B) = Null(A). Since (as in Note 2.16) we have BL = I, it follows that the
columns of B are linearly independent using the same argument that we used in Part (1)
to show that the nonzero rows of R are linearly independent. This proves Part (3).

3.6 Corollary: Let F be a field, let A ∈ Mm×n(F ), suppose that A is row equivalent to
a reduced row echelon matrix which has r pivots. Then

rank(A) = dim(RowA) = dim(ColA) = r , and

nullity(A) = dim(NullA) = n− r.

3.7 Corollary: Let F be a field, let A ∈Mm×n(F ) and suppose that A is row equivalent
to a row reduced echelon matrix R.

(1) The rows of A are linearly independent ⇐⇒ the columns of A span Fm ⇐⇒
rank(A) = m ⇐⇒ R has a pivot in every row.

(2) The rows of A span Fn ⇐⇒ the columns of A are linearly independent ⇐⇒

rank(A) = n ⇐⇒ R has a pivot in every column ⇐⇒ R is of the form R =

(
I
0

)
.

(3) The rows of A form a basis for Rn ⇐⇒ the columns of A form a basis for Fm ⇐⇒
rank(A) = m = n ⇐⇒ R = I.
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Matrices and Linear Maps

3.8 Definition: Let R be a ring. A map L : Rn → Rm is called linear when
(1) L(x+ y) = L(x) + L(y) for all x, y ∈ Rn, and
(2) L(tx) = t L(x) for all x ∈ Rn and all t ∈ R.

3.9 Note: Given a matrix A ∈Mm×n(R), the map L : Rn → Rm given by L(x) = Ax is
linear.

3.10 Theorem: Let L : Rn → Rm be linear. There exists a unique matrix A ∈Mm×n(R)
such that L(x) = Ax for all x ∈ Rn, namely the matrix A =

(
L(e1), L(e2), · · · , L(en)

)
.

Proof: Let L : Rn → Rm and let A = (u1, u2, · · · , un) ∈ Mm×n(R). If L(x) = Ax for
all x ∈ R then for each index k we have uk = Aek = L(ek). Conversely, suppose that
uk = L(ek) for every index k. Then for all x ∈ Rn we have

L(x) = L
( n∑
i=1

xiei
)

=
n∑

i=1

xi L(ei) =
n∑

i=1

xiui = Ax .

3.11 Notation: Often, we shall not make a notational distinction between the matrix
A ∈ Mm×n(R) and its corresponding linear map A : Rn → Rm given by A(x) = Ax.
When we do wish to make a distinction, we shall use the following notation. Given a
matrix A ∈Mm×n(R) we let LA : Rn → Rn be the linear map given by

LA(x) = Ax for all x ∈ Rn

and given a linear map L : Rn → Rm we let [L] be the corresponding matrix given by

[L] =
(
L(e1), L(e2), · · · , L(en)

)
∈Mm×n(R).

3.12 Definition: For a linear map L : Rn → Rm, the kernel (or the null set of L is the
set

Ker(L) = Null(L) = L−1(0) = {x ∈ Rn|L(x) = 0}

and the image (or the range of L) is the set

Image(L) = Range(L) = L(Rn) = {L(x)|x ∈ Rn}.

We also use the same terminology for a matrix A ∈ Mm×n(R) when we think of the
matrix as a linear map, so when A = [L] we have Ker(L) = Null(L) = Ker(A) = Null(A)
and Image(L) = Range(L) = Image(A) = Range(A) = Col(A). When F is a field and
L : Fn → Fm is linear, we define the rank and the nullity of L to be the dimensions

rank(L) = dim
(
Range(L)

)
and nullity(L) = dim

(
Null(L)

)
.

3.13 Theorem: Let R be a ring and let L : Rn → Rm be a linear map. Then

(1) L is surjective if and only if Range(L) = Fm, and
(2) L is injective if and only if Null(L) = {0}.

Proof: Part (1) is obvious, so we only prove Part (2). Note that since L is linear we have
L(0) = L(0 · 0) = 0L(0) = 0 and so 0 ∈ Null(L). Suppose that L is injective. Then for
x ∈ Rn we have x ∈ Null(L) =⇒ L(x) = 0 =⇒ L(x) = L(0) =⇒ x = 0 so Null(L) = {0}.
Conversely, suppose that Null(L) = {0}. Then for x, y ∈ Rn we have

L(x) = L(y) =⇒ L(x− y) = 0 =⇒ (x− y) ∈ Null(L) = {0} =⇒ x− y = 0 =⇒ x = y

and so L is injective.
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3.14 Example: The identity map on Rn is the map I : Rn → Rn given by I(x) = x for
all x ∈ Rn, and it corresponds to the identity matrix I ∈ Mn(R) with entries Ii,j = δi,j .
The zero map O : Rn → Rm given by O(x) = 0 for all x ∈ Rn corresponds to the zero
matrix O ∈Mm×n(R) with entries Oi,j = 0 for all i, j.

3.15 Note: Given linear maps L,M : Rn → Rm and K : Rm → Rl and given t ∈ R, the
maps (L + M) : Rn → Rn, tL and KL : Rn → Rl given by (L + M)(x) = L(x) + M(x),
(tL)(x) = t L(x) and (KL)(x) = K(L(x)) are all linear. For example, to see that KL is
linear, note that for x, y ∈ Rn and t ∈ R we have

(KL)(x+ y) = K
(
L(x+ y)

)
= K

(
L(x) + L(y)

)
= K

(
L(x)

)
+K

(
L(y)

)
= (KL)(x) + (KL)(y) , and

KL(tx) = K
(
L(tx)

)
= K

(
t L(x)

)
= tK

(
L(x)

)
= t(KL)(x).

3.16 Definition: Given A,B ∈Mm×n(R) we define A+B ∈Mm×n(R) to be the matrix
such that (A + B)(x) = Ax + Bx for all x ∈ Rn. Given A ∈ Mm×n(R) and t ∈ R, we
define tA ∈ Mm×n(R) to be the matrix such that (tA)(x) = t Ax for all x ∈ Rn. Given
A ∈ Ml×m(R) and B ∈ Mm×n(R) we define AB ∈ Ml×n(R) to be the matrix such that
(AB)x = A(Bx) for all x ∈ Rn.

3.17 Note: From the above definitions, it follows immediately that for all matrices A,B,C
of appropriate sizes and for all s, t ∈ R, we have

(1) (A+B) + C = A+ (B + C),
(2) A+B = B +A,
(3) O +A = A = A+O,
(4) A+ (−A) = 0,
(5) (AB)C = A(BC),
(6) IA = A = AI,
(7) OA = O and AO = O,
(8) (A+B)C = AC +BC and A(B + C) = AB +AC,
(9) s(tA) = (st)A,
(10) if R is commutative then A(tB) = t(AB),
(11) (s+ t)A = sA+ tA and t(A+B) = tA+ tB, and
(12) 0A = O, 1A = A and (−1)A = −A.

In particular, the set Mn(R) is a ring under addition and multiplication of matrices.

3.18 Theorem: For A,B ∈ Mm×n(R) and t ∈ R, the matrices A + B and tA are given
by (A + B)i,j = Ai,j + Bi,j and (tA)i,j = t Ai,j . For A = (u1, u2, · · · , ul)T ∈ Ml×m(R)
and B = (v1, v2, · · · , vn) ∈Mm×n(R), the matrix AB is given by

(AB)j,k = vj
Tuk =

m∑
i=1

Aj,iBi,k .

Proof: For A,B ∈Mm×n(R), the kth column of (A+B) is equal to (A+B)ek = Aek +Bek
which is the sum of the kth columns of A and B. It follows that (A+B)j,k = Aj,k +Bj,k

for all j, k. Similarly for t ∈ R, the kth column of tA is equal to (tA)ek = t Aek which is t
times the kth column of A.

Now let A = (u1, · · · , ul)T ∈ Ml×m(R) and B = (v1, · · · , vn) ∈ Mm×n(R). The kth

column of (AB) is equal to (AB)ek = A(Bek) = Avk, so the (j, k) entry of AB is equal to

(AB)j,k = vj
Tuk =

(
Aj,1, Aj,2, · · · , Aj,m

)
4



The Transpose and the Inverse

3.19 Definition: For a linear map L : Rn → Rm the transpose of L is the map
LT : Rm → Rn such that [LT ] = [L]T .

3.20 Note: When R is a ring, for A ∈ Mm×n(R) we have Row(A) = Col(AT ) and
Col(A) = Row(AT ). When F is a field, for A ∈ Mm×n(F ) we have rank(A) = rank(AT )
and for a linear map L : Rn → Rm we have rank(L) = rank(LT ).

3.21 Definition: For linear maps L : Rn → Rm and M : Rm → Rn, when LM = I
where I : Rm → Rm we say that L is a left inverse of M and that M is a right inverse
of L, and when LM = I and ML = I we say that L and M are (two-sided) inverses of
each other. When L : Rn → Rm has a (two-sided) inverse M : Rm → Rn we say that L is
invertible. We use the same terminology for matrices A ∈Mm×n(R) and B ∈Mn×m(R).

3.22 Theorem: Let R be a ring, let A ∈ Mm×n(R) and B ∈ Mn×m(R). If B is a left
inverse of A and C is a right inverse of A then B = C. A similar result holds for linear
maps L : Rn → Rm and K,M : Rm → Rn.

Proof: Suppose that BA = I and that AC = I. Then

B = BI = B(AC) = (BA)C = IC = C .

3.23 Theorem: Let R be a commutative ring.

(1) For A,B ∈Mm×n(R) and t ∈ R we have

(AT )T = A , (A+B)T = AT +BT and (tA)T = t AT .

A similar result holds for linear maps L,M : Rn → Rm.
(2) If A ∈Ml×m(R) and B ∈Mm×n(R) then

(AB)T = BTAT .

A similar result holds for linear maps L : Rl → Rm and M : Rm → Rn.

(3) For invertible matrices A,B ∈Mn(R) and for an invertible element t ∈ R we have

(A−1)−1 , (tA)−1 = 1
t A

−1 and (AB)−1 = B−1A−1.

A similar result holds for invertible linear maps L,M : Rn → Rn.

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that R is
commutative and let A ∈Ml×m(R) and B ∈Mm×n(R). Then for all indices j, k we have

(AB)T j,k = (AB)k,j =
m∑
i=1

Ak,iBi,j =
m∑
i=1

Bi,jAk,i =
m∑
i=1

BT j, iAT
i,k = (BTAT )j,k.

To prove Part (3), let A,B ∈ Mn(R) be invertible matrices and let t ∈ R be an
invertible element. Because AA−1 = I and A−1A = I, it follows that (A−1)−1 = A.
Because (tA)

(
1
tA
)

=
(
t · 1

t

)
AA−1 = 1 · I = I and similarly

(
1
tA
)(
tA
)

= I, it follows
that (tA)−1 = 1

t A. Because (AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = I and similarly
B−1A−1)(AB) = I, it follows that (AB)−1 = B−1A−1.
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3.24 Theorem: Let F be a field and let A ∈Mm×n(F ),

(1) A is surjective ⇐⇒ A has a right inverse matrix,
(2) A is injective ⇐⇒ A has a left inverse matrix,
(3) if A is bijective then n = m and A has a (two-sided) inverse matrix, and
(4) when n = m, A is bijective ⇐⇒ A is surjective ⇐⇒ A is injective.

A similar result holds for a linear map L : Rn → Rm.

Proof: We prove Part (1). Suppose first that A has a right inverse matrix, say AB = I
with B ∈Mn×n(F ). Then given y ∈ Fm we can choose x ∈ Fn to get

Ax = A(By) = (AB)y = Iy = y.

Thus A is surjective. Conversely, suppose that A is surjective. For each index k ∈
{1, 2, · · · ,m}, choose uk ∈ Fn so that Auk = ek, and then let B = (u1, u2, · · · , um) ∈
Mn×m(F ). Then we have

AB = A(u1, u2, · · · , um) =
(
Au1, Au2, · · · , Aum

)
= (e1, e2, · · · , em) = I .

To prove Part (2), suppose first that A has a left inverse matrix, say BA = I with
B ∈Mn×n(F ). Then for x ∈ Fn we have

Ax = 0 =⇒ B(Ax) = 0 =⇒ (BA)x = 0 =⇒ Ix = 0 =⇒ x = 0

and so Null(A) = {0}. Thus A is injective. Conversely, suppose that A is injective. Then
Null(A) = {}, so the columns of A are linearly independent, hence the rows of A span Fn,
equivalently the columns of AT span Fn, hence Range(AT ) = Fn and so AT is surjective.
Since AT is surjective, we can choose C ∈ Mm×n(F ) so that ATC = I. Let B = CT so
that ATBT = I. Transpose both sides to get BA = IT = I. Thus the matrix B is a left
inverse of A.

Parts (3) and (4) follow easily from Parts (1) and (2) together with previous results
(namely Note 3.4, Corollary 3.7 and Theorems 3.13 and 3.22).

3.25 Note: To obtain a right inverse of a given matrix A ∈Mm×n(F ) using the method
described in the proof of Part (1) of the above theorem, we can find vectors u1, u2, · · · , um ∈
Fn such that Auk = ek for each index k by reducing each of the augmented matrices (A|ek).
Since the same row operations which are used to reduce (A|e1) to the form (R|u1), (with
R in reduced echelon form) will also reduce each of the augmented matrices (A|ek) to the
form (R|ek), we can solve all of the equations Auk = ek simultaneously by reducing the
matrix (A|I) = (A|e1, e2, · · · , em) to the form (R|u1, u2, · · · , um).

3.26 Example: Let A =

 1 3 2
2 4 1
1 1 0

 ∈M3(Q). Find A−1.

Solution: We have

(A|I) =

 1 3 2
2 4 1
1 1 0

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 ∼
 1 3 2

0 −2 −3
0 −2 −2

∣∣∣∣∣∣
1 0 0
−2 1 0
−1 0 1


∼

 1 3 2
0 1 3

2

0 −2 −2

∣∣∣∣∣∣
1 0 0
1 − 1

2 0

−1 0 1

 ∼
 1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
1
2 −1 5

2

− 1
2 1 − 3

2

1 −1 1


and so A−1 is equal to the matrix whichh appears on the right of the final matrix above.
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