MATH 146 Linear Algebra 1, Lecture Notes by Stephen New

Chapter 1. Concrete Vector Spaces and Affine Spaces

Rings and Fields

1.1 Definition: For a set S we write S x S = {(a,b)|a € S,b € S}. A binary operation
on S is amap *x:S5 xS — S, where for a,b € S we usually write *(a,b) as a * b.

1.2 Definition: A ring (with identity) is a set R together with two binary operations +
and - (called addition and multiplication), where for a,b € R we usually write a - b as ab,
and two distinct elements 0 and 1, such that

(1) + is associative: (a +b) +c=a+ (b+c¢) for all a,b,c € R,

(2) + is commutative: a +b =0+ a for all a,b € R,

(3) 0 is an additive identity: 0+ a = a for all a € R,

(4) every element has an additive inverse: for every a € R there exists b € R with a+b = 0,
(5) - is associative: (ab)c = a(bc) for all a,b,c € R,

(6) 1 is a multiplicative identity: 1-a = a for all a € R, and

(7) - is distributive over +: a(b+ ¢) = ab + ac for all a,b,c € R,

A ring R is called commutative when

(8) - is commutative: ab = ba for all a,b € R.

For a € R, we say that a is invertible (or that a has an inverse) when there exists an
element b € R such that ab =1 = ba. A field is a commutative ring F' such that

(9) every non-zero element has a multiplicative inverse: for every a € F' with a # 0 there
exists b € F' such that ab = 1.

An element in a field F' is called a number or a scalar.

1.3 Example: The set of integers Z is a commutative ring, but it is not a field because
it does not satisfy Property (9). The set of positive integers Z* = {1,2,3,---} is not a
ring because 0 ¢ Z* and Z™ does not satisfy Properties (3) and (4). The set of natural
numbers N = {0,1,2,---} is not a ring because it does not satisfy Property (4). The set
of rational numbers Q, the set of real numbers R and the set of complex numbers
C are all fields. For 2 < n € Z, the set Z,, = {0,1,---,n — 1} of integers modulo n is a
commutative ring, and Z,, is a field if and only if n is prime (in Z; = {0} we have 0 = 1,
so Z; is not a ring).

1.4 Remark: In a field, we can perform all of the usual arithmetical operations. The
next few theorems illustrate this.

1.5 Theorem: (Uniqueness of Inverse) Let R be a field. Let a € R. Then

(1) the additive inverse of a is unique: if a+b =0 = a + ¢ then b = c,
(2) if a has an inverse then it is unique: if ab =1 = ac then b = c.

Proof: To prove (1), suppose that a +b =0 = a + ¢. Then
b=0+b=(a+c)+b=b+(a+c)=((b+a)+c=(a+b)+c=0+c=c.
To prove (2), suppose that a # 0 and that ab =1 = ac. Then
b=1-b= (ac)b=b(ac) = (ba)c = (ab)c=1-c=c.

1



1.6 Definition: Let R be a ring and let a,b € R. We write the (unique) additive inverse
of a as —a, and we write b —a = b+ (—a). If @ has a multiplicative inverse, we write the

(unique) multiplicative inverse of a as a~!. When R is commutative, we also write a~! as

%, and we write % =b- %

1.7 Theorem: (Cancellation) Let R be a field. Then for all a,b,c € R, we have
(1)ifa+b=a+c thenb=c,

(2) if a4+ b= a then b =0, and

(3) ifa+b=0 then b = —a.

Let F be a field. Then for all a,b,c € F we have

(4) if ab = ac then either a =0 or b = c.
(5) if ab = a then either a =0 or b =1,
(6) if ab=1 then b = a~ ', and

(7) if ab = 0 then either a =0 or b = 0.

Proof: To prove (1), suppose that a + b = a 4+ ¢. Then we have
b=04+b=—-a+a+b=—-—a+a+c=0+c=c.

Part (2) follows from part (1) since if a + b = a then a + b = a + 0, and part (3) follows
from part (1) since if a + b = 0 then a + b = a + (—a). To prove part (4), suppose that
ab = ac and a # 0. Then we have
b=1-b=atab=a"ltac=1-c=c.

Note that parts (5), (6) and (7) all follow from part (4).
1.8 Remark: In the above proof, we used associativity and commutativity implicitly. If
we wished to be explicit then the proof of part (1) would be as follows. Suppose that
a+b=a+ c. Then we have
b=0+b=(a—a)+b=(—a+a)+b=—a+(a+b) = —a+(a+c) = (—a+a)+c=0+c=rc.
In the future, we shall often use associativity and commutativity implicitly in our calcula-
tions.
1.9 Theorem: (Multiplication by 0 and —1) Let R be a ring and let a € R. Then
(1) 0-a =0, and
(2) (=1)a = —a.
Proof: We have

0a = (04 0)a = Oa + Oa.

Subtracting Oa from both sides (using part 2 of the Cancellation Theorem) gives 0 = Oa.
Also, we have
a+(—1)a=1)a+ (-1)a=(1+(-1))a=0a =0,

and subtracting a from both sides (part 3 of the Cancellation Theorem) gives (—1)a = —a.



The Standard Vector Space

1.10 Definition: Let S be a set. An n-tuple on S is a function a : {1,2,---,n} — S.
Given an n-tuple a on S, for k € {1,2,---,n} we write ar = a(k). The set {1,2,---,n}

is called the index set, an element k € {1,2,---,n} is called an index, and the element
ap € S is called the k" entry of a. We sometimes write a = (a1, az,- -, ay) but we more
often write

ai

a2

a = (a17a27"'7an)T =

Qnp

to indicate that a is the n-tuple with entries a1, as, - - -, a,. The set of all n-tuples on 5 is

denoted by S™, so we have
S" = {a = (al,a2,~--,an)T‘ each a; € S}.
1.11 Definition: For a ring R, we define the zero element 0 € R" to be
0=(0,0,0,---,0)"

or equivalently we define 0 € R™ to be the element with entries 0; = 0 for all i. We define
the standard basis elements e¢1,e5,---,¢e, € R™ to be

€1 :(1707070"'70)T7
ez = (0,1,0,0,---,07,
63:(07071707"'70>T7

en = (0,0,0,---,0,1)%.

1if k=i,

Equivalently, for each index k we define e, € R™ to be given by (eg); = 0g; = { 0if k£ 1
i i.

1.12 Definition: Givent € R,z = (z1, 22, ,2,)T € R"andy = (y1,%2, - -, Yn)’ € R",
where R is a ring, we define the product tz and the sum z + y by

T tSCl
i) til?g
tr =1 . = . )
Tn tx,
x1 Y1 1+
2 Y2 T2 + Y2
TH+Yy = : +1 . = .
Tn Yn Tp + Yn

Equivalently, we can define tx to be the element with entries (tz); = t z; for all ¢, and we
can define = + y to be the element with entries (z + y); = x; + y; for all 1.
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1.13 Note: For 1,2, -+, 2, € R, notice that

n
T
(1, T2, -+, Ty)" = D Tie; = T1€1 + To€y + -+ + Tpey.
i=1

1.14 Theorem: (Basic Properties of R™) Let R be a ring. Then

(1) + is associative: (x +y)+z=x+ (y+ 2) for all z,y,z € R",

(2) + is commutative: x +y =y + x for all x,y € R",

(3) 0 € R™ is an additive identity 0 + x = x for all x € R",

(4) every x € R™ has an additive inverse: for all x € R™ there exists y € R" withz+y = 0,
(5) - is associative: (st)x = s(tx) for all s,t € R and all z € R",

(7) - distributes over addition in R: (s +t)x = sx + tx, for all s,t € R and = € R",

(8) - distributes over addition in R"™: t(x +y) = tx + ty for allt € R and x,y € R", and
(9) 1 € R acts a multiplicative identity: lx = x for all x € R™.

Proof: To prove part (4), let € R™ and choose y = (—1)x. Then for all indices ¢ we have
yi = ((-1)x); = —z; and so (x +y); = x; — x; = 0. Since (z + y); = 0 for all ¢, we have
x+y = 0, as required. To prove part (8),let ¢t € R and let z,y € R™. Then for all i we have
(Hx+y)), =tl@x+y)i =t(xi+ys) = ta; +ty; = (tx+ty);. Since (t(z+y)), = (tz +ty);
for all 7, we have t(x + y) = tx + ty. The other parts can be proven similarly.

1.15 Definition: When F' is a field, F'" is called the standard n-dimensional vector
space over F', and an element of F" is called a point or a vector.

1.16 Example: Let n =2 or 3 and let u,v € R™. If u # 0 then the set {tu|t € R} is the
line in R™ through the points 0 and u, and the set {tu|0 < ¢ < 1} is the line segment in R?
between 0 and u. If u # 0 and v does not lie on the line through 0 and u, then the points 0,
u, v and u 4 v are the veritices of a parallelogram P in R", the set {su+tv|s € R,t € R}
is the plane which contains P (in that case that n = 2, this plane is the entire set R?), the
set {su+tv|0 < s<1,0 <t <1} is the set of points inside (and on the edges of) P. As
an exercise, describe the sets {su + tv|s +t =1} and {su +tv|s > 0,t > 0,s +t < 1}.



Vector Spaces and Affine Spaces in F»

1.17 Definition: Let F' be a field. Given a point p € F™ and a non-zero vector u € F",
we define the line in F" through p in the direction of u to be the set

L={p+tult e F}.

Given a point p € F” and two vectors u,v € R™ with v # 0 and v # tu for any t € F', we
define the plane in F™ through p in the direction of u and v to be the set

P={p+su+tv|steF}

1.18 Remark: We wish to generalize the above definitions by defining higher dimensional
versions of lines and planes.

1.19 Note: For a finite set S, the cardinality of S, denoted by |S|, is the number of
elements in S. When we write S = {a1, a2, -, an}, we shall always tacitly assume that
the elements a; € S are all distinct so that |S| = m unless we explicitly indicate otherwise.

1.20 Definition: Let R be aring, let A = {uq,us, -, un} € R™. A linear combination
on A (over R) is an element x € R™ of the form

xr = z tiui = t1u1 + t2U2 + -+ tmum with each ti € R.
i=1
The span of A (over R) (also called the submodule of R" spanned by A over R), is the
set of all linear combinations on A. We denote the span of A by Span.A (or by Spang.A)
so we have

Span A = Span , A = { tiu;
i=1

each t; € R}.

For convenience, we also define Span () = {0}, where () is the empty set. Given an element
p € R™, we write

p+ Span A = {p~|— u’u € SpanA} = {p+ > tiu;
i=1

1.21 Definition: Let F be a field. For a finite set A C F™ the set U = Span A is called
the vector space in F” (or the subspace of F") spanned by A (over F'). A vector space
in F™ (or a subspace of F'™) is a subset U C F™ of the form U = Span A for some finite
subset A C F™. Given a point p € F™ and a finite set A C F™, the set P = p + Span A is
called the affine space in F" (or the affine subspace of F'™) through p in the direction
of the vectors in A. An affine space in F" (or an affine subspace of F") is a subset
P C F™ of the form P = p+ U for some point p € F™ and some vector space U in F". An
element in a subspace of F" can be called a point or a vector. An element in an affine
subspace of F'" is usually called a point.

1.22 Theorem: (Closure under Addition and Multiplication) Let R be a ring, let A be a
finite subset of R, and let U = Span . A. Then

(1) U is closed under addition: for all x,y € U we have x +y € U, and
(2) U is closed under multiplication: for allt € R and all x € U we have tx € U.

each t; € R}.

Proof: Let A = {uj,ua, -, un}, let t € R and let x,y € U = Span A, say x = > s;u;
i=1

m m

and y = > tju;. Thenx+y= > (s; +t;)u; € U and te = ) (ts;)u; € U.
i=1 i=1 i=1



1.23 Theorem: Let R be a ring, let p,q € R", let A and B be finite subsets of R", and
let U = Span A and V = Span B. Then

(1) p+U Cq+Vifand only if U CV andp—q € V, and
(2)p+U=¢q+V ifand only if U =V andp—q e U.

Proof: Suppose that p+U C ¢+ V. Since p=p+0 € p+ U, we also have p € ¢+ V, say
p=q+vwhereveV. Thenp—qg=veV. Let u € U. Then we have p+u € p+U and so
pt+u € q+V, say p+u = g+w wherew € V. Thenu =w—(p—q) =w—v =w+(-1)v eV
by closure. Conversely, suppose that U C V and p—q € V,sayp—q=v € V. Let a € p+U,
say @ = p+u where u € U. Then we havea =p+u=(¢+v)+u=q+ (u+v)€q+V
by closure, since u,v € V. This proves Part (1), from which Part (2) immediately follows.

1.24 Theorem: Let A = {uy,us, --,u;} € R" and let B = {vy,vs, -, v} C R™, where
R is a ring. Then

(1) Span. A C Span B if and only if each u; € Span B, and

(2) Span A = Span B if and only if each u; € Span B and each v; € Span A.

Proof: Note that each u; € Span A because we can write u; as a linear combination on A,
indeed we have

l
U; = 0u1 —|—OU2 + - +OUj_1 + 1Uj —|—0?,l,j+1 + - —|—0Ul = thzuz with ti = 6”
1=

It follows that if Span.A C Span B then we have each u; € SpanB. Suppose, conversely,

m l
that each u; € Span B, say u; = sjiv;. Let © € Span A, say = ) t;u;. Then

i=1 j=1
l l m m l
xr = Z tjUj = Z tj Z 84V = Z ( Z thji)Ufl: € Span B.
j=1 j=1 =1 =1 “j=1

This Proves part (1), and Part (2) follows immediately from part (1).



Linear Independence, Bases and Dimension

1.25 Definition: Let R be a ring. For A = {uj,ug, -+, uyn} C R", we say that A is
m

linearly independent (over R) when for all t1,ts, -, t,, € R, if Y t;u; = 0 then each
i=1

t; = 0, and otherwise we say that A is linearly dependent. For convenience, we also say

that the empty set () is linearly independent. For a finite set A C F", when A is linearly

independent and U = Span A, we say that A is a basis for U.

1.26 Example: Let F be a field. The empty set () is linearly independent and Span () = {0}
and so () is a basis for the vector space {0} in F™. If 0 # u € F™ then {u} is linearly
independent and so {u} is a basis for Span {u}. As an exercise, verify that for u,v € F™,
the set {u, v} is linearly independent if and only if u # 0 and for all ¢ € F' we have v # tu.

1.27 Example: Verify that the set {ej,e2,---,e,} is a basis for F". We call it the
standard basis for F™.

1.28 Theorem: Let F' be a field and let A = {uy,us, -, uy} C F™. Then
(1) for 1 < k < 'm, we have uj, € Span (A\ {u;}) if and only if Span (A\ {uy}) = Span A,
(2) A is linearly dependent if and only if uy, € Span (A \ {u,,}) for some index k.

Proof: Note that if Span (A \ {ux}) = Span.A then u, € Span.A = Span (A \ {us}).

Suppose, conversely, that uyp € Span (A\ {uk}), say up = Y, S;u; where each s; € F.
itk

Since A\ {ur} € A it is clear that Span (A \ {ux}) C Span.A. Let # € SpanA, say

x = Y tyu;. Then we have © = tpur + > tiu; = tx Y siu; + Y, t;u; € Span (A \ {uk})

i=1 ik i#k ik
This proves Part (1).

Note that since A\ {ux} C A, we have Span (A\ {ux}) C Span.A. Suppose that A is

linearly dependent. Choose coefficients s; € F', not all equal to zero, so that > s;u; = 0.

=1
Choose an index k so that s # 0. Since 0 = spur + Y, S;u; we have up, = — Y Ss—k U;.
i£k i£k
m
For z = Y t;u; € Span A we have x = trur + > tiu; = —tg j—uZ + > tiu; €
i=1 i+k itk " i£k

Span (.A\{uk}) This shows that if A is linearly dependent then Span (.A\{uk}) = Span A.

1.29 Theorem: Let F be a field, let A = {uy,us, -+, u,} € F™, and let U = Span A.
Then A contains a basis for U.

Proof: If A is linearly independent, then A is a basis for U. Suppose that A is lin-
early dependent. Then for some index k& we have uj € Span (A \ {ur}). Reordering
the vectors if necessary, let us assume that u,, € Span(A \ {u,}). Then we have
Span {uy,ug, -+, Upm—1} = Span{uy,ug, -, upn} = U. If {ug,us, -, uy_1} is linearly
independent then it is a basis for U. Otherwise, as above, we can reorder uy, us, -+, Upm_1
if necessary so that Span {uy,us,- -, um—2} = Span{uq,us, -, um—1} = U. Repeating
this procedure we will eventually obtain a linearly independent subset {uy,us, -, ux} C A
with Span {uy,us, -, ur} = U (if the procedure continues until no vectors are left then
we have k = 0 and {uy,---,ux} = (), which is linearly independent).

1.30 Corollary: For a field F', every subspace of F™ has a basis.



1.31 Theorem: Let I be a field, let A = {uy,ug, -, up} C F", let ay,a9, -+, 0y € F
with ay, # 0, and let B = {v1,vs, -+, vy} where v; = u; for i # k and vy, = >, a;u;. Then

i=1
(1) Span. A = Span B and
(2) A is linearly independent if and only if B is linearly independent.

m m
Proof: For z = Y_ t;u; € Span B, we have x = tyvr + > tiv; = tg > a;u; + Y. t;u; and
i=1 i#k i=1 i#k
so ¢ € Span A. This shows that Span B C Span A.
m

Suppose A is linearly independent. Suppose Y t;v; = 0 where each ¢; € F'. Then
i=1

m
0=1trvr + Z t;v; = Tk Z a;u; + Z tiu; = tparur + Z (tkai + tz)uz
iZk i=1 ik ik
Since A is linearly independent, all of the coefficients in the above linear combination on
A must be equal to zero, so we have trar = 0 and tpa; +t; = 0 for i # k. Since trar =0
and ay # 0 we have t; = 0 and hence 0 = ta; +t; = t; for all ¢ # k. This shows that B is
linearly independent.

m
Finally note that since vy, = ) a;u; = agug + > a;v; with ap # 0, it follows that
i=1 iZk

m

ug = > bjv; where b, = i # 0 and b; = —g—; for i # k. Hence the same arguments
i=1

used in the previous two paragraphs, with the roles of A and B interchanged, show that

Span A C Span B and that if B is linearly independent then so is A.

1.32 Theorem: Let F be a field, let U be a subspace of F™ and let A = {uy,us, -, U}
be a basis for U. Let B = {vy,va,---,v} C U. Suppose that B is linearly independent.
Then | < m, if | = m then B is a basis for U, and if | < m then there exist m — | vectors
in A which, after possibly reordering the vectors u; we can take to be w41, Ujy2, -, Upm,
such that the set {v1,vo, -, U, W41, U2, -+, Uy } IS a basis for U.

Proof: When [ = 0 so that B = (), we have m — [ = m and we use all m of the vectors in A
to obtain the basis {uy,us, -+, um}. Let [ > 1 and suppose, inductively, that for every set
By = {v1,v2, -, ui_1} C U, if By is linearly independent then we have [ — 1 < m and we
can reorder the vectors u; so that {vy,va, -+, v;_1,u;, uj41, -, Uy} is a basis for U. Let
B = {vi,va,--+,v} CU. Suppose B is linearly independent. Let By = {vy,va, -+, v;—1}.
Note that By is linearly independent but B, idoes not span U because v; € U but v; ¢
Span By. By the induction hypothesis, we have [ — 1 < m and we can reorder the vectors

u; so that {vi,va, -, vi_1,u;, U1, -+, Uy} is a basis for U. Since v; € U we can write
-1 m

vy in the form v; = ) t;v; + ) s;u;. Note that the coefficients s; cannot all be equal to
i=1 i=l

zero since v; ¢ Span By. After reordering the vectors u; we can suppose that s; # 0. By

Theorem XX, the set {vy,ve, -, v—1,V, U1, Un} is a basis fot U (in the case that

[ — 1 = m this basis is the set B).

1.33 Corollary: For a vector space U in F", any two bases for U have the same number
of elements.

1.34 Definition: For a vector space U in F", we define the dimension of U, denoted by
dim U, to be the number of elements in any basis for U. For an affine space P =p+ U in
F" we define the dimension of P to be dim P = dimU.



