
MATH 146 Linear Algebra 1, Lecture Notes by Stephen New

Chapter 1. Concrete Vector Spaces and Affine Spaces

Rings and Fields

1.1 Definition: For a set S we write S×S = {(a, b)|a ∈ S, b ∈ S}. A binary operation
on S is a map ∗ : S × S → S, where for a, b ∈ S we usually write ∗(a, b) as a ∗ b.

1.2 Definition: A ring (with identity) is a set R together with two binary operations +
and · (called addition and multiplication), where for a, b ∈ R we usually write a · b as ab,
and two distinct elements 0 and 1, such that

(1) + is associative: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R,
(2) + is commutative: a+ b = b+ a for all a, b ∈ R,
(3) 0 is an additive identity: 0 + a = a for all a ∈ R,
(4) every element has an additive inverse: for every a ∈ R there exists b ∈ R with a+b = 0,
(5) · is associative: (ab)c = a(bc) for all a, b, c ∈ R,
(6) 1 is a multiplicative identity: 1 · a = a for all a ∈ R, and
(7) · is distributive over +: a(b+ c) = ab+ ac for all a, b, c ∈ R,

A ring R is called commutative when
(8) · is commutative: ab = ba for all a, b ∈ R.

For a ∈ R, we say that a is invertible (or that a has an inverse) when there exists an
element b ∈ R such that ab = 1 = ba. A field is a commutative ring F such that
(9) every non-zero element has a multiplicative inverse: for every a ∈ F with a 6= 0 there
exists b ∈ F such that ab = 1.

An element in a field F is called a number or a scalar.

1.3 Example: The set of integers Z is a commutative ring, but it is not a field because
it does not satisfy Property (9). The set of positive integers Z+ = {1, 2, 3, · · ·} is not a
ring because 0 /∈ Z+ and Z+ does not satisfy Properties (3) and (4). The set of natural
numbers N = {0, 1, 2, · · ·} is not a ring because it does not satisfy Property (4). The set
of rational numbers Q, the set of real numbers R and the set of complex numbers
C are all fields. For 2 ≤ n ∈ Z, the set Zn = {0, 1, · · · , n− 1} of integers modulo n is a
commutative ring, and Zn is a field if and only if n is prime (in Z1 = {0} we have 0 = 1,
so Z1 is not a ring).

1.4 Remark: In a field, we can perform all of the usual arithmetical operations. The
next few theorems illustrate this.

1.5 Theorem: (Uniqueness of Inverse) Let R be a field. Let a ∈ R. Then

(1) the additive inverse of a is unique: if a+ b = 0 = a+ c then b = c,
(2) if a has an inverse then it is unique: if ab = 1 = ac then b = c.

Proof: To prove (1), suppose that a+ b = 0 = a+ c. Then

b = 0 + b = (a+ c) + b = b+ (a+ c) = (b+ a) + c = (a+ b) + c = 0 + c = c .

To prove (2), suppose that a 6= 0 and that ab = 1 = ac. Then

b = 1 · b = (ac)b = b(ac) = (ba)c = (ab)c = 1 · c = c .
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1.6 Definition: Let R be a ring and let a, b ∈ R. We write the (unique) additive inverse
of a as −a, and we write b− a = b+ (−a). If a has a multiplicative inverse, we write the
(unique) multiplicative inverse of a as a−1. When R is commutative, we also write a−1 as
1
a , and we write b

a = b · 1a .

1.7 Theorem: (Cancellation) Let R be a field. Then for all a, b, c ∈ R, we have

(1) if a+ b = a+ c then b = c,
(2) if a+ b = a then b = 0, and
(3) if a+ b = 0 then b = −a.

Let F be a field. Then for all a, b, c ∈ F we have

(4) if ab = ac then either a = 0 or b = c.
(5) if ab = a then either a = 0 or b = 1,
(6) if ab = 1 then b = a−1, and
(7) if ab = 0 then either a = 0 or b = 0.

Proof: To prove (1), suppose that a+ b = a+ c. Then we have

b = 0 + b = −a+ a+ b = −a+ a+ c = 0 + c = c .

Part (2) follows from part (1) since if a + b = a then a + b = a + 0, and part (3) follows
from part (1) since if a + b = 0 then a + b = a + (−a). To prove part (4), suppose that
ab = ac and a 6= 0. Then we have

b = 1 · b = a−1ab = a−1ac = 1 · c = c .

Note that parts (5), (6) and (7) all follow from part (4).

1.8 Remark: In the above proof, we used associativity and commutativity implicitly. If
we wished to be explicit then the proof of part (1) would be as follows. Suppose that
a+ b = a+ c. Then we have

b = 0+b = (a−a)+b = (−a+a)+b = −a+(a+b) = −a+(a+c) = (−a+a)+c = 0+c = c.

In the future, we shall often use associativity and commutativity implicitly in our calcula-
tions.

1.9 Theorem: (Multiplication by 0 and −1) Let R be a ring and let a ∈ R. Then

(1) 0 · a = 0, and
(2) (−1)a = −a.

Proof: We have
0a = (0 + 0)a = 0a+ 0a.

Subtracting 0a from both sides (using part 2 of the Cancellation Theorem) gives 0 = 0a.
Also, we have

a+ (−1)a = (1)a+ (−1)a = (1 + (−1))a = 0a = 0,

and subtracting a from both sides (part 3 of the Cancellation Theorem) gives (−1)a = −a.
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The Standard Vector Space

1.10 Definition: Let S be a set. An n-tuple on S is a function a : {1, 2, · · · , n} → S.
Given an n-tuple a on S, for k ∈ {1, 2, · · · , n} we write ak = a(k). The set {1, 2, · · · , n}
is called the index set, an element k ∈ {1, 2, · · · , n} is called an index, and the element
ak ∈ S is called the kth entry of a. We sometimes write a = (a1, a2, · · · , an) but we more
often write

a = (a1, a2, · · · , an)T =


a1
a2
...
an


to indicate that a is the n-tuple with entries a1, a2, · · · , an. The set of all n-tuples on S is
denoted by Sn, so we have

Sn =
{
a = (a1, a2, · · · , an)T

∣∣∣ each ai ∈ S
}
.

1.11 Definition: For a ring R, we define the zero element 0 ∈ Rn to be

0 = (0, 0, 0, · · · , 0)T

or equivalently we define 0 ∈ Rn to be the element with entries 0i = 0 for all i. We define
the standard basis elements e1, e2, · · · , en ∈ Rn to be

e1 = (1, 0, 0, 0 · · · , 0)T ,

e2 = (0, 1, 0, 0, · · · , 0T ,
e3 = (0, 0, 1, 0, · · · , 0)T ,

...

en = (0, 0, 0, · · · , 0, 1)T .

Equivalently, for each index k we define ek ∈ Rn to be given by (ek)i = δki =

{
1 if k = i,

0 if k 6= i.

1.12 Definition: Given t ∈ R, x = (x1, x2, · · · , xn)T ∈ Rn and y = (y1, y2, · · · , yn)T ∈ Rn,
where R is a ring, we define the product tx and the sum x+ y by

tx = t


x1
x2
...
xn

 =


t x1
t x2

...
t xn

 ,

x+ y =


x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn

 .

Equivalently, we can define tx to be the element with entries (tx)i = t xi for all i, and we
can define x+ y to be the element with entries (x+ y)i = xi + yi for all i.
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1.13 Note: For x1, x2, · · · , xn ∈ R, notice that

(x1, x2, · · · , xn)T =
n∑

i=1

xiei = x1e1 + x2e2 + · · ·+ xnen.

1.14 Theorem: (Basic Properties of Rn) Let R be a ring. Then

(1) + is associative: (x+ y) + z = x+ (y + z) for all x, y, z ∈ Rn,
(2) + is commutative: x+ y = y + x for all x, y ∈ Rn,
(3) 0 ∈ Rn is an additive identity 0 + x = x for all x ∈ Rn,
(4) every x ∈ Rn has an additive inverse: for all x ∈ Rn there exists y ∈ Rn with x+y = 0,
(5) · is associative: (st)x = s(tx) for all s, t ∈ R and all x ∈ Rn,
(7) · distributes over addition in R: (s+ t)x = sx+ tx, for all s, t ∈ R and x ∈ Rn,
(8) · distributes over addition in Rn: t(x+ y) = tx+ ty for all t ∈ R and x, y ∈ Rn, and
(9) 1 ∈ R acts a multiplicative identity: 1x = x for all x ∈ Rn.

Proof: To prove part (4), let x ∈ Rn and choose y = (−1)x. Then for all indices i we have
yi = ((−1)x)i = −xi and so (x + y)i = xi − xi = 0. Since (x + y)i = 0 for all i, we have
x+y = 0, as required. To prove part (8), let t ∈ R and let x, y ∈ Rn. Then for all i we have(
t(x+ y)

)
i

= t(x+ y)i = t(xi + yi) = t xi + t yi = (tx+ ty)i. Since
(
t(x+ y)

)
i

= (tx+ ty)i
for all i, we have t(x+ y) = tx+ ty. The other parts can be proven similarly.

1.15 Definition: When F is a field, Fn is called the standard n-dimensional vector
space over F , and an element of Fn is called a point or a vector.

1.16 Example: Let n = 2 or 3 and let u, v ∈ Rn. If u 6= 0 then the set {tu|t ∈ R} is the
line in Rn through the points 0 and u, and the set {tu|0 ≤ t ≤ 1} is the line segment in R2

between 0 and u. If u 6= 0 and v does not lie on the line through 0 and u, then the points 0,
u, v and u+ v are the veritices of a parallelogram P in Rn, the set {su+ tv|s ∈ R, t ∈ R}
is the plane which contains P (in that case that n = 2, this plane is the entire set R2), the
set {su + tv|0 ≤ s ≤ 1, 0 ≤ t ≤ 1} is the set of points inside (and on the edges of) P . As
an exercise, describe the sets {su+ tv|s+ t = 1} and {su+ tv|s ≥ 0, t ≥ 0, s+ t ≤ 1}.
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Vector Spaces and Affine Spaces in Fn

1.17 Definition: Let F be a field. Given a point p ∈ Fn and a non-zero vector u ∈ Fn,
we define the line in Fn through p in the direction of u to be the set

L =
{
p+ tu

∣∣t ∈ F}.
Given a point p ∈ Fn and two vectors u, v ∈ Rn with u 6= 0 and v 6= tu for any t ∈ F , we
define the plane in Fn through p in the direction of u and v to be the set

P =
{
p+ su+ tv

∣∣ s, t ∈ F}.
1.18 Remark: We wish to generalize the above definitions by defining higher dimensional
versions of lines and planes.

1.19 Note: For a finite set S, the cardinality of S, denoted by |S|, is the number of
elements in S. When we write S = {a1, a2, · · · , am}, we shall always tacitly assume that
the elements ai ∈ S are all distinct so that |S| = m unless we explicitly indicate otherwise.

1.20 Definition: Let R be a ring, letA = {u1, u2, · · · , um} ⊆ Rn. A linear combination
on A (over R) is an element x ∈ Rn of the form

x =
m∑
i=1

tiui = t1u1 + t2u2 + · · ·+ tmum with each ti ∈ R.

The span of A (over R) (also called the submodule of Rn spanned by A over R), is the
set of all linear combinations on A. We denote the span of A by SpanA (or by SpanRA)
so we have

SpanA = Span
R
A =

{ m∑
i=1

tiui

∣∣∣ each ti ∈ R
}
.

For convenience, we also define Span ∅ = {0}, where ∅ is the empty set. Given an element
p ∈ Rn, we write

p+ SpanA =
{
p+ u

∣∣∣u ∈ SpanA
}

=
{
p+

m∑
i=1

tiui

∣∣∣ each ti ∈ R
}
.

1.21 Definition: Let F be a field. For a finite set A ⊆ Fn the set U = SpanA is called
the vector space in Fn (or the subspace of Fn) spanned by A (over F ). A vector space
in Fn (or a subspace of Fn) is a subset U ⊆ Fn of the form U = SpanA for some finite
subset A ⊆ Fn. Given a point p ∈ Fn and a finite set A ⊆ Fn, the set P = p+ SpanA is
called the affine space in Fn (or the affine subspace of Fn) through p in the direction
of the vectors in A. An affine space in Fn (or an affine subspace of Fn) is a subset
P ⊆ Fn of the form P = p+U for some point p ∈ Fn and some vector space U in Fn. An
element in a subspace of Fn can be called a point or a vector. An element in an affine
subspace of Fn is usually called a point.

1.22 Theorem: (Closure under Addition and Multiplication) Let R be a ring, let A be a
finite subset of R, and let U = SpanA. Then

(1) U is closed under addition: for all x, y ∈ U we have x+ y ∈ U , and
(2) U is closed under multiplication: for all t ∈ R and all x ∈ U we have tx ∈ U .

Proof: Let A = {u1, u2, · · · , um}, let t ∈ R and let x, y ∈ U = SpanA, say x =
m∑
i=1

siui

and y =
m∑
i=1

tiui. Then x+ y =
m∑
i=1

(si + ti)ui ∈ U and tx =
m∑
i=1

(tsi)ui ∈ U .
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1.23 Theorem: Let R be a ring, let p, q ∈ Rn, let A and B be finite subsets of Rn, and
let U = SpanA and V = SpanB. Then

(1) p+ U ⊆ q + V if and only if U ⊆ V and p− q ∈ V , and
(2) p+ U = q + V if and only if U = V and p− q ∈ U .

Proof: Suppose that p+ U ⊆ q + V . Since p = p+ 0 ∈ p+ U , we also have p ∈ q + V , say
p = q+v where v ∈ V . Then p−q = v ∈ V . Let u ∈ U . Then we have p+u ∈ p+U and so
p+u ∈ q+V , say p+u = q+w where w ∈ V . Then u = w−(p−q) = w−v = w+(−1)v ∈ V
by closure. Conversely, suppose that U ⊆ V and p−q ∈ V , say p−q = v ∈ V . Let a ∈ p+U ,
say a = p+ u where u ∈ U . Then we have a = p+ u = (q + v) + u = q + (u+ v) ∈ q + V
by closure, since u, v ∈ V . This proves Part (1), from which Part (2) immediately follows.

1.24 Theorem: Let A = {u1, u2, · · · , ul} ⊆ Rn and let B = {v1, v2, · · · , vm} ⊆ Rn, where
R is a ring. Then

(1) SpanA ⊆ SpanB if and only if each uj ∈ SpanB, and
(2) SpanA = SpanB if and only if each uj ∈ SpanB and each vj ∈ SpanA.

Proof: Note that each uj ∈ SpanA because we can write uj as a linear combination on A,
indeed we have

uj = 0u1 + 0u2 + · · ·+ 0uj−1 + 1uj + 0uj+1 + · · ·+ 0ul =
l∑

i=1

tiui with ti = δij .

It follows that if SpanA ⊆ SpanB then we have each uj ∈ SpanB. Suppose, conversely,

that each uj ∈ SpanB, say uj =
m∑
i=1

sjivi. Let x ∈ SpanA, say x =
l∑

j=1

tjuj . Then

x =
l∑

j=1

tjuj =
l∑

j=1

tj
m∑
i=1

sjivi =
m∑
i=1

( l∑
j=1

tjsji
)
vi ∈ SpanB.

This Proves part (1), and Part (2) follows immediately from part (1).
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Linear Independence, Bases and Dimension

1.25 Definition: Let R be a ring. For A = {u1, u2, · · · , um} ⊆ Rn, we say that A is

linearly independent (over R) when for all t1, t2, · · · , tm ∈ R, if
m∑
i=1

tiui = 0 then each

ti = 0, and otherwise we say that A is linearly dependent. For convenience, we also say
that the empty set ∅ is linearly independent. For a finite set A ⊆ Fn, when A is linearly
independent and U = SpanA, we say that A is a basis for U .

1.26 Example: Let F be a field. The empty set ∅ is linearly independent and Span ∅ = {0}
and so ∅ is a basis for the vector space {0} in Fn. If 0 6= u ∈ Fn then {u} is linearly
independent and so {u} is a basis for Span {u}. As an exercise, verify that for u, v ∈ Fn,
the set {u, v} is linearly independent if and only if u 6= 0 and for all t ∈ F we have v 6= tu.

1.27 Example: Verify that the set {e1, e2, · · · , en} is a basis for Fn. We call it the
standard basis for Fn.

1.28 Theorem: Let F be a field and let A = {u1, u2, · · · , um} ⊆ Fn. Then

(1) for 1 ≤ k ≤ m, we have uk ∈ Span
(
A\ {uk}

)
if and only if Span

(
A\ {uk}

)
= SpanA,

(2) A is linearly dependent if and only if uk ∈ Span
(
A \ {um}

)
for some index k.

Proof: Note that if Span
(
A \ {uk}

)
= SpanA then uk ∈ SpanA = Span

(
A \ {uk}

)
.

Suppose, conversely, that uk ∈ Span
(
A \ {uk}

)
, say uk =

∑
i 6=k

siui where each si ∈ F .

Since A \ {uk} ⊆ A it is clear that Span
(
A \ {uk}

)
⊆ SpanA. Let x ∈ SpanA, say

x =
m∑
i=1

tiui. Then we have x = tkuk +
∑
i 6=k

tiui = tk
∑
i 6=k

siui +
∑
i6=k

tiui ∈ Span
(
A \ {uk}

)
.

This proves Part (1).
Note that since A\ {uk} ⊆ A, we have Span

(
A\ {uk}

)
⊆ SpanA. Suppose that A is

linearly dependent. Choose coefficients si ∈ F , not all equal to zero, so that
m∑
i=1

siui = 0.

Choose an index k so that sk 6= 0. Since 0 = skuk +
∑
i 6=k

siui we have uk = −
∑
i 6=k

si
sk
ui.

For x =
m∑
i=1

tiui ∈ SpanA we have x = tkuk +
∑
i 6=k

tiui = −tk
∑
i6=k

si
sk
ui +

∑
i 6=k

tiui ∈

Span
(
A\{uk}

)
. This shows that if A is linearly dependent then Span

(
A\{uk}

)
= SpanA.

1.29 Theorem: Let F be a field, let A = {u1, u2, · · · , um} ⊆ Fn, and let U = SpanA.
Then A contains a basis for U .

Proof: If A is linearly independent, then A is a basis for U . Suppose that A is lin-
early dependent. Then for some index k we have uk ∈ Span (A \ {uk}). Reordering
the vectors if necessary, let us assume that um ∈ Span (A \ {um}). Then we have
Span {u1, u2, · · · , um−1} = Span {u1, u2, · · · , um} = U . If {u1, u2, · · · , um−1} is linearly
independent then it is a basis for U . Otherwise, as above, we can reorder u1, u2, · · · , um−1
if necessary so that Span {u1, u2, · · · , um−2} = Span {u1, u2, · · · , um−1} = U . Repeating
this procedure we will eventually obtain a linearly independent subset {u1, u2, · · · , uk} ⊆ A
with Span {u1, u2, · · · , uk} = U (if the procedure continues until no vectors are left then
we have k = 0 and {u1, · · · , uk} = ∅, which is linearly independent).

1.30 Corollary: For a field F , every subspace of Fn has a basis.
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1.31 Theorem: Let F be a field, let A = {u1, u2, · · · , um} ⊆ Fn, let a1, a2, · · · , am ∈ F
with ak 6= 0, and let B = {v1, v2, · · · , vm} where vi = ui for i 6= k and vk =

m∑
i=1

aiui. Then

(1) SpanA = SpanB and
(2) A is linearly independent if and only if B is linearly independent.

Proof: For x =
m∑
i=1

tivi ∈ SpanB, we have x = tkvk +
∑
i 6=k

tivi = tk
m∑
i=1

aiui +
∑
i 6=k

tiui and

so x ∈ SpanA. This shows that SpanB ⊆ SpanA.

Suppose A is linearly independent. Suppose
m∑
i=1

tivi = 0 where each ti ∈ F . Then

0 = tkvk +
∑
i 6=k

tivi = tk
m∑
i=1

aiui +
∑
i 6=k

tiui = tkakuk +
∑
i6=k

(tkai + ti)ui.

Since A is linearly independent, all of the coefficients in the above linear combination on
A must be equal to zero, so we have tkak = 0 and tkai + ti = 0 for i 6= k. Since tkak = 0
and ak 6= 0 we have tk = 0 and hence 0 = tkai + ti = ti for all i 6= k. This shows that B is
linearly independent.

Finally note that since vk =
m∑
i=1

aiui = akuk +
∑
i 6=k

aivi with ak 6= 0, it follows that

uk =
m∑
i=1

bivi where bk = 1
ak
6= 0 and bi = − ai

ak
for i 6= k. Hence the same arguments

used in the previous two paragraphs, with the rôles of A and B interchanged, show that
SpanA ⊆ SpanB and that if B is linearly independent then so is A.

1.32 Theorem: Let F be a field, let U be a subspace of Fn and let A = {u1, u2, · · · , um}
be a basis for U . Let B = {v1, v2, · · · , vl} ⊆ U . Suppose that B is linearly independent.
Then l ≤ m, if l = m then B is a basis for U , and if l < m then there exist m− l vectors
in A which, after possibly reordering the vectors ui we can take to be ul+1, ul+2, · · · , um,
such that the set {v1, v2, · · · , vl, ul+1, ul+2, · · · , um} is a basis for U .

Proof: When l = 0 so that B = ∅, we have m− l = m and we use all m of the vectors in A
to obtain the basis {u1, u2, · · · , um}. Let l ≥ 1 and suppose, inductively, that for every set
B0 = {v1, v2, · · · , vl−1} ⊆ U , if B0 is linearly independent then we have l − 1 ≤ m and we
can reorder the vectors ui so that {v1, v2, · · · , vl−1, ul, ul+1, · · · , um} is a basis for U . Let
B = {v1, v2, · · · , vl} ⊆ U . Suppose B is linearly independent. Let B0 = {v1, v2, · · · , vl−1}.
Note that B0 is linearly independent but B0 idoes not span U because vl ∈ U but vl /∈
SpanB0. By the induction hypothesis, we have l − 1 < m and we can reorder the vectors
ui so that {v1, v2, · · · , vl−1, ul, ul+1, · · · , um} is a basis for U . Since vl ∈ U we can write

vl in the form vl =
l−1∑
i=1

tivi +
m∑
i=l

sjuj . Note that the coefficients sj cannot all be equal to

zero since vl /∈ SpanB0. After reordering the vectors uj we can suppose that sl 6= 0. By
Theorem XX, the set {v1, v2, · · · , vl−1, vl, ul+1, · · ·um} is a basis fot U (in the case that
l − 1 = m this basis is the set B).

1.33 Corollary: For a vector space U in Fn, any two bases for U have the same number
of elements.

1.34 Definition: For a vector space U in Fn, we define the dimension of U , denoted by
dimU , to be the number of elements in any basis for U . For an affine space P = p+ U in
Fn, we define the dimension of P to be dimP = dimU .
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