Chapter 9. Cardinality

9.1 Definition: Let X and Y be sets and let f: X — Y. Recall that the domain of f
and the range of f are the sets

Domain(f) = X , Range(f) = f(X) = {f(z)|z € X}.
For A C X, the image of A under f is the set
f(A) = {f(:z:)‘a: € A}.

For B C Y, the inverse image of B under f is the set
f7HB)={z € X|f(z) € B}.

9.2 Definition: Let X, Y and Z be sets, let f : X — Y and let ¢ : Y — Z. We define
the composite function go f: X — Z by (go f)(z) = g(f(z)) for all z € X

9.3 Definition: We say that f is injective (or one-to-one, written as 1:1) when for
every y € Y there exists at most one z € X such that f(z) = y. Equivalently, f is
injective when for all z1,20 € X, if f(z1) = f(x2) then 21 = x5. We say that f is
surjective (or onto) when for every y € Y there exists at least one z € X such that
f(x) = y. Equivalently, f is surjective when Range(f) =Y. We say that f is bijective
(or invertible) when f is both injective and surjective, that is when for every y € Y there
exists exactly one x € X such that f(x) =y. When f is bijective, we define the inverse
of f to be the function =1 : Y — X such that for all y € Y, f~1(y) is equal to the unique
element x € X such that f(x) = y. Note that when f is bijective so is =1, and in this
case we have (f~1)~! = f.

9.4 Theorem: Let f: X —Y andlet g: Y — Z. Then

(1) if f and g are both injective then so is g o f,
(2) if f and g are both surjective then so is g o f, and
(3) if f and g are both invertible then so is g o f, and in this case (go f)™! = f~tog™L

Proof: To prove Part (1), suppose that f and g are both injective. Let 1,20 € X. If
g(f(z1)) = g(f(x2)) then since g is injective we have f(x1) = f(z2), and then since f is
injective we have 1 = x2. Thus g o f is injective.

To prove Part (2), suppose that f and g are surjective. Given z € Z, since g is
surjective we can choose y € Y so that g(y) = z, then since f is surjective we can choose
x € X so that f(z) =y, and then we have g(f(z)) = g(y) = z. Thus g o f is surjective.

Finally, note that Part (3) follows from Parts (1) and (2).

9.5 Definition: For a set X, we define the identity function on X to be the function
Ix : X — X given by Ix(z) = z for all z € X. Note that for f : X — Y we have

folx =fand Iy o f=f.

9.6 Definition: Let X and Y besetsand let f : X — Y. A left inverse of f is a function
g :Y — X such that go f = I'x. Equivalently, a function g : Y — X is a left inverse of f
when g(f(a:)) =z for all z € X. A right inverse of f is a function h : Y — X such that
foh = Iy. Equivalently, a function h : Y — X is a right inverse of f when f(h(y)) =y
forally e Y.



9.7 Theorem: Let X and Y be nonempty sets and let f : X — Y. Then

(1) f is injective if and only if f has a left inverse,

(2) f is surjective if and only if f has a right inverse, and

(3) f is bijective if and only if f has a left inverse g and a right inverse h, and in this case
we have g =h = f~1.

Proof: To prove Part (1), suppose first that f is injective. Since X # () we can choose
a € X and then define g : Y — X as follows: if y € Range(f) then (using the fact that f is
1:1) we define g(y) to be the unique element z, € X with f(z,) =y, and if y ¢ Range(f)
then we define g(y) = a. Then for every x € X we have y = f(x) € Range(f), so
9(y) = xy = x, that is g(f(x)) = x. Conversely, if f has a left inverse, say g, then f is 1:1
since for all z1,29 € X, if f(21) = f(z2) then 21 = g(f(z1)) = 9(f(z2)) = 2.

To prove Part (2), suppose first that f is onto. For each y € Y, choose z, € X
with f(z,) = y, then define g : X — Y by g(y) = x, (we need the Axiom of Choice for
this). Then g is a right inverse of f since for every y € Y we have f(g(y)) = f(zy) = v.
Conversely, if f has a right inverse, say ¢, then f is onto since given any y € Y we can
choose = = g(y) and then we have f(z) = f(g(y)) = y.

To prove Part (3), suppose first that f is bijective. The inverse function f=!:Y — X
is a left inverse for f because given z € X we can let y = f(z) and then f~!(y) = z so
that f—! (f(:c)) = f71(y) = z. Similarly, f~! is a right inverse for f because given y € Y’
we can let x be the unique element in X with y = f(z) and then we have x = f~1(y) so
that f(f~'(y)) = f(z) = y. Conversely, suppose that g is a left inverse for f and h is a
right inverse for f. Since f has a left inverse, it is injective by Part (1). Since f has a right
inverse, it is surjective by Part (2). Since f is injective and surjective, it is bijective. As
shown above, the inverse function f~! is both a left inverse and a right inverse. Finally,
note that g = f~! = h because for all y € Y we have

gw)=g(f(f7 W) =) =" (f(h))) =hy).

9.8 Corollary: Let X and Y be sets. Then there exists an injective map f : X — Y if
and only if there exists a surjective map g : Y — X.

Proof: Suppose f: X — Y is an injective map. Then f has a left inverse. Let g be a left
inverse of f. Since go f = Ix, we see that f is a right inverse of g. Since g has a right
inverse, g is surjective. Thus there is a surjective map g : Y — X. Similarly, if g : Y — X
is surjective, then it has a right inverse f : X — Y which is injective.

9.9 Definition: Let A and B be sets. We say that A and B have the same cardinality,
and we write |A| = | B|, when there exists a bijective map f : A — B (or equivalently when
there exists a bijective map g : ¥ — X). We say that the cardinality of A is less than
or equal to the cardinality of B, and we write |A| < |B|, when there exists an injective
map f : A — B (or equivalently when there exists a surjective map g : ¥ — X). We say
that the cardinality of A is less than the cardinality of B, and we write |A| < |B|, when
|A| < |B| and |A| # | B|, (that is when there exists an injective map f : A — B but there
does not exist a bijective map g : A — B). We also write |A| > |B| when |B| < |A| and
|A| > |B| when |B| < |A|.

9.10 Example: The map f : N — 2N given by f(k) = 2k is bijective, so [2N| = |N|.
The map g : N — Z given by ¢g(2k) = k and g(2k +1) = —k — 1 for k € N is bijective, so
we have |Z| = |N|. The map h: N x N — N given by h(k,l) = 2¥(2] + 1) — 1 is bijective,
so we have [N x N| = |NJ.



9.11 Theorem: For all sets A, B and C,

(1) |A] = [A],

(2) if |A] = |B| then |B| = |A],

(3) if |A| = |B| and |B| = |C] then |A| = |C|,

(4) |A| < |B| if and only if (|A| = |B| or |A| < |B]|), and
(5) if |A| < |B| and |B| < |C| then |A| < |C].

Proof: Part (1) holds because the identity function I4 : A — A is bijective. Part (2)
holds because if f : A — B is bijective then so is f~! : B — A. Part (3) holds because if
f:A— Band g: B — C are bijective then so is the composite go f : A — C. The rest
of the proof is left as an exercise.

9.12 Definition: Let A be a set. For each n € N, let §,, = {0,1,2,---,n—1}. Forn € N,
we say that the cardinality of A is equal to n, or that A has n elements, and we write
|A| = n, when |A| = |S,,|. We say that A is finite when |A| = n for some n € N. We say
that A is infinite when A is not finite. We say that A is countable when |A| = |N|.

9.13 Note: When a set A is finite with |A| = n, and when f : A — S, is a bijection, if
we let a = f~1(k) for each k € S,, then we have A = {ag,a1,---,ar_1} with the elements
ay distinct. Conversely, if A = {ag,a1,--,ar—1} with the elements a; all distinct, then
we define a bijection f: A — S, by f(ar) = k. Thus we see that A is finite with |A| =n
if and only if A is of the form A = {ag,a1,---,a,_1} with the elements a; all distinct.
Similarly, a set A is countable if and only if A is of the form A = {ag,a;,as, -} with the
elements ay all distinct.

9.14 Note: For n € N, if A is a finite set with |A| =n+ 1 and a € A then |A\ {a}| = n.
Indeed, if A = {ag,a1,--,a,} with the elements a; distinct, and if a = aj, so that we have
A\ {a} ={ao,a1, - ,ak-1,ak+1, -, an}, then we can define a bijection f : S,, — A\ {a}
by f(i) =a; for 0 <i < k and f(i) = a;41 for k <i < n.

9.15 Theorem: Let A be a set. Then the following are equivalent.
(1) A is infinite.

(2) A contains a countable subset.

(3) IN| < |A]

(4) There exists a map f : A — A which is injective but not surjective.

Proof: To prove that (1) implies (2), suppose that A is infinite. Since A # () we can
choose an element ag € A. Since A # {ap} we can choose an element a; € A\ {ap}.
Since A # {ap,a1} we can choose ag € A\ {ag,a1}. Continue this procedure: having
chosen distinct elements ag, a1, --,a,-1 € A, since A # {ap,a1,---,a,-1} we can choose
an € A\ {ag,a1, --,an_1}. In this way, we obtain a countable set {ag, a;,as, -} C A.

Next we show that (2) is equivalent to (3). Suppose that A contains a countable
subset, say {ag,a1,as,---} € A with the element a; distinct. Since the a; are distinct, the
map f : N — A given by f(k) = ay is injective, and so we have |N| < |A|. Conversely,
suppose that [N| < |A], and chose an injective map f : N — A. Considered as a map from
N to f(N), f is bijective, so we have |N| = |f(N)| hence f(N) is a countable subset of A.

Next, let us show that (2) implies (4). Suppose that A has a countable subset, say
{ap,a1,as,---} C A with the element a; distinct. Define f: A — A by f(ax) = ags1 for
all k € N and by f(b) = b for all b € A\ {ag,a1,a9,---}. Then f is injective but not
surjective (the element ag is not in the range of f).
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Finally, to prove that (4) implies (1) we shall prove that if A is finite then every
injective map f : A — A is surjective. We prove this by induction on the cardinality of A.
The only set A with |A| = 0 is the set A = (), and then the only function f: A — A is the
empty function, which is surjective. Since that base case may appear too trivial, let us
consider the next case. Let n = 1 and let A be a set with |A| =1, say A = {a}. The only
function f : A — A is the function given by f(a) = a, which is surjective. Let n > 1 and
suppose, inductively, that for every set A with |A| = n, every injective map f: A — A is
surjective. Let B be a set with |[B| =n+ 1 and let g : B — B be injective. Suppose, for a
contradiction, that g is not surjective. Choose an element b € B which is not in the range
of g so that we have g : B — B\ {b}. Let A = B\ {b} and let f : A — A be given by
f(x) = g(x) for all x € A. Since g : B — A is injective and f(z) = g(z) for all x € A, f is
also injective. Again since g is injective, there is no element x € B\ {b} with g(x) = g(b),
so there is no element z € A with f(z) = g(b), and so f is not surjective. Since |A| = n
(by the above note), this contradicts the induction hypothesis. Thus f must be surjective.
By the Principle of Induction, for every n € N and for every set A with |A| = n, every
injective function f: A — A is surjective.

9.16 Corollary: Let A and B be sets.

(1) If A is countable then A is infinite.

(2) When |A| < |B|, if B is finite then so is A (equivalently if A is infinite then so is B).
(3) If |A| = n and |B| = m then |A| = |B| if and only if n = m.

(4) If |A] = n and |B| = m then |A| < |B| if and only if n < m.

(5) When one of the two sets A and B is finite, if |A| < |B| and |B| < |A| then |A| = |B|.

Proof: Part (1) is immediate: if A is countable then A contains a countable subset (itself),
so A is infinite, by Theorem 4.15.

To prove Part (2), suppose that |A| < |B and that |A| is infinite. Since A is infinite,
we have |N| < |A] (by Theorem 4.15). Since [N| < |A| and |A| < |B| we have |N| < |B|
(by Theorem 4.11). Since |N| < |B|, B is infinite (by Theorem 4.15 again).

To Prove Part (3), suppose that |A] = n and |B| = m. If n = m then we have
Sy = Sm and so |A| = |S,| = |Sm| = |B|. Conversely, suppose that |A| = |B|. Suppose,
for a contradiction, that n # m, say n > m, and note that S, % Sp. Since |A| = |B| we
have |S,,| = |A| = |B| = |Sm| so we can choose a bijection f :S,, — S,,. Since S,, % Shs
we can consider f as a function f : .S, — S, which is injective but not surjective. This
contradicts Theorem 4.16, and so we must have n = m. This proves Part (3).

To prove Part (4), we again suppose that |[A| = n and |B| = m. If n < mthen S,, C S,
so the inclusion map I : S,, — S, is injective and we have |A| = |S,| < |Sw| = |B]|.
Conversely, suppose that |A| < |B| and suppose, for a contradiction, that n > m. Since
|A| < |B| we have |S,,| = |A| < |B| = |Sy| so we can choose an injective map f : S,, — Sy,.
Since n > m we have S,, & S;, so we can consider f as a map f : S, = 5,, and this map
is injective but not surjective. This contradicts Theorem 2.16, and so n < m.

Finally, to prove Part (5) we suppose that one of the two sets A and B is finite, and
that |A| < |B| and |B| < |A|. If A is finite then, since |B| < |A|, Part (2) implies that B is
finite. If B is finite then, since |A| < |B|, Part (2) implies that A is finite. Thus, in either
case, we see that A and B are both finite. Since A and B are both finite with |A| < |B|
and |B| < |A|, we must have |A| = |B| by Parts (3) and (4).



9.17 Theorem: Let A be a set. Then |A| < |NJ| if and only if A is finite or countable.

Proof: First we claim that every subset of N is either finite or countable. Let A C N and
suppose that A is not finite. Since A # (), we can set ap = min A (using the Well-Ordering
Property of N). Note that {0,1,---,a0} N A ={ap}. Since A # {ap} (so the set A\ {ap}

is nonempty) we can set a; = min A \ {ap}. Then we have ag < a; and {0,1,2,---,a1} N
A = {ag,a1}. Since A # {ap,a1} we can set az = min A \ {ag,a1}. Then we have
ap < a1 < ag and {0,1,2,---,a3} N A = {ag,a1,a2}. We continue the procedure: having
chosen ag, a1, -+ ,an-1 € A with ag < a1 < -+ < anp—1 such that AN {0,1,---,a,-1} =
{ag,a1, - +,an_1}, since A # {ag,ay, -, an_1} we can set a,, = min A\ {ap, a1, -, an_1},
and then we have ag < a1 < -+ < an—1 < a, and A{0,1,2,--- a,}NA ={ap,a1, -, an}.

In this way, we obtain a countable set {ag,a1,a2,---} C A with a9 < a1 < az < -+~
with the property that for all m € N, {0,1,2,---,a,,} N A = {ag,a1,--,an,}. Since
0<ap<a <ag <--- it follows (by induction) that ay > k for all k € N. It follows in
turn that A C {ag, a1, as---} because given m € A, since m < a,, we have

me{0,1,2,---,m}NAC{0,1,2,---,a,} NA={ag,a1, -, am}-

Thus A = {ag, a1, a2, -} and the elements a; are distinct, so A is countable. This proves
our claim that every subset of N is either finite or countable.

Now suppose that |A| < |N| and choose an injective map f : A — N. Since f is
injective, when we consider it as a map f: A — f(A), it is bijective, and so |A| = |f(A)|.
Since f(A) C N, the previous paragraph shows that f(A) is either finite or countable. If
f(A) is finite with |f(A)| = n then |A| = |f(A)| = |Sy|, and if f(A) is countable then we
have |A| = |f(A)| = IN|. Thus A is finite or countable.

9.18 Theorem: Let A be a set. Then

(1) |A| < |N| if and only if A is finite,
(2) IN| < |A| if and only if A is neither finite nor countable, and
(3) if |A] < |N| and |N| < |A| then |A| = |NJ.

Proof: Part (1) follows from Theorem 4.15 because

| Al < IN| <= (]A] < |NJ and |A] # [N])
<= (A is finite or countable and A is not countable)
<= A is finite

and Part (2) follows from Theorem 4.17 because

IN| < |A] <= (IN] < |A] and |NJ # |A])
<= (A is not finite and A is not countable.)

To prove Part (3), suppose that |A| < |N| and |N| < |A|. Since |A] < |NJ, we know
that A is finite or countable by Theorem 4.17. Since |IN| < |A|, we know that that A is

infinite by Theorem 4.15. Since A is finite or countable and A is not finite, it follows that
A is countable. Thus |A| = |N].

9.19 Definition: Let A be a set. When A is countable we write |A] = Ry. When A is
finite we write |A| < RXg. When A is infinite we write |A| > Xy. When A is either finite or
countable we write |A| < Ny and we say that A is at most countable. when A is neither
finite nor countable we write |A| > Yy and we say that A is uncountable.

5



9.20 Theorem:

(1) If A and B are countable sets, then so is A X B.

(2) If A and B are countable sets, then so is AU B.

(3) If Ay, Ay, Ay, -+ are countable sets, then so is |y Ak
(4) Q is countable.

Proof: To prove Parts (1) and (2), let A = {ag,a1,az,---} with the a; distinct and let
B = {bg, b1, ba, - - -} with the b; distinct. Since every positive integer can be written uniquely
in the form 2%(2[+1) with k,1 € N, the map f : AxB — N given by f(ag,b;) = 2F(20+1)—1
is bijective, and so |A x B| = |N|. This proves Part (1). Since the map g : N — AU B
given by g(k) = ay, is injective, we have |N| < |AU B|. Since the map h: N — AU B given
by h(2k) = ay, and h(2k+1) = by, is surjective, we have |[AU B| < |N|. Since [N| < |AU B|
and |AU B| < |N|, we have |AU B| = |N| by Part (3) of Theorem 4.18. This proves (2).

To prove Part (3), for each k € N, let Ay = {ako, ax1, a2, -} with the ay; distinct.
Since the map f : N — (J;—, Ak given by f(k) = ao is injective, |N| < |[Up, Akl
Since N x N is countable by Part (1), and since the map g : N x N — [J7~ Ay given by
g(k,1) = ax, is surjective, we have | J;—, Ax| < [N x N| = |N|. By Part (3) of Theorem
4.18, we have | [J,—, Ax| = |N], as required.

Finally, we prove Part (4). Since the map f: N — Q given by f(k) = k is injective,
we have |[N| < |Q]. Since the map g : Q — Z x Z, given by g(%) = (a,b) for all
a,b € Z with b > 0 and ged(a,b) = 1, is injective, and since Z x Z is countable, we have
Q| <|Z x Z| = |NJ|. Since |[N| < |Q| and |Q] < |N|, we have |Q| = |NJ|, as required.

9.21 Definition: For a set A, let P(A) denote the power set of A, that is the set of all
subsets of A, and let 24 denote the set of all functions from A to Sy = {0, 1}.

9.22 Theorem:

(1) For every set A, |P(A)| = |24

(2) For every set A, |A| < [P(A)].

(3) R is uncountable.

Proof: Let A be any set. Define a map g : P(A) — 24 as follows. Given S € P(A), that
is given S C A, we define g(S) € 24 to be the map ¢(S) : A — {0,1} given by
liface S,
S pu—
9(5)(a) {Oifagé .

Define a map h : 24 — P(A) as follows. Given f € 24, that is given a map f: A — {0,1},
we define h(f) € P(A) to be the subset

h(f)={a€A|f(a) =1} C A

The maps g and h are the inverses of each other because for every S C A and every
f:A—{0,1} we have

lifae€ S,
0ifa ¢S,
«—=Vac A (fla)=1<=acS)<={acA|f(a) =1} =S<h(f)=25.

This completes the proof of Part (1).
Let us prove Part (2). Again we let A be any set. Since the the map f: A — P(A)
given by f(a) = {a} is injective, we have |A| < |P(A)|. We need to show that [A| # |P(A)|.

f=9(8)=VYacA f(a)=g(S)(a)<=VYac A f(a) = {
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Let g : A — P(A) be any map. Let S = {a € Ala ¢ g(a)}. Note that S cannot be in the
range of g because if we could choose a € A so that g(a) = S then, by the definition of S,
we would have a € S<=-a ¢ g(a) <= a ¢ S which is not possible. Since S is not in the
range of g, the map g is not surjective. Since g was an arbitrary map from A to P(A), it
follows that there is no surjective map from A to P(A). Thus there is no bijective map
from A to P(A) and so we have |A| # ‘P(A)}, as desired.

Finally, we shall prove that R is uncountable using the fact (which we did not prove)
that every real number has a unique decimal expansion which does not end with an infinite
string of 9’s. We define a map ¢ : 2N — R as follows. Given f € 2N, that is given a map
f N — {0,1}, we define g(f) to be the real number g(f) € [0,1) with the decimal
expansion g(f) = 0.f(0)f(1)f(2)f(3)--- (for those who have seen infinite series, this is

the number g(f) = Y f(k)107"71). By the uniqueness of decimal expansions, the map
k=0

g is injective, so we have |2N| < |R|. Thus |[N| < |P(N)| = [2N| < |R|, and so R is

uncountable, by Part (2) of Theorem 4.18.

9.23 Theorem: (Cantor - Schroeder - Bernstein) Let A and B be sets. Suppose that
|A| < |B| and |B| < |A|. Then |A| = |B|

Proof: We sketch a proof. Choose injective functions f: A — B and g : B — A. Since
the functions f: A — f(A), g: B — g(B) and f : g(B) — f(g(B)) are bijective we have
4] = |f(A)] and B = |g(B)] = |£(g(B))|. Also note that f(g(B)) C f(A) C B. Let
X = f(g(B)),Y = f(A) and Z = B. Then we have X C Y C Z and we have |X| = |Z]
and we need to show that |Y| = |Z|. The composite h = fog: Z — X is a bijection.
Define sets Z,, and Y,, for n € N recursively by

Zo=2, Zp=h(Z,-1) and Yo=Y , Y, =h(Y,-1).
Since Yo=Y, Zy=2,7Z1 =h(Zp) =h(Z) =X and X CY C Z, we have
Z1 C Yy C Zp.
Also note that for 1 <n € N,
ZnCYy 1 CZy1=h(Z,) Ch(Yp_1) Ch(Zp-1)—Zpn+1 CY, C Z,.
By the Induction Principle, it follows that Z,, C Y, 1 C Z,,_1 for all n > 1, so we have
Zo2Y9 2 Z12Y1 2253 20Y5 D -

Let Uy = Z,\ Yy, U= |J U, and V = Z\ U. Define H: Z — Y by

n=1

H(:c):{h(x) if z € U,

x ifxeV.
Verify that H is bijective.



9.24 Example: Show that |[R| = [2N].

Solution: g : 2N — R as follows: for f € 2N we let g(f) be the real number g(f) € [0, 1)
with decimal expansion g(f) = 0.f(0)f(1)f(2)---.. Then g is injective so [2N] < |R].
Define h : 2N — [0, 1) as follows: for f € 2N let h(f) be the real number h(f) € [0, 1] with
binary expansion h(f) = 0.£(0)f(1)f(2)---. Then h is surjective so we have |[O, 1]! < |2N|.
The map k : R — [0, 1] given by k(z) = 3 + % tan™! z is injective so we have |R| < [0, 1]].
Since |R| < |[0,1]| < |2N]| and |2N] < |R, we have |R| = |2N| by the Cantor-Schroeder-
Bernstein Theorem.

9.25 Theorem: Let A and B be finite sets, let AP be the set of all functions f : A — B,
and let P(A) be the power set of A (that is the set of all subsets of A). Then

(1) if A and B are disjoint then |AU B| = |A| U |B|,

(2) |Ax Bl = |A]-[B],

(3) |AB| = |A|'PI, and

(3) [P(A)] = 2141,

Proof: The proof is left as an exercise.



