Chapter 8. Complex Numbers

8.1 Definition: A complex number is a vector in R?. The complex plane, denoted
by C, is the set of complex numbers:

C=R’={(z,y)|z € R,y cR}.
In C we write 0 = (0,0), 1 = (1,0), ¢ = (0,1), and for z,y € R we write z = (z,0),
iy = yi = (o,y) and
r+iy =z +yi=(z,9).

If 2 = x+1iy with x,y € R then z is called the real part of z and y is called the imaginary
part of z, and we write
Rez=2z ,and Imz=y.

8.2 Definition: We define the sum of two complex numbers to be the usual vector sum:
(a+1ib)+ (c+id) =(a+c¢)+i(b+d),

where a,b € R. We define the product of two complex numbers by setting > = —1 and
by requiring the product to be commutative and associative and distributive over the sum:

(a + ib)(c + id) = ac + iad + ibc + i*bd = (ac — bd) + i(ad + bc) .
8.3 Example: Let 2z =2+ ¢ and w =1+ 3¢. Find z + w and zw.
Solution: z4+w = (2+14)+(1+3i) = (2+1)+i(1+3) =3 +4i, and 2w = (2410)(1+37) =
246i+1—3=-1+7i.
8.4 Theorem: The set of complex numbers is a field.

Proof: We shall only verify that each non-zero complex number has an inverse. Let
2 = a + ib where a,b € R. Suppose that z # 0 so a® + b®> # 0. For z,y € R we have
(a+ib)(z+iy) =1<=(ax —by) + (ay + bx)i =1+ 01
<:>(a:1:—by:1 and b:z:—l—ay:O).
We solve the pair of equations ax — by = 1 (1) and bx + ay = 0 (2). Multiply equation
(1) by a and add b times Equation (2) to get (a? + b?)z = a, so we need x = el
Multiply Equation (2) by a and subtract b times Equation (1) to get (a? + b%)y = —b
so we need y = —=2-. Verify that when z = e and y = a2_—+bb2 we do indeed have

a?+4b2"
(a +ib)(x + iy) = 1. This shows that (a + ib)~! does exist and is given by

. —1 . b
(CL + /I/b) — azibz - /La2+b2 .

4—14)—(1—2¢
8.5 Example: Find ( )= ( Z).

1+2i
4—i)—(1-2) 3+i
Solution: < Zi+(2¢ D _ 1:2ZZ — B+ (1+2) =@+t —-2i)=1—i.



8.6 Definition: If z = = + 1y with z,y € R then we define the conjugate of z to be
Z=x—1y.
and we define the length (or magnitude) of z to be
2 = VaT 2.
8.7 Note: For z and w in C the following identities are all easy to verify.

=z

ISR

+z=2Rez, z—Z=2lImz
zZ=2", [z =l
ztw=z+w, zw=zw, |zw|=]|z||w]
8.8 Note: We do not have inequalities between complex numbers. We can only write

a < bora < bin the case that a and b are both real numbers. But there are several
inequalities between real numbers which concern complex numbers. For z € C and w € C,

[Re (2)] < [z], [m(2)] < 2]

|z +w| < |z| 4+ |w|, this is called the triangle inequality

|2+ w| > [J2] — |wl]
The first two inequalities follow from the fact that |z]? = |[Re (2)|?+ |[Im (2)|?. We can then
prove the triangle inequality as follows: |[z+w|? = (z2+w)(Z+w) = |2|? +|w|* +(wz+2w) =
122 + |w|? + 2Re (2w) < |2]2 + |w]? + 2]2w0| = |2]? + |w|? + 2|z||w| = (]z| + |w])?. The last
inequality follows from the triangle inequality since |z| = |z + w — w| < |z + w| + |w| and
lw| = |z 4+ w — z| < |z 4+ w| + |z|. (Alternatively, the last two inequalities can be proven
using the Law of Cosines).

8.9 Example: Given complex numbers a and b, describe the set {z € C||z—a| < [2—b[}.

Solution: Geometrically, this is the set of all z such that z is closer to a than to b, so it is
the half-plane which contains a and lies on one side of the perpendicular bisector of the
line segment ab.

8.10 Example: Given a complex number a, describe the set {z € C‘l <|lz—al < 2} .

Solution: {z||z —a| = 1} is the circle centred at a of radius 1 and {z||z — a| = 2} is the
circle centred at a of radius 2, and {z € C}l <l|z—al < 2} is the region between these
two circles. Such a region is called an annulus.



8.11 Example: Show that every non-zero complex number has exactly two complex
square roots, and find a formula for the two square roots of z = = + iy.

Solution: Let z = = + 1y where z,y € R with z and y not both zero. We need to solve

w? = z for w € C. Write w = u + iv with u,v € R. We have
w? = 2= (u+v)? =z +iy <= (u* —v?) +i(2uw) = = + iy

<:>(u2—v2:xand2uv=y).

To solve this pair of equations for u, square both sides of the second equation to get
4u?v? = y?, then multiply the first equation by 4u? to get 4u* — 4u?v? = 4z u?, that is
4u* — 4z u? — y? = 0. By the quadratic formula,

2 _ dx + /1622 + 16y2 _ x + /22 + y?
8 2 '

In the case that y # 0, we must use the + sign so that the right side is non-negative, so

we obtain
u:i\/x+ ;:2+y2.

u

A similar calculation gives

U::i:\/_x+ 2x2+y2.

All four choices of sign will satisfy the equation u? —v? = z, but to satisfy 2uv = y notice

that when y > 0, v and v have the same sign, and when y < 0, u and v have the opposite
sign. It remains only to consider the case that y = 0, and we leave this case as an exercise.
The final result is that

)
[ 2 2 _ 2 2
\/x ;: ’ Z\/ - 23: =ity o,

w=1< 4 \/x+vx2+y2_i\/—$+ vty if y <0
2 2 ) )

+z ,ify=0and x>0,
( £i/|z] ,ify=0and z <O0.

8.12 Note: When working with real numbers, for 0 < z € R it is customary to write
VT or 2'/? to denote the unique positive square root of z. When working with complex
numbers, for 0 # z € C we sometimes write \/z or 21/2 to denote one of the two square
roots of z, and we sometimes write \/z or z!/2 to denote both square roots of z.

8.13 Example: Find /3 — 4s.

Solution: Using the formula derived in the previous example, we have

m:i( /@—%/@) =+ (/2 i\ [55) = 22— 9).



8.14 Note: The Quadratic Formula can be used for complex numbers. Indeed for
a,b,c,z € C with a # 0 we have

) , b ¢ , b b\? b\ ¢
az"+bz+c=0=z2 +EZ+E:O<:>Z +—z+ =] — % +-=0

2a 2a a
<:>(z_'_i)Q:<£>2_22b2—4ac<z>z+£: b2 — 4ac
2a 2a a 4a? 2a 2a
@z:—b+\/2m7
a

where v/b? — 4ac is being used to denote both square roots in the case that b — 4ac # 0.
8.15 Example: Solve i 2% — (2 + 3i)z + 5(1 + i) = 0.
Solution: By the Quadratic Formula, we have

(2+3d) + /(24 3i)2 — 20i(1 + i)
21
(24 3i) + /15— 8i
2i
and by the formula for square roots we have

V15— 8 =+ ( 15—|—\/1252—|—82 i —15—|—\/2152+82> — 4 (\/15;17 _ i\/_152+17> —+(4—4)

and so

(24 3i) + V=5 + 120 + 20 — 20i
2i

24+ 31) L (4d—17) 6+2  —2+ 4
@td)E(@—09) _6+2 244 oo
21 21 27

8.16 Definition: If z # 0, we define the angle (or argument) of z to be the angle 6(z)
from the positive z-axis counterclockwise to z. In other words, 6(z) is the angle such that

z = |z|(cosf(z) + isinf(z)) .

8.17 Note: We can think of the angle 6(z) in several different ways. We can require, for
example, that 0 < 0(z) < 27 so that the angle is uniquely determined. Or we can allow
0(z) to be any real number, in which case the angle will be unique up to a multiple of 2.
Then again, we can think of #(z) as the infinite set of real numbers 6(z) = {6y +27k|k € 2},
that is we can regard 6(z) as an element of R /27, the set of real numbers modulo 27.

8.18 Notation: For § € R (or for §# € R/27) we shall write

e = cosf +isinf.

8.19 Note: If z # 0 and we have z = Re (2), y = Im (2), r = |2| and 6 = 6(z) then

xr=rcosf, y=rsinf

r=+/z2+y?, tan@zg,ifx%()
x

—i0 EET ey

z=re’ , Z=re , zZ T =-—-e
T

z =

We say that  + iy is the cartesian form of z and re*? is the polar form.
8.20 Example: Let z = —3 — 47. Express z in polar form.

Solution: We have |z| = 5 and tanf(z) = 4. Since §(z) is in the third quadrant, we have
0(z) = m+ tan~1 4. So z = HeilmHtan TN (4/3),

4



8.21 Example: Let z = 10¢? tan™'3, Express z in cartesian form.
Solution: z = 10 (cos(tan~1 3) + i sin(tan~!3)) = 10 (\/% + Z\/ifo) = V10 + 3V/104.
8.22 Example: Find a formula for multiplication in polar coordinates.

Solution: For z = re® and w = €% we have zw = rs(cosa + isina)(cos 3 + isin3) =
((cos acos B —sinasin ) +i(sinccos B + cosasin ) = rs( cos(a+ 3) +isin(a+ B)) and

so we obtain the formula
rei®se’ = rgetl@th)

8.23 Note: An immediate consequence of the above example is that
(rei®)" = prein?

for r,0 € R and for n € Z. This result is known as De Moivre’s Law.

8.24 Example: Find (1 + ).

Solution: This can be done in cartesian coordinates using the binomial theorem (which
holds for complex numbers), but it is easier in polar coordinates. We have 1+4i = V2ei /4

SO (1 + 7:)10 — (\/ieiﬂ/4>10 — (\/5)1061' 10m/4 32€i7r/2 = 39;.

8.25 Example: Find a formula for the n'" roots of a complex number. In other words,
given z = re'?, solve w™ = z.

Solution: Let w = se’®. We have w" = z <= (5€!®)" = re¥ <= s"e'"* = re¥ = " =
0 + 27k
r and na = 0 + 27k for some k € Z<=s = {/r and a = v+ =mk for some k € Z. Notice

n
that when z # 0 there are exactly n solutions obtained by taking 0 < k < n. So we obtain
the formula

(reie)l/n: oy el (0+2mk)/m ke{0,1,...,n—1}.

In particular, (re’?)Y/2 = +,/re*%/2. For 0 < a € R we have 22 = a <=z = +/a, and
for 0 > a € R we have 22 = a <= 2 = 4+/|a] i.

8.26 Note: When working with complex numbers, for 0 # 2z € C and for 0 < n € Z, we
sometimes write {/z or w'/™ to denote one of the n solutions to w” = z, and we sometimes
write {/z or z'/™ to denote the set of all n** roots.

8.27 Note: For z,w € C, the rule
(Zw)l/n _ zl/nwl/n

does hold provided that z2/™ is used to denote the set of all nt" roots, but it does not
always hold when z/™ is used to denote one of the n'* roots. Consider the following
amusing “proof” that 1 = —1:

1=vV1=(-1)(-1) =V-1V-1=4=-1.
8.28 Example: Find v/—2 + 2:.
Solution: Note that —2 + 21 = 24/2¢?37/ 4 and so the formula for n'® roots gives

V=25 2i = \/2v/2e37/4

= V2 ("/HEE) ke 10,1,2)
— V23 \[2i 1R/12 [ (i197/12



8.29 Note: The remaining examples in this chapter illustrate situations in which we
can use complex numbers as a tool to help solve certain problems which only involve real
numbers.

8.30 Example: Let zo =1 and z; = 1, and for n > 2 let x,, = 22,1 — 5z,_2. Find a
closed-form formula for z,,.

Solution: The characteristic polynomial for the recursion is z? — 2z + 5 = 0 which has
(complex) roots z = MTM = 1+ 2i. By the Linear Recursion Theorem (Theorem 2.47)

Tn = A1+ 20)" + B(1 — 2i)"

for some constants A and B. To get xp = 1 and ;1 = 1, we need A + B = 1 and

A(1+ 2i) + B(1 — 2i) = 1. Solving these two equations gives A = B = 1, so we have

vy = 5 (U420 + (1-20)") = § ((VBer®)" + (VBe9)") = W81 (ein 4 ¢ind)
(

=+ (2cosnb) = (\/g)n cos nf
where § = 0(1 + 2i) = tan~! 2. Thus we obtain
zn = (V5)" cos (ntan™'2) .

8.31 Example: Find E (?;)n)
1
i=0

&
—
3

Solution: Let a = €2™/3, Note that 1+ a +a2 =1+ < %—i— \/Tg ) (—% — 731> =0
By the Binomial Theorem we have
3n 3n 3n 3n 3n
14+ 1)%" =
1+ (0)+(1) ( ) +(3)+(4) +(3n)
(1 n ) 3n n 3n n 3n n 3n I 3n
0 1) 3 4 )¢ 3n
3n 3n 3n 3n 3n
1 2\3n _ 2, 2
4o (o)+(1)a ( ) (3)+(4)a+ o
Adding these three equations gives (14 1)3" 4 (14 )3 + (1 + ?)3" = 32 (2?) Note

that 1 + a = 1—%+\/T§i:%+73i:ei“/3 and similarly 1 4+ o? = e ”/3, and so

3 (?}3) = 5 (1P 4 (L )+ (14 a2)) = (23 4 (e17/3)™" o (emim/3) ™)
i=0
23n + 2(_1)n

3
8.32 Note: The Fundamental Theorem of Algebra states that every non-constant poly-
nomial over C has a root in C. It follows that every such polynomial factors into linear
factors over C. If a polynomial f(x) has real coefficients, and « is a complex root of f so
that f(a) = 0, then we have f(@) = f(«) = 0 so that @ is also a root of f. Notice that in
this case

— % (23n +ein7r + e—inTr) —

2

(z—a)(z—a)=2>— (a+a)z+ aa = 2? — 2Re () + |a|?,

which has real coefficients. It follows that every non-constant polynomial over R factors
into linear and quadratic factors over R.



8.33 Example: Let f(z) = 2% + 222 + 4. Solve f(z) = 0 for 2z € C, factor f(z) over the
complex number, and then factor f(x) over the real numbers.

Solution: By the quadratic formula, f(z) = 0 when 22 = —14 /34 or in polar coordinates
z = 2e*"2™/3_ Thus the roots of f are z = +1/2eT™/3_ and so f factors over C as

2422244 = (z — \/56”/3) (z — \/56_”/3) (z + ﬂei”/B) (z + \/56_”/3) .
Since (Z—\/ieiﬂ/g)(Z— \/‘e—m/s) =22 —/22+2and (z+\/_e”/3)(z+\/§e_”/3) =

22 + /2 2+ 2, we see that over R, f factors as
f(z) = (22— V22 +2)(2® +V22+2).

8.34 Note: Historically, complex numbers first arose in the study of cubic equations. An
equation of the form az?+bx?+cx+d = 0, where a, b, ¢,d € C with a # 0 can be solved as
follows. First, divide by a to obtain an equation of the form x3 4 Bx? +Cxz+ D = 0. Next,
make the substitution r = y— % and rewrite the equation in the form y3 +py+q = 0. Then

make the substitution y = z — ﬁ to convert the equation to the form 23 + ¢ — p° =3 — 0,
Finally, multiply by 23 to obtaln 20 4q23— and solve for 23 using the Quadratlc Formula.
8.35 Example: Let f(r) = 2% + 322 + 42 + 1. Note that f'(z) = 322 + 6z +4 =

3(x+1)2+1 > 0, so f is increasing and hence has exactly one real root. Find the real
root of f.

Solution: Let x = y—1. Then 23+32%+4z+1 = (y—1)3+3(y—1)*+4(y—1)+1 = y3+y—1.
Let y = z—i. Then 2 +y—1 = (z—lz_l)?’—i—(z—%z_l)—l =23—1—2i7z_3. We solve

3
/31
28 — 23 — 2—7 = (0 using the quadratlc formula, and obtain 23 = i— If 2 = | 1+2 2

31
thenrzt=—1a/—2— =3¢ V3127) v = —¥2%. Similarly, if z = Y"1 V” then
1+4/3L 1
/31 31 s/1—/3L
-1 v/ 5—-. In either case we have y = z +rz7" = T” + 3 27, and

31 31
r=y—1= \/ Tt \/ @ —1. (We did not use complex numbers in this example).
8.36 Example: Find the three real roots of f(z) = 23 — 3z + 1.

Solution: Let z = 2+ 27! so that f(z) = (z + 2712 =3z + 2z +1=23+1+273
Multiply by 22 and solve 2% 4+ 23 +1 = 0 to get 23 = %\@” = F127/3 If 23 = 127/3
i2m/9  gi8m/9 iM4r/9 and sox = 24+ 27 = 24+ Z = 2Re(2) = 2 cos(21),
2cos(8F) or 2005(137’). If 23 = ¢7%27/3 then we obtain the same values for 2. Thus the

three real roots are 2 cos(40°), —2cos(20°) and 2 cos(80°).

then z = ¢ or e



