
Chapter 8. Complex Numbers

8.1 Definition: A complex number is a vector in R2. The complex plane, denoted
by C, is the set of complex numbers:

C = R2 =
{

(x, y)
∣∣x ∈ R, y ∈ R

}
.

In C we write 0 = (0, 0), 1 = (1, 0), i = (0, 1), and for x, y ∈ R we write x = (x, 0),
iy = yi = (o, y) and

x+ iy = x+ yi = (x, y).

If z = x+iy with x, y ∈ R then x is called the real part of z and y is called the imaginary
part of z, and we write

Re z = x , and Im z = y .

8.2 Definition: We define the sum of two complex numbers to be the usual vector sum:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d) ,

where a, b ∈ R. We define the product of two complex numbers by setting i2 = −1 and
by requiring the product to be commutative and associative and distributive over the sum:

(a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i(ad+ bc) .

8.3 Example: Let z = 2 + i and w = 1 + 3i. Find z + w and zw.

Solution: z+w = (2 + i) + (1 + 3i) = (2 + 1) + i(1 + 3) = 3 + 4i, and zw = (2 + i)(1 + 3i) =
2 + 6i+ i− 3 = −1 + 7i.

8.4 Theorem: The set of complex numbers is a field.

Proof: We shall only verify that each non-zero complex number has an inverse. Let
z = a+ ib where a, b ∈ R. Suppose that z 6= 0 so a2 + b2 6= 0. For x, y ∈ R we have

(a+ ib)(x+ iy) = 1⇐⇒ (ax− by) + (ay + bx) i = 1 + 0 i

⇐⇒
(
ax− by = 1 and bx+ ay = 0

)
.

We solve the pair of equations ax − by = 1 (1) and bx + ay = 0 (2). Multiply equation
(1) by a and add b times Equation (2) to get (a2 + b2)x = a, so we need x = a

a2+b2 .

Multiply Equation (2) by a and subtract b times Equation (1) to get (a2 + b2)y = −b
so we need y = −b

a2+b2 . Verify that when x = a
a2+b2 and y = −b

a2+b2 we do indeed have

(a+ ib)(x+ iy) = 1. This shows that (a+ ib)−1 does exist and is given by

(a+ ib)−1 = a
a2+b2 − i

b
a2+b2 .

8.5 Example: Find
(4− i)− (1− 2i)

1 + 2i
.

Solution:
(4− i)− (1− 2i)

1 + 2i
=

3 + i

1 + 2i
= (3 + i)(1 + 2i)−1 = (3 + i)( 1

5 −
2
5 i) = 1− i.
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8.6 Definition: If z = x+ iy with x, y ∈ R then we define the conjugate of z to be

z = x− iy .
and we define the length (or magnitude) of z to be

|z| =
√
x2 + y2 .

8.7 Note: For z and w in C the following identities are all easy to verify.

z = z

z + z = 2 Re z , z − z = 2i Im z

zz = |z|2 , |z| = |z|
z + w = z + w , zw = z w , |zw| = |z||w|

8.8 Note: We do not have inequalities between complex numbers. We can only write
a < b or a ≤ b in the case that a and b are both real numbers. But there are several
inequalities between real numbers which concern complex numbers. For z ∈ C and w ∈ C,

|Re (z)| ≤ |z| , |Im (z)| ≤ |z|
|z + w| ≤ |z|+ |w| , this is called the triangle inequality

|z + w| ≥
∣∣|z| − |w|∣∣

The first two inequalities follow from the fact that |z|2 = |Re (z)|2 + |Im (z)|2. We can then
prove the triangle inequality as follows: |z+w|2 = (z+w)(z+w) = |z|2+|w|2+(wz+zw) =
|z|2 + |w|2 + 2Re (zw) ≤ |z|2 + |w|2 + 2|zw| = |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2. The last
inequality follows from the triangle inequality since |z| = |z + w − w| ≤ |z + w|+ |w| and
|w| = |z + w − z| ≤ |z + w| + |z|. (Alternatively, the last two inequalities can be proven
using the Law of Cosines).

8.9 Example: Given complex numbers a and b, describe the set
{
z ∈ C

∣∣|z−a| < |z−b|} .
Solution: Geometrically, this is the set of all z such that z is closer to a than to b, so it is
the half-plane which contains a and lies on one side of the perpendicular bisector of the
line segment ab.

8.10 Example: Given a complex number a, describe the set
{
z ∈ C

∣∣1 < |z − a| < 2
}
.

Solution:
{
z|
∣∣z − a| = 1

}
is the circle centred at a of radius 1 and

{
z|
∣∣z − a| = 2

}
is the

circle centred at a of radius 2, and
{
z ∈ C

∣∣1 < |z − a| < 2
}

is the region between these
two circles. Such a region is called an annulus.
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8.11 Example: Show that every non-zero complex number has exactly two complex
square roots, and find a formula for the two square roots of z = x+ iy.

Solution: Let z = x + iy where x, y ∈ R with x and y not both zero. We need to solve
w2 = z for w ∈ C. Write w = u+ iv with u, v ∈ R. We have

w2 = z⇐⇒ (u+ iv)2 = x+ iy⇐⇒ (u2 − v2) + i(2uv) = x+ iy

⇐⇒
(
u2 − v2 = x and 2uv = y

)
.

To solve this pair of equations for u, square both sides of the second equation to get
4u2v2 = y2, then multiply the first equation by 4u2 to get 4u4 − 4u2v2 = 4xu2, that is
4u4 − 4xu2 − y2 = 0. By the quadratic formula,

u2 =
4x±

√
16x2 + 16y2

8
=
x±

√
x2 + y2

2
.

In the case that y 6= 0, we must use the + sign so that the right side is non-negative, so
we obtain

u = ±

√
x+

√
x2 + y2

2
.

A similar calculation gives

v = ±

√
−x+

√
x2 + y2

2
.

All four choices of sign will satisfy the equation u2 − v2 = x, but to satisfy 2uv = y notice
that when y > 0, u and v have the same sign, and when y < 0, u and v have the opposite
sign. It remains only to consider the case that y = 0, and we leave this case as an exercise.
The final result is that

w =



±

√x+
√
x2 + y2

2
+ i

√
−x+

√
x2 + y2

2

 , if y > 0,

±

√x+
√
x2 + y2

2
− i

√
−x+

√
x2 + y2

2

 , if y < 0,

±
√
x , if y = 0 and x > 0,

± i
√
|x| , if y = 0 and x < 0 .

8.12 Note: When working with real numbers, for 0 < x ∈ R it is customary to write√
x or x1/2 to denote the unique positive square root of x. When working with complex

numbers, for 0 6= z ∈ C we sometimes write
√
z or z1/2 to denote one of the two square

roots of z, and we sometimes write
√
z or z1/2 to denote both square roots of z.

8.13 Example: Find
√

3− 4i.

Solution: Using the formula derived in the previous example, we have

√
3− 4i = ±

(√
3+
√
32+42

2 − i
√
−3+

√
32+42

2

)
= ±

(√
3+5
2 − i

√
−3+5

2

)
= ±(2− i) .
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8.14 Note: The Quadratic Formula can be used for complex numbers. Indeed for
a, b, c, z ∈ C with a 6= 0 we have

az2 + bz + c = 0⇐⇒ z2 +
b

a
z +

c

a
= 0⇐⇒ z2 +

b

2a
z +

(
b

2a

)2

−
(
b

2a

)2

+
c

a
= 0

⇐⇒
(
z +

b

2a

)2

=

(
b

2a

)2

− c

a
=
b2 − 4ac

4a2
⇐⇒ z +

b

2a
=

√
b2 − 4ac

2a

⇐⇒ z =
−b+

√
b2 − 4ac

2a
,

where
√
b2 − 4ac is being used to denote both square roots in the case that b2 − 4ac 6= 0.

8.15 Example: Solve i z2 − (2 + 3i)z + 5(1 + i) = 0.

Solution: By the Quadratic Formula, we have

z =
(2 + 3i) +

√
(2 + 3i)2 − 20i(1 + i)

2i
=

(2 + 3i) +
√
−5 + 12i+ 20− 20i

2i

=
(2 + 3i) +

√
15− 8i

2i
and by the formula for square roots we have

√
15− 8i =±

(√
15+
√
152+82

2 − i
√
−15+

√
152+82

2

)
=±

(√
15+17

2 − i
√
−15+17

2

)
=± (4− i)

and so

z =
(2 + 3i)± (4− i)

2i
=

6 + 2i

2i
or
−2 + 4i

2i
= 1− 3i or 2 + i .

8.16 Definition: If z 6= 0, we define the angle (or argument) of z to be the angle θ(z)
from the positive x-axis counterclockwise to z. In other words, θ(z) is the angle such that

z = |z|
(

cos θ(z) + i sin θ(z)
)
.

8.17 Note: We can think of the angle θ(z) in several different ways. We can require, for
example, that 0 ≤ θ(z) < 2π so that the angle is uniquely determined. Or we can allow
θ(z) to be any real number, in which case the angle will be unique up to a multiple of 2π.
Then again, we can think of θ(z) as the infinite set of real numbers θ(z) = {θ0+2πk|k ∈ z},
that is we can regard θ(z) as an element of R/2π, the set of real numbers modulo 2π.

8.18 Notation: For θ ∈ R (or for θ ∈ R/2π) we shall write

eiθ = cos θ + i sin θ .

8.19 Note: If z 6= 0 and we have x = Re (z), y = Im (z), r = |z| and θ = θ(z) then

x = r cos θ , y = r sin θ

r =
√
x2 + y2 , tan θ =

y

x
, if x 6= 0

z = reiθ , z = r e−i θ , z−1 =
1

r
e−i θ

We say that x+ i y is the cartesian form of z and rei θ is the polar form.

8.20 Example: Let z = −3− 4i. Express z in polar form.

Solution: We have |z| = 5 and tan θ(z) = 4
3 . Since θ(z) is in the third quadrant, we have

θ(z) = π + tan−1 4
3 . So z = 5ei(π+tan−1(4/3)).
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8.21 Example: Let z = 10ei tan
−1 3. Express z in cartesian form.

Solution: z = 10
(

cos(tan−1 3) + i sin(tan−1 3)
)

= 10
(

1√
10

+ i 3√
10

)
=
√

10 + 3
√

10 i.

8.22 Example: Find a formula for multiplication in polar coordinates.

Solution: For z = reiα and w = eiβ we have zw = rs(cosα + i sinα)(cosβ + i sinβ) =(
(cosα cosβ− sinα sinβ) + i(sinα cosβ+ cosα sinβ)

)
= rs

(
cos(α+β) + i sin(α+β)

)
and

so we obtain the formula
reiαseiβ = rs ei(α+β) .

8.23 Note: An immediate consequence of the above example is that

(r ei θ)n = rnei nθ

for r, θ ∈ R and for n ∈ Z. This result is known as De Moivre’s Law.

8.24 Example: Find (1 + i)10.

Solution: This can be done in cartesian coordinates using the binomial theorem (which
holds for complex numbers), but it is easier in polar coordinates. We have 1+ i =

√
2ei π/4

so (1 + i)10 = (
√

2ei π/4)10 = (
√

2)10ei 10π/4 = 32ei π/2 = 32i.

8.25 Example: Find a formula for the nth roots of a complex number. In other words,
given z = reiθ, solve wn = z.

Solution: Let w = seiα. We have wn = z⇐⇒ (seiα)n = reiθ⇐⇒ snei nα = reiθ⇐⇒ sn =

r and nα = θ+ 2πk for some k ∈ Z⇐⇒ s = n
√
r and α =

θ + 2πk

n
for some k ∈ Z. Notice

that when z 6= 0 there are exactly n solutions obtained by taking 0 ≤ k < n. So we obtain
the formula

(r ei θ)1/n = n
√
r ei (θ+2πk)/n , k ∈ {0, 1, . . . , n− 1} .

In particular, (r ei θ)1/2 = ±
√
r ei θ/2. For 0 < a ∈ R we have z2 = a⇐⇒ z = ±

√
a, and

for 0 > a ∈ R we have z2 = a⇐⇒ z = ±
√
|a| i.

8.26 Note: When working with complex numbers, for 0 6= z ∈ C and for 0 < n ∈ Z, we
sometimes write n

√
z or w1/n to denote one of the n solutions to wn = z, and we sometimes

write n
√
z or z1/n to denote the set of all nth roots.

8.27 Note: For z, w ∈ C, the rule

(zw)1/n = z1/nw1/n

does hold provided that z1/n is used to denote the set of all nth roots, but it does not
always hold when z1/n is used to denote one of the nth roots. Consider the following
amusing “proof” that 1 = −1:

1 =
√

1 =
√

(−1)(−1) =
√
−1
√
−1 = i2 = −1 .

8.28 Example: Find 3
√
−2 + 2i.

Solution: Note that −2 + 2i = 2
√

2 ei 3π/4, and so the formula for nth roots gives

3
√
−2 + 2i =

3

√
2
√

2 e3π/4

=
√

2 ei(π/4+
2π
3 k), k ∈ {0, 1, 2}

=
√

2 ei π/3,
√

2 ei 11π/12,
√

2 ei 19π/12 .
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8.29 Note: The remaining examples in this chapter illustrate situations in which we
can use complex numbers as a tool to help solve certain problems which only involve real
numbers.

8.30 Example: Let x0 = 1 and x1 = 1, and for n ≥ 2 let xn = 2xn−1 − 5xn−2. Find a
closed-form formula for xn.

Solution: The characteristic polynomial for the recursion is z2 − 2z + 5 = 0 which has

(complex) roots z = 2±
√
4−20
2 = 1± 2i. By the Linear Recursion Theorem (Theorem 2.47)

xn = A(1 + 2i)n +B(1− 2i)n

for some constants A and B. To get x0 = 1 and x1 = 1, we need A + B = 1 and
A(1 + 2i) +B(1− 2i) = 1. Solving these two equations gives A = B = 1

2 , so we have

xn = 1
2 ((1 + 2i)n + (1− 2i)n) = 1

2

((√
5 ei θ

)n
+
(√

5 e−i θ
)n)

= (
√
5)n

2

(
ei nθ + e−i nθ

)
=

(
√
5)
n

2 (2 cosnθ) =
(√

5
)n

cosnθ

where θ = θ(1 + 2i) = tan−1 2. Thus we obtain

xn = (
√

5)n cos
(
n tan−1 2

)
.

8.31 Example: Find
n∑
i=0

(
3n

3i

)
.

Solution: Let α = ei 2π/3. Note that 1 + α + α2 = 1 +
(
− 1

2 +
√
3
2 i
)

+
(
− 1

2 −
√
3
2 i
)

= 0.

By the Binomial Theorem we have

(1 + 1)3n =

(
3n

0

)
+

(
3n

1

)
+

(
3n

2

)
+

(
3n

3

)
+

(
3n

4

)
+ · · ·+

(
3n

3n

)
(1 + α)3n =

(
3n

0

)
+

(
3n

1

)
α +

(
3n

2

)
α2 +

(
3n

3

)
+

(
3n

4

)
α + · · ·+

(
3n

3n

)
(1 + α2)3n =

(
3n

0

)
+

(
3n

1

)
α2 +

(
3n

2

)
α +

(
3n

3

)
+

(
3n

4

)
α2 + · · ·+

(
3n

3n

)
Adding these three equations gives (1 + 1)3n + (1 +α)3n + (1 +α2)3n = 3

n∑
i=0

(
3n

3i

)
. Note

that 1 + α = 1− 1
2 +

√
3
2 i = 1

2 +
√
3
2 i = ei π/3 and similarly 1 + α2 = e−i π/3, and so

n∑
i=0

(
3n

3i

)
= 1

3

(
(1 + 1)3n + (1 + α)3n + (1 + α2)3n

)
= 1

3

(
23n +

(
ei π/3

)3n
+
(
e−i π/3

)3n)
= 1

3

(
23n + ei nπ + e−i nπ

)
=

23n + 2(−1)n

3
.

8.32 Note: The Fundamental Theorem of Algebra states that every non-constant poly-
nomial over C has a root in C. It follows that every such polynomial factors into linear
factors over C. If a polynomial f(x) has real coefficients, and α is a complex root of f so
that f(α) = 0, then we have f(α) = f(α) = 0 so that α is also a root of f . Notice that in
this case

(x− α)(x− α) = x2 − (α+ α)x+ αα = x2 − 2Re (α) + |α|2 ,
which has real coefficients. It follows that every non-constant polynomial over R factors
into linear and quadratic factors over R.
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8.33 Example: Let f(x) = x4 + 2x2 + 4. Solve f(z) = 0 for z ∈ C, factor f(z) over the
complex number, and then factor f(x) over the real numbers.

Solution: By the quadratic formula, f(z) = 0 when z2 = −1±
√

3 i or in polar coordinates
z = 2e±i 2π/3. Thus the roots of f are z = ±

√
2e±i π/3, and so f factors over C as

z4 + 2z2 + 4 =
(
z −
√

2ei π/3
)(
z −
√

2e−i π/3
)(
z +
√

2ei π/3
)(
z +
√

2e−i π/3
)
.

Since
(
z −
√

2ei π/3
)(
z −
√

2e−i π/3
)

= z2 −
√

2 z + 2 and
(
z +
√

2ei π/3
)(
z +
√

2e−i π/3
)

=

z2 +
√

2 z + 2, we see that over R, f factors as

f(x) = (x2 −
√

2x+ 2)(x2 +
√

2x+ 2) .

8.34 Note: Historically, complex numbers first arose in the study of cubic equations. An
equation of the form ax3+bx2+cx+d = 0, where a, b, c, d ∈ C with a 6= 0 can be solved as
follows. First, divide by a to obtain an equation of the form x3 +Bx2 +Cx+D = 0. Next,
make the substitution x = y− B

3 and rewrite the equation in the form y3+py+q = 0. Then

make the substitution y = z − p
3z to convert the equation to the form z3 + q − p3

27z
−3 = 0.

Finally, multiply by z3 to obtain z6+qz3− p3

27 and solve for z3 using the Quadratic Formula.

8.35 Example: Let f(x) = x3 + 3x2 + 4x + 1. Note that f ′(x) = 3x2 + 6x + 4 =
3(x + 1)2 + 1 > 0, so f is increasing and hence has exactly one real root. Find the real
root of f .

Solution: Let x = y−1. Then x3+3x2+4x+1 = (y−1)3+3(y−1)2+4(y−1)+1 = y3+y−1.
Let y = z− 1

3z . Then y3 +y−1 = (z− 1
3z
−1)3 +(z− 1

3z
−1)−1 = z3−1− 1

27z
−3. We solve

z6 − z3 − 1
27 = 0 using the quadratic formula, and obtain z3 =

1±
√

31
27

2 . If z =
3

√
1+
√

31
27

2

then r z−1 = − 1
3

3

√
2

1+
√

31
27

= − 1
3

3

√
2(1−
√

31
27 )

1− 31
27

=
3

√
1−
√

31
27

2 . Similarly, if z =
3

√
1−
√

31
27

2 then

r z−1 =
3

√
1+
√

31
27

2 . In either case we have y = z + rz−1 =
3

√
1+
√

31
27

2 +
3

√
1−
√

31
27

2 , and

x = y−1 =
3

√√
31
27+1

2 − 3

√√
31
27−1
2 −1. (We did not use complex numbers in this example).

8.36 Example: Find the three real roots of f(x) = x3 − 3x+ 1.

Solution: Let x = z + z−1 so that f(x) = (z + z−1)3 − 3(z + z−1) + 1 = z3 + 1 + z−3.

Multiply by z3 and solve z6 + z3 + 1 = 0 to get z3 = −1±
√
3 i

2 = e±i 2π/3. If z3 = ei 2π/3

then z = ei 2π/9, ei 8π/9 or ei 14π/9 and so x = z + z−1 = z + z = 2Re (z) = 2 cos( 2π
9 ),

2 cos( 8π
9 ) or 2 cos(14π

9 ). If z3 = e−i 2π/3 then we obtain the same values for x. Thus the
three real roots are 2 cos(40◦), −2 cos(20◦) and 2 cos(80◦).
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