

Chapter 8. Complex Numbers

8.1 Definition: A **complex number** is a vector in \mathbf{R}^2 . The **complex plane**, denoted by \mathbf{C} , is the set of complex numbers:

$$\mathbf{C} = \mathbf{R}^2 = \{(x, y) \mid x \in \mathbf{R}, y \in \mathbf{R}\}.$$

In \mathbf{C} we write $0 = (0, 0)$, $1 = (1, 0)$, $i = (0, 1)$, and for $x, y \in \mathbf{R}$ we write $x = (x, 0)$, $iy = y(i) = (0, y)$ and

$$x + iy = x + y(i) = (x, y).$$

If $z = x + iy$ with $x, y \in \mathbf{R}$ then x is called the **real** part of z and y is called the **imaginary** part of z , and we write

$$\operatorname{Re} z = x, \text{ and } \operatorname{Im} z = y.$$

8.2 Definition: We define the **sum** of two complex numbers to be the usual vector sum:

$$(a + ib) + (c + id) = (a + c) + i(b + d),$$

where $a, b \in \mathbf{R}$. We define the **product** of two complex numbers by setting $i^2 = -1$ and by requiring the product to be commutative and associative and distributive over the sum:

$$(a + ib)(c + id) = ac + iad + ibc + i^2bd = (ac - bd) + i(ad + bc).$$

8.3 Example: Let $z = 2 + i$ and $w = 1 + 3i$. Find $z + w$ and zw .

Solution: $z + w = (2 + i) + (1 + 3i) = (2 + 1) + i(1 + 3) = 3 + 4i$, and $zw = (2 + i)(1 + 3i) = 2 + 6i + i - 3 = -1 + 7i$.

8.4 Theorem: The set of complex numbers is a field.

Proof: We shall only verify that each non-zero complex number has an inverse. Let $z = a + ib$ where $a, b \in \mathbf{R}$. Suppose that $z \neq 0$ so $a^2 + b^2 \neq 0$. For $x, y \in \mathbf{R}$ we have

$$\begin{aligned} (a + ib)(x + iy) &= 1 \iff (ax - by) + (ay + bx)i = 1 + 0i \\ &\iff (ax - by = 1 \text{ and } bx + ay = 0). \end{aligned}$$

We solve the pair of equations $ax - by = 1$ (1) and $bx + ay = 0$ (2). Multiply equation (1) by a and add b times Equation (2) to get $(a^2 + b^2)x = a$, so we need $x = \frac{a}{a^2 + b^2}$. Multiply Equation (2) by a and subtract b times Equation (1) to get $(a^2 + b^2)y = -b$ so we need $y = \frac{-b}{a^2 + b^2}$. Verify that when $x = \frac{a}{a^2 + b^2}$ and $y = \frac{-b}{a^2 + b^2}$ we do indeed have $(a + ib)(x + iy) = 1$. This shows that $(a + ib)^{-1}$ does exist and is given by

$$(a + ib)^{-1} = \frac{a}{a^2 + b^2} - i \frac{b}{a^2 + b^2}.$$

8.5 Example: Find $\frac{(4 - i) - (1 - 2i)}{1 + 2i}$.

Solution: $\frac{(4 - i) - (1 - 2i)}{1 + 2i} = \frac{3 + i}{1 + 2i} = (3 + i)(1 + 2i)^{-1} = (3 + i)(\frac{1}{5} - \frac{2}{5}i) = 1 - i$.

8.6 Definition: If $z = x + iy$ with $x, y \in \mathbf{R}$ then we define the **conjugate** of z to be

$$\bar{z} = x - iy.$$

and we define the **length** (or **magnitude**) of z to be

$$|z| = \sqrt{x^2 + y^2}.$$

8.7 Note: For z and w in \mathbf{C} the following identities are all easy to verify.

$$\bar{\bar{z}} = z$$

$$z + \bar{z} = 2 \operatorname{Re} z, \quad z - \bar{z} = 2i \operatorname{Im} z$$

$$z\bar{z} = |z|^2, \quad |\bar{z}| = |z|$$

$$\overline{z+w} = \bar{z} + \bar{w}, \quad \overline{zw} = \bar{z}\bar{w}, \quad |zw| = |z||w|$$

8.8 Note: We do not have inequalities between complex numbers. We can only write $a < b$ or $a \leq b$ in the case that a and b are both *real* numbers. But there are several inequalities between real numbers which concern complex numbers. For $z \in \mathbf{C}$ and $w \in C$,

$$|\operatorname{Re}(z)| \leq |z|, \quad |\operatorname{Im}(z)| \leq |z|$$

$|z+w| \leq |z| + |w|$, this is called the **triangle inequality**

$$|z+w| \geq ||z| - |w||$$

The first two inequalities follow from the fact that $|z|^2 = |\operatorname{Re}(z)|^2 + |\operatorname{Im}(z)|^2$. We can then prove the triangle inequality as follows: $|z+w|^2 = (z+w)(\bar{z}+\bar{w}) = |z|^2 + |w|^2 + (w\bar{z} + z\bar{w}) = |z|^2 + |w|^2 + 2\operatorname{Re}(z\bar{w}) \leq |z|^2 + |w|^2 + 2|z\bar{w}| = |z|^2 + |w|^2 + 2|z||w| = (|z| + |w|)^2$. The last inequality follows from the triangle inequality since $|z| = |z+w-w| \leq |z+w| + |w|$ and $|w| = |z+w-z| \leq |z+w| + |z|$. (Alternatively, the last two inequalities can be proven using the Law of Cosines).

8.9 Example: Given complex numbers a and b , describe the set $\{z \in \mathbf{C} \mid |z-a| < |z-b|\}$.

Solution: Geometrically, this is the set of all z such that z is closer to a than to b , so it is the **half-plane** which contains a and lies on one side of the perpendicular bisector of the line segment ab .

8.10 Example: Given a complex number a , describe the set $\{z \in \mathbf{C} \mid 1 < |z-a| < 2\}$.

Solution: $\{z \mid |z-a| = 1\}$ is the circle centred at a of radius 1 and $\{z \mid |z-a| = 2\}$ is the circle centred at a of radius 2, and $\{z \in \mathbf{C} \mid 1 < |z-a| < 2\}$ is the region between these two circles. Such a region is called an **annulus**.

8.11 Example: Show that every non-zero complex number has exactly two complex square roots, and find a formula for the two square roots of $z = x + iy$.

Solution: Let $z = x + iy$ where $x, y \in \mathbf{R}$ with x and y not both zero. We need to solve $w^2 = z$ for $w \in \mathbf{C}$. Write $w = u + iv$ with $u, v \in \mathbf{R}$. We have

$$\begin{aligned} w^2 = z &\iff (u + iv)^2 = x + iy \iff (u^2 - v^2) + i(2uv) = x + iy \\ &\iff (u^2 - v^2 = x \text{ and } 2uv = y). \end{aligned}$$

To solve this pair of equations for u , square both sides of the second equation to get $4u^2v^2 = y^2$, then multiply the first equation by $4u^2$ to get $4u^4 - 4u^2v^2 = 4xu^2$, that is $4u^4 - 4xu^2 - y^2 = 0$. By the quadratic formula,

$$u^2 = \frac{4x \pm \sqrt{16x^2 + 16y^2}}{8} = \frac{x \pm \sqrt{x^2 + y^2}}{2}.$$

In the case that $y \neq 0$, we must use the $+$ sign so that the right side is non-negative, so we obtain

$$u = \pm \sqrt{\frac{x + \sqrt{x^2 + y^2}}{2}}.$$

A similar calculation gives

$$v = \pm \sqrt{\frac{-x + \sqrt{x^2 + y^2}}{2}}.$$

All four choices of sign will satisfy the equation $u^2 - v^2 = x$, but to satisfy $2uv = y$ notice that when $y > 0$, u and v have the same sign, and when $y < 0$, u and v have the opposite sign. It remains only to consider the case that $y = 0$, and we leave this case as an exercise. The final result is that

$$w = \begin{cases} \pm \left(\sqrt{\frac{x + \sqrt{x^2 + y^2}}{2}} + i\sqrt{\frac{-x + \sqrt{x^2 + y^2}}{2}} \right), & \text{if } y > 0, \\ \pm \left(\sqrt{\frac{x + \sqrt{x^2 + y^2}}{2}} - i\sqrt{\frac{-x + \sqrt{x^2 + y^2}}{2}} \right), & \text{if } y < 0, \\ \pm \sqrt{x}, & \text{if } y = 0 \text{ and } x > 0, \\ \pm i\sqrt{|x|}, & \text{if } y = 0 \text{ and } x < 0. \end{cases}$$

8.12 Note: When working with real numbers, for $0 < x \in \mathbf{R}$ it is customary to write \sqrt{x} or $x^{1/2}$ to denote the unique positive square root of x . When working with complex numbers, for $0 \neq z \in \mathbf{C}$ we sometimes write \sqrt{z} or $z^{1/2}$ to denote one of the two square roots of z , and we sometimes write \sqrt{z} or $z^{1/2}$ to denote both square roots of z .

8.13 Example: Find $\sqrt{3 - 4i}$.

Solution: Using the formula derived in the previous example, we have

$$\sqrt{3 - 4i} = \pm \left(\sqrt{\frac{3 + \sqrt{3^2 + 4^2}}{2}} - i\sqrt{\frac{-3 + \sqrt{3^2 + 4^2}}{2}} \right) = \pm \left(\sqrt{\frac{3+5}{2}} - i\sqrt{\frac{-3+5}{2}} \right) = \pm(2 - i).$$

8.14 Note: The Quadratic Formula can be used for complex numbers. Indeed for $a, b, c, z \in \mathbf{C}$ with $a \neq 0$ we have

$$\begin{aligned} az^2 + bz + c = 0 &\iff z^2 + \frac{b}{a}z + \frac{c}{a} = 0 \iff z^2 + \frac{b}{2a}z + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \\ &\iff \left(z + \frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} = \frac{b^2 - 4ac}{4a^2} \iff z + \frac{b}{2a} = \frac{\sqrt{b^2 - 4ac}}{2a} \\ &\iff z = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \end{aligned}$$

where $\sqrt{b^2 - 4ac}$ is being used to denote both square roots in the case that $b^2 - 4ac \neq 0$.

8.15 Example: Solve $i z^2 - (2 + 3i)z + 5(1 + i) = 0$.

Solution: By the Quadratic Formula, we have

$$\begin{aligned} z &= \frac{(2 + 3i) + \sqrt{(2 + 3i)^2 - 20i(1 + i)}}{2i} = \frac{(2 + 3i) + \sqrt{-5 + 12i + 20 - 20i}}{2i} \\ &= \frac{(2 + 3i) + \sqrt{15 - 8i}}{2i} \end{aligned}$$

and by the formula for square roots we have

$$\sqrt{15 - 8i} = \pm \left(\sqrt{\frac{15 + \sqrt{15^2 + 8^2}}{2}} - i \sqrt{\frac{-15 + \sqrt{15^2 + 8^2}}{2}} \right) = \pm \left(\sqrt{\frac{15 + 17}{2}} - i \sqrt{\frac{-15 + 17}{2}} \right) = \pm (4 - i)$$

and so

$$z = \frac{(2 + 3i) \pm (4 - i)}{2i} = \frac{6 + 2i}{2i} \text{ or } \frac{-2 + 4i}{2i} = 1 - 3i \text{ or } 2 + i.$$

8.16 Definition: If $z \neq 0$, we define the **angle** (or **argument**) of z to be the angle $\theta(z)$ from the positive x -axis counterclockwise to z . In other words, $\theta(z)$ is the angle such that

$$z = |z|(\cos \theta(z) + i \sin \theta(z)).$$

8.17 Note: We can think of the angle $\theta(z)$ in several different ways. We can require, for example, that $0 \leq \theta(z) < 2\pi$ so that the angle is uniquely determined. Or we can allow $\theta(z)$ to be any real number, in which case the angle will be unique up to a multiple of 2π . Then again, we can think of $\theta(z)$ as the infinite set of real numbers $\theta(z) = \{\theta_0 + 2\pi k | k \in \mathbf{Z}\}$, that is we can regard $\theta(z)$ as an element of $\mathbf{R}/2\pi$, the set of real numbers modulo 2π .

8.18 Notation: For $\theta \in \mathbf{R}$ (or for $\theta \in \mathbf{R}/2\pi$) we shall write

$$e^{i\theta} = \cos \theta + i \sin \theta.$$

8.19 Note: If $z \neq 0$ and we have $x = \operatorname{Re}(z)$, $y = \operatorname{Im}(z)$, $r = |z|$ and $\theta = \theta(z)$ then

$$\begin{aligned} x &= r \cos \theta, \quad y = r \sin \theta \\ r &= \sqrt{x^2 + y^2}, \quad \tan \theta = \frac{y}{x}, \text{ if } x \neq 0 \\ z &= re^{i\theta}, \quad \bar{z} = r e^{-i\theta}, \quad z^{-1} = \frac{1}{r} e^{-i\theta} \end{aligned}$$

We say that $x + iy$ is the **cartesian** form of z and $re^{i\theta}$ is the **polar** form.

8.20 Example: Let $z = -3 - 4i$. Express z in polar form.

Solution: We have $|z| = 5$ and $\tan \theta(z) = \frac{4}{3}$. Since $\theta(z)$ is in the third quadrant, we have $\theta(z) = \pi + \tan^{-1} \frac{4}{3}$. So $z = 5e^{i(\pi + \tan^{-1}(4/3))}$.

8.21 Example: Let $z = 10e^{i \tan^{-1} 3}$. Express z in cartesian form.

Solution: $z = 10 (\cos(\tan^{-1} 3) + i \sin(\tan^{-1} 3)) = 10 \left(\frac{1}{\sqrt{10}} + i \frac{3}{\sqrt{10}} \right) = \sqrt{10} + 3\sqrt{10}i$.

8.22 Example: Find a formula for multiplication in polar coordinates.

Solution: For $z = re^{i\alpha}$ and $w = e^{i\beta}$ we have $zw = rs(\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta) = ((\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\sin \alpha \cos \beta + \cos \alpha \sin \beta)) = rs(\cos(\alpha + \beta) + i \sin(\alpha + \beta))$ and so we obtain the formula

$$re^{i\alpha} se^{i\beta} = rs e^{i(\alpha+\beta)}.$$

8.23 Note: An immediate consequence of the above example is that

$$(r e^{i\theta})^n = r^n e^{in\theta}$$

for $r, \theta \in \mathbf{R}$ and for $n \in \mathbf{Z}$. This result is known as **De Moivre's Law**.

8.24 Example: Find $(1+i)^{10}$.

Solution: This can be done in cartesian coordinates using the binomial theorem (which holds for complex numbers), but it is easier in polar coordinates. We have $1+i = \sqrt{2}e^{i\pi/4}$ so $(1+i)^{10} = (\sqrt{2}e^{i\pi/4})^{10} = (\sqrt{2})^{10}e^{i10\pi/4} = 32e^{i\pi/2} = 32i$.

8.25 Example: Find a formula for the n^{th} roots of a complex number. In other words, given $z = re^{i\theta}$, solve $w^n = z$.

Solution: Let $w = se^{i\alpha}$. We have $w^n = z \iff (se^{i\alpha})^n = re^{i\theta} \iff s^n e^{in\alpha} = re^{i\theta} \iff s^n = r$ and $n\alpha = \theta + 2\pi k$ for some $k \in \mathbf{Z} \iff s = \sqrt[n]{r}$ and $\alpha = \frac{\theta + 2\pi k}{n}$ for some $k \in \mathbf{Z}$. Notice that when $z \neq 0$ there are exactly n solutions obtained by taking $0 \leq k < n$. So we obtain the formula

$$(r e^{i\theta})^{1/n} = \sqrt[n]{r} e^{i(\theta+2\pi k)/n}, \quad k \in \{0, 1, \dots, n-1\}.$$

In particular, $(r e^{i\theta})^{1/2} = \pm \sqrt{r} e^{i\theta/2}$. For $0 < a \in \mathbf{R}$ we have $z^2 = a \iff z = \pm \sqrt{a}$, and for $0 > a \in \mathbf{R}$ we have $z^2 = a \iff z = \pm \sqrt{|a|}i$.

8.26 Note: When working with complex numbers, for $0 \neq z \in \mathbf{C}$ and for $0 < n \in \mathbf{Z}$, we sometimes write $\sqrt[n]{z}$ or $w^{1/n}$ to denote one of the n solutions to $w^n = z$, and we sometimes write $\sqrt[n]{z}$ or $z^{1/n}$ to denote the set of all n^{th} roots.

8.27 Note: For $z, w \in \mathbf{C}$, the rule

$$(zw)^{1/n} = z^{1/n} w^{1/n}$$

does hold provided that $z^{1/n}$ is used to denote the set of all n^{th} roots, but it does not always hold when $z^{1/n}$ is used to denote one of the n^{th} roots. Consider the following amusing “proof” that $1 = -1$:

$$1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1} = i^2 = -1.$$

8.28 Example: Find $\sqrt[3]{-2+2i}$.

Solution: Note that $-2+2i = 2\sqrt{2}e^{i3\pi/4}$, and so the formula for n^{th} roots gives

$$\begin{aligned} \sqrt[3]{-2+2i} &= \sqrt[3]{2\sqrt{2}e^{i3\pi/4}} \\ &= \sqrt{2}e^{i(\pi/4 + \frac{2\pi}{3}k)}, k \in \{0, 1, 2\} \\ &= \sqrt{2}e^{i\pi/3}, \sqrt{2}e^{i11\pi/12}, \sqrt{2}e^{i19\pi/12}. \end{aligned}$$

8.29 Note: The remaining examples in this chapter illustrate situations in which we can use complex numbers as a tool to help solve certain problems which only involve real numbers.

8.30 Example: Let $x_0 = 1$ and $x_1 = 1$, and for $n \geq 2$ let $x_n = 2x_{n-1} - 5x_{n-2}$. Find a closed-form formula for x_n .

Solution: The characteristic polynomial for the recursion is $z^2 - 2z + 5 = 0$ which has (complex) roots $z = \frac{2 \pm \sqrt{4-20}}{2} = 1 \pm 2i$. By the Linear Recursion Theorem (Theorem 2.47)

$$x_n = A(1 + 2i)^n + B(1 - 2i)^n$$

for some constants A and B . To get $x_0 = 1$ and $x_1 = 1$, we need $A + B = 1$ and $A(1 + 2i) + B(1 - 2i) = 1$. Solving these two equations gives $A = B = \frac{1}{2}$, so we have

$$\begin{aligned} x_n &= \frac{1}{2}((1 + 2i)^n + (1 - 2i)^n) = \frac{1}{2}\left(\left(\sqrt{5}e^{i\theta}\right)^n + \left(\sqrt{5}e^{-i\theta}\right)^n\right) = \frac{(\sqrt{5})^n}{2}(e^{in\theta} + e^{-in\theta}) \\ &= \frac{(\sqrt{5})^n}{2}(2\cos n\theta) = (\sqrt{5})^n \cos n\theta \end{aligned}$$

where $\theta = \theta(1 + 2i) = \tan^{-1} 2$. Thus we obtain

$$x_n = (\sqrt{5})^n \cos(n \tan^{-1} 2).$$

8.31 Example: Find $\sum_{i=0}^n \binom{3n}{3i}$.

Solution: Let $\alpha = e^{i2\pi/3}$. Note that $1 + \alpha + \alpha^2 = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 0$.

By the Binomial Theorem we have

$$\begin{aligned} (1+1)^{3n} &= \binom{3n}{0} + \binom{3n}{1} + \binom{3n}{2} + \binom{3n}{3} + \binom{3n}{4} + \cdots + \binom{3n}{3n} \\ (1+\alpha)^{3n} &= \binom{3n}{0} + \binom{3n}{1}\alpha + \binom{3n}{2}\alpha^2 + \binom{3n}{3}\alpha^3 + \binom{3n}{4}\alpha^4 + \cdots + \binom{3n}{3n}\alpha^{3n} \\ (1+\alpha^2)^{3n} &= \binom{3n}{0} + \binom{3n}{1}\alpha^2 + \binom{3n}{2}\alpha^4 + \binom{3n}{3}\alpha^6 + \binom{3n}{4}\alpha^8 + \cdots + \binom{3n}{3n}\alpha^{6n} \end{aligned}$$

Adding these three equations gives $(1+1)^{3n} + (1+\alpha)^{3n} + (1+\alpha^2)^{3n} = 3 \sum_{i=0}^n \binom{3n}{3i}$. Note

that $1 + \alpha = 1 - \frac{1}{2} + \frac{\sqrt{3}}{2}i = \frac{1}{2} + \frac{\sqrt{3}}{2}i = e^{i\pi/3}$ and similarly $1 + \alpha^2 = e^{-i\pi/3}$, and so

$$\begin{aligned} \sum_{i=0}^n \binom{3n}{3i} &= \frac{1}{3}((1+1)^{3n} + (1+\alpha)^{3n} + (1+\alpha^2)^{3n}) = \frac{1}{3}\left(2^{3n} + (e^{i\pi/3})^{3n} + (e^{-i\pi/3})^{3n}\right) \\ &= \frac{1}{3}(2^{3n} + e^{in\pi} + e^{-in\pi}) = \frac{2^{3n} + 2(-1)^n}{3}. \end{aligned}$$

8.32 Note: The Fundamental Theorem of Algebra states that every non-constant polynomial over \mathbf{C} has a root in \mathbf{C} . It follows that every such polynomial factors into linear factors over \mathbf{C} . If a polynomial $f(x)$ has real coefficients, and α is a complex root of f so that $f(\alpha) = 0$, then we have $f(\bar{\alpha}) = \overline{f(\alpha)} = 0$ so that $\bar{\alpha}$ is also a root of f . Notice that in this case

$$(x - \alpha)(x - \bar{\alpha}) = x^2 - (\alpha + \bar{\alpha})x + \alpha\bar{\alpha} = x^2 - 2\operatorname{Re}(\alpha)x + |\alpha|^2,$$

which has real coefficients. It follows that every non-constant polynomial over \mathbf{R} factors into linear and quadratic factors over \mathbf{R} .

8.33 Example: Let $f(x) = x^4 + 2x^2 + 4$. Solve $f(z) = 0$ for $z \in \mathbf{C}$, factor $f(z)$ over the complex numbers, and then factor $f(x)$ over the real numbers.

Solution: By the quadratic formula, $f(z) = 0$ when $z^2 = -1 \pm \sqrt{3}i$ or in polar coordinates $z = 2e^{\pm i 2\pi/3}$. Thus the roots of f are $z = \pm\sqrt{2}e^{\pm i \pi/3}$, and so f factors over \mathbf{C} as

$$z^4 + 2z^2 + 4 = (z - \sqrt{2}e^{i\pi/3})(z - \sqrt{2}e^{-i\pi/3})(z + \sqrt{2}e^{i\pi/3})(z + \sqrt{2}e^{-i\pi/3}).$$

Since $(z - \sqrt{2}e^{i\pi/3})(z - \sqrt{2}e^{-i\pi/3}) = z^2 - \sqrt{2}z + 2$ and $(z + \sqrt{2}e^{i\pi/3})(z + \sqrt{2}e^{-i\pi/3}) = z^2 + \sqrt{2}z + 2$, we see that over \mathbf{R} , f factors as

$$f(x) = (x^2 - \sqrt{2}x + 2)(x^2 + \sqrt{2}x + 2).$$

8.34 Note: Historically, complex numbers first arose in the study of cubic equations. An equation of the form $ax^3 + bx^2 + cx + d = 0$, where $a, b, c, d \in \mathbf{C}$ with $a \neq 0$ can be solved as follows. First, divide by a to obtain an equation of the form $x^3 + Bx^2 + Cx + D = 0$. Next, make the substitution $x = y - \frac{B}{3}$ and rewrite the equation in the form $y^3 + py + q = 0$. Then make the substitution $y = z - \frac{p}{3z}$ to convert the equation to the form $z^3 + q - \frac{p^3}{27}z^{-3} = 0$. Finally, multiply by z^3 to obtain $z^6 + qz^3 - \frac{p^3}{27}$ and solve for z^3 using the Quadratic Formula.

8.35 Example: Let $f(x) = x^3 + 3x^2 + 4x + 1$. Note that $f'(x) = 3x^2 + 6x + 4 = 3(x+1)^2 + 1 > 0$, so f is increasing and hence has exactly one real root. Find the real root of f .

Solution: Let $x = y - 1$. Then $x^3 + 3x^2 + 4x + 1 = (y - 1)^3 + 3(y - 1)^2 + 4(y - 1) + 1 = y^3 + y - 1$. Let $y = z - \frac{1}{3z}$. Then $y^3 + y - 1 = (z - \frac{1}{3}z^{-1})^3 + (z - \frac{1}{3}z^{-1}) - 1 = z^3 - 1 - \frac{1}{27}z^{-3}$. We solve $z^6 - z^3 - \frac{1}{27} = 0$ using the quadratic formula, and obtain $z^3 = \frac{1 \pm \sqrt{\frac{31}{27}}}{2}$. If $z = \sqrt[3]{\frac{1 + \sqrt{\frac{31}{27}}}{2}}$ then $rz^{-1} = -\frac{1}{3}\sqrt[3]{\frac{2}{1 + \sqrt{\frac{31}{27}}}} = -\frac{1}{3}\sqrt[3]{\frac{2(1 - \sqrt{\frac{31}{27}})}{1 - \frac{31}{27}}} = \sqrt[3]{\frac{1 - \sqrt{\frac{31}{27}}}{2}}$. Similarly, if $z = \sqrt[3]{\frac{1 - \sqrt{\frac{31}{27}}}{2}}$ then $rz^{-1} = \sqrt[3]{\frac{1 + \sqrt{\frac{31}{27}}}{2}}$. In either case we have $y = z + rz^{-1} = \sqrt[3]{\frac{1 + \sqrt{\frac{31}{27}}}{2}} + \sqrt[3]{\frac{1 - \sqrt{\frac{31}{27}}}{2}}$, and $x = y - 1 = \sqrt[3]{\frac{\sqrt{\frac{31}{27}} + 1}{2}} - \sqrt[3]{\frac{\sqrt{\frac{31}{27}} - 1}{2}} - 1$. (We did not use complex numbers in this example).

8.36 Example: Find the three real roots of $f(x) = x^3 - 3x + 1$.

Solution: Let $x = z + z^{-1}$ so that $f(x) = (z + z^{-1})^3 - 3(z + z^{-1}) + 1 = z^3 + 1 + z^{-3}$. Multiply by z^3 and solve $z^6 + z^3 + 1 = 0$ to get $z^3 = \frac{-1 \pm \sqrt{3}i}{2} = e^{\pm i 2\pi/3}$. If $z^3 = e^{i 2\pi/3}$ then $z = e^{i 2\pi/9}$, $e^{i 8\pi/9}$ or $e^{i 14\pi/9}$ and so $x = z + z^{-1} = z + \bar{z} = 2\operatorname{Re}(z) = 2\cos(\frac{2\pi}{9})$, $2\cos(\frac{8\pi}{9})$ or $2\cos(\frac{14\pi}{9})$. If $z^3 = e^{-i 2\pi/3}$ then we obtain the same values for x . Thus the three real roots are $2\cos(40^\circ)$, $-2\cos(20^\circ)$ and $2\cos(80^\circ)$.