
Chapter 7. Cryptography

7.1 Definition: Cryptography is the study of secret codes. When we convert a mes-
sage from a normal language, say English, to a secret code, we say that we encrypt (or
encipher) the message, and the coded word is called the ciphertext. When we convert
the ciphertext back into normal language, we say that we decipher (or decrypt) the
ciphertext to obtain the original message.

7.2 Example: One of the simplest encryption methods is a Caesar cipher. Suppose
Alice wants to send a secret message to Bob using a Caesar cipher. Alice and Bob agree
in advance on a number n between 1 and 25. Alice encrypts the message by replacing
each letter in the message by the letter which follows it by n positions (modulo 26) in
the English alphabet. For example, if n = 4 then the letter P would be replaced by the
letter T (which follows P by 4 positions), and the message PONY would be replaced by
the ciphertext TSRB. Bob can easily decrypt the ciphertext by replacing each letter by
the letter which precedes it by n positions.

7.3 Example: A slightly more secure encryption method is a substitution cipher.
Suppose that Alice wants to send a secret message to Bob using a substitution cipher.
Alice and Bob agree in advance on a permutation p of the letters of the English alphabet.
Alice enciphers the message by replacing each letter by the letter which corresponds to it
under the permutation p. For example, if the permutation p is given as follows

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
V G S C F U Q L A P I D X N W T H Y O J K Z B E R M

then the letter H would be replaced by the letter L and the message HORSE would be
replaced by the ciphertext LWYOF.

7.4 Definition: A far more secure encryption system, which is commonly used by modern
computers, is the RSA scheme. The letters R, S and A stand for Rivest, Shamir and
Adleman. who first described this encryption system. The RSA scheme is a public key
encryption system, which means that when a person, say Alice, wishes to receive a secret
message, she makes her encryption rules publicly known so that anyone can encipher a
message and send it to Alice and yet, although everyone knows the encryption rules, only
Alice knows the decryption rules and can decipher the ciphertext.

Suppose that Alice wishes to receive a secret message using the RSA scheme. Alice
chooses two large prime numbers p and q (in practice, p and q would have over 100
decimal digits) and calculates n = pq and ϕ = ϕ(n) = (p− 1)(q − 1). Then Alice chooses
a positive integer e < ϕ with gcd(e, ϕ) = 1 and calculates d = e−1 mod ϕ. The number
e is called the encryption key and the number d is called the decryption key. Then
Alice makes the numbers n and e publicly known. Suppose that Bob wishes to send a
message to Alice. Bob converts his message to a positive integer m with m < n (if his
message is too long then he breaks it into shorter messages). Bob calculates the ciphertext
c = me mod n which he sends to Alice. Note that since ed = 1 mod ϕ, we have
cd = (me)d = med = m1 = m mod n by the Euler Fermat Theorem, and so Alice can
recover the original message m by calculating m = cd mod n.
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7.5 Note: Alice can save some time if, instead of calculating ϕ = (p − 1)(q − 1) and
d = e−1 mod ϕ, she instead calculates ψ = lcm(p − 1, q − 1) and d = e−1 mod ψ. Verify
that when c = me mod n we have cd = (ce)d = ced = c1 = m mod n.

7.6 Note: The reason that the RSA scheme is practical and secure is that there do exist
efficient (polynomial time) algorithms which can be used to find p, q, n, ϕ, e and d and
to calculate c = me mod n and m = cd mod n, but there is no known efficient algorithm
which can be used to determine m from n, e and c. In particular, there do exist efficient
algorithms which can be used to determine whether a given positive integer n is prime,
but there is no known efficient algorithm which can determine a prime factor of n in the
case that n is composite.

There do, of course, exist inefficient algorithms which can determine a prime factor of
n. For example, we can use the Sieve of Eratosthenes to list all primes p with 1 < p ≤

√
n

and then test each such prime p to determine whether it is a factor of n. But when the
prime factors of n are over a hundred digits long, this algorithm is too slow (if a computer
could list 1010 prime numbers each second then it would take about 1080 years to list all
the prime numbers p with p < 10100).

7.7 Example: The calculation of d = e−1 mod ϕ can be performed using the Euclidean
Algorithm, which is efficient.

7.8 Example: When n, e and m are all large, we can calculate c = me mod n efficiently

as follows. Express e in base 2, say e =
∑̀
i=1

2ki with 0 ≤ k1 < k2 < k3 < · · ·, calculate the

residues m1,m2,m4,m8, · · · ,m2
k`

mod n, then calculate c = me =
∏̀
i=1

m2
ki

mod n. This

algorithm is known as the Square and Multiply Algorithm.

7.9 Example: Alice wishes to receive a message. She chooses p = 13 and q = 17 and
calculates n = pq = 221. She also chooses e = 35 and makes the numbers n and e public.
Bob wishes to secretly send Alice the letter T . Bob converts the letter T to the number
m = 20 (since T is the 20th letter in the English alphabet) and sends the cyphertext
c = me mod n. As an exercise, calculate c = me mod n and calculate ψ = lcm(p−1, q−1)
and d = e−1 mod ψ, then directly calculate cd mod n to verify that cd = m mod n.

7.10 Definition: Let us describe a simple test for primality which is called the Fermat
Primality Test. Suppose that we are given an integer n > 2. Choose an integer a with
1 < a < n. By Fermat’s Little Theorem, if n is prime then we must have gcd(a, n) = 1 and
an−1 = 1 mod n, so we use the Square and Multiply Algorithm to calculate an−1 mod n.
If an−1 6= 1 mod n then we can conclude that n is composite while if an−1 = 1 mod n
then we can conclude that n is probably prime.

7.11 Example: Unfortunately, given n, a ∈ Z+ with 1 < a < n, if an−1 = 1 mod n then
it does not necessarily follow that n is prime. For example, verify that 2340 = 1 mod 341
but 341 = 11 · 31. As another example, verify that 390 = 1 mod 91 but 91 = 7 · 13.

7.12 Definition: Let n, a ∈ Z+ with n composite and 1 < a < n. If an−1 6= 1 mod n
then we say that a is a Fermat witness for the compositeness of n. If an−1 = 1 mod n
then we say that a is a Fermat liar and that n is a Fermat pseudoprime to base a.
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7.13 Note: We can improve the reliability of the above test simply by repeating it. Given
n ∈ Z+, we choose a finite set S of integers a with 1 < a < n. For each a ∈ S we calculate
an−1 mod n. If we find some a ∈ S such that an−1 6= 1 mod n then we know that n is
composite. If we find that for every a ∈ S we have an−1 = 1 mod n then we can conclude
that n is probably prime.

7.14 Example: Unfortunately, if if an−1 = 1 mod n for every a with 1 < a < n and
gcd(a, n) = 1 then it does not necessarily follow that n is prime. For example, show that
when n = 3 · 11 · 17 = 561 we have an−1 = 1 mod n for all a ∈ Z with gcd(a, n) = 1.

7.15 Definition: For n ∈ Z+ we say that n is a Carmichael number when n is
composite and an−1 = 1 mod n for every a ∈ Z with gcd(a, n) = 1.

7.16 Theorem: (Carmichael Numbers) Let n ∈ Z+.

(1) If n = p1p2 · · · pl where ` ≥ 2 and the pi are distinct primes which satisfy (pi−1)
∣∣(n−1)

for all indices i, then n is a Carmichael number .
(2) If n = p1p2 · · · pl where ` ≥ 2 and the pi are distinct primes which satisfy (pi−1)

∣∣(n−1)
for all indices i (so that n is a Carmichael number, by Part (1)) then n is odd and ` ≥ 3.

Proof: Suppose that n = p1p2 · · · pl where the pi are distinct primes with (pi − 1)
∣∣(n− 1).

Let a ∈ Z+ with gcd(a, n) = 1. Fix an index i. Since gcd(a, n) = 1 we have pi 6
∣∣ a and so

api−1 = 1 mod pi by Fermat’s Little Theorem. Since api−1 = 1 mod pi and (pi−1)
∣∣(n−1),

we also have an−1 = 1 mod pi. Since an−1 = 1 mod pi for every index i, it follows from
the Chinese Remainder Theorem that an−1 = 1 mod n. Thus n is a Carmichael number,
so we have proven Part (1).

Let us prove Part (2). Since l ≥ 2, at least one of the primes pi is odd, say pk is odd.
Since pk − 1 is even and (pk − 1)

∣∣(n− 1), it follows that (n− 1) is even and so n is odd.
Suppose, for a contradiction, that n is a Carmichael number of the form n = pq where

p and q are primes with p < q and we have (p− 1)
∣∣(n− 1) and (q − 1)

∣∣(n− 1). Note that

n− 1 = pq− 1 = p(q− 1) + (p− 1). Since (q− 1)
∣∣(n− 1) we have (q− 1)

∣∣(n− 1)− p(q− 1),

that is (p− 1)
∣∣(p− 1). But this implies that q ≤ p giving the desired contradiction.

7.17 Exercise: Find distinct primes p and q such that 145 p and 145 q are both Carmichael
numbers.

7.18 Theorem: (The Miller-Rabin Test Theorem) Let n be an odd prime number and
let a ∈ Z with gcd(a, n) = 1. Write n− 1 = 2sd where s, d ∈ Z+ with d odd. Then

either ad = 1 mod n or a2
rd = −1 for some 0 ≤ r < n.

Proof: First we remark that since n is prime, Zn is a field, so for all x ∈ Zn we have

x2 = 1⇐⇒x2 − 1 = 0⇐⇒ (x− 1)(x+ 1) = 0⇐⇒x = ±1 .

By Fermat’s Little Theorem, we have an−1 = 1 mod n, that is a2
sd = 1 mod n. By the

above remark
(
using x = a2

s−1d
)

it follows that a2
s−1d = ±1 mod n. If a2

s−1d 6= −1

then a2
s−1d = 1 so, by the above remark again, it follows that a2

s−2

d = ±1. Similarly,
if a2

s−1d 6= −1 and a2
s−2d 6= −1 then a2

s−2d = 1 and hence a2
s−3

d = ±1 and so on.
Repeating the above argument we find that if a2

s−1d 6= −1 , a2
s−2d 6= −1 , · · · , a22d 6= −1

and a2d 6= −1 then a2d = 1 and hence ad = ±1.
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7.19 Definition: Using the above theorem we obtain the following test for primality,
called the Miller-Rabin Primality Test. Given an odd integer n ∈ Z+ write n−1 = 2sd
and choose an integer a with 1 < a < n. By the above theorem, if ad 6= 1 mod n and
a2

rd 6= −1 mod n for all 0 ≤ r < n then we can conclude that n is composite. If, on the
other hand, we find that either ad = 1 mod n or a2

rd = −1 mod n for some 0 ≤ r < s
then we can conclude that n is probably prime.

7.20 Example: Unfortunately, given n = 1 + 2sd where s, d ∈ Z+ with d odd, and given
a ∈ Z with 1 < a < n, even if it is true that either ad = 1 mod n or a2

rd = −1 for some
0 ≤ r < s, it does not necessarily follow that n is prime. For example, verify that when
n = 221 = 13 · 17 and a = 174 we have s = 2 and d = 55 and a2d = −1 mod n.

7.21 Definition: Let n, a ∈ Z+ where n is an odd composite number and 1 < a < n.
Write n − 1 = 2sd where s, d ∈ Z+ with d odd. If ad 6= 1 and a2

rd 6= −1 for all
0 ≤ r < s then we say that a is a Miller-Rabin witness (or a strong witness) for the
compositeness of n. If either ad = 1 or a2

rd = −1 for some 0 ≤ r < n then we say that a
is a Rabin-Miller liar (or a strong liar) and that n is a Rabin-Miller pseudoprime
(or a strong pseudoprime).

7.22 Note: As with the Fermat primality test, we can make the Miller-Rabin test more
reliable simply by repeating it. Given an odd positive integer n, write n − 1 = 2sd with
s, d ∈ Z+ and d odd. Choose a finite set S of integers a with 1 < a < n. For each a ∈ S,
calculate a2

rd mod n for 0 ≤ r < s. If we find some a ∈ S for which ad 6= 1 mod n and
a2

rd 6= −1 for all 0 ≤ r < s then we know that n is composite. If, on the other hand, we
find that for every a ∈ S, either ad = 1 mod n or a2

rd = −1 mod n for some 0 ≤ r < s
then we can conclude that n is probably prime.

7.23 Note: Recall that repeating the Fermat primality test does not make the test become
completely reliable because of the existence of Carmichael numbers. The situation is
different with the Miller-Rabin primality test. It has been proven that for every composite
positive integer n, at least 3

4 of the numbers a with 1 < a < n are strong witnesses for
the compositeness of n. It follows that, given an odd composite number n, if we choose m
integers a with 1 < a < n, the probability that none of the numbers a is a strong witness
is at most 1

4m .
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